amdgpu_amdkfd_gfx_v7.c 24.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/fdtable.h>
#include <linux/uaccess.h>
#include <linux/firmware.h>
#include <drm/drmP.h>
#include "amdgpu.h"
#include "amdgpu_amdkfd.h"
#include "cikd.h"
#include "cik_sdma.h"
#include "amdgpu_ucode.h"
32
#include "gfx_v7_0.h"
33 34 35 36 37 38 39 40 41
#include "gca/gfx_7_2_d.h"
#include "gca/gfx_7_2_enum.h"
#include "gca/gfx_7_2_sh_mask.h"
#include "oss/oss_2_0_d.h"
#include "oss/oss_2_0_sh_mask.h"
#include "gmc/gmc_7_1_d.h"
#include "gmc/gmc_7_1_sh_mask.h"
#include "cik_structs.h"

42 43 44 45 46 47
enum hqd_dequeue_request_type {
	NO_ACTION = 0,
	DRAIN_PIPE,
	RESET_WAVES
};

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
enum {
	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
	MAX_WATCH_ADDRESSES = 4
};

enum {
	ADDRESS_WATCH_REG_ADDR_HI = 0,
	ADDRESS_WATCH_REG_ADDR_LO,
	ADDRESS_WATCH_REG_CNTL,
	ADDRESS_WATCH_REG_MAX
};

/*  not defined in the CI/KV reg file  */
enum {
	ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
	ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
	ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
	/* extend the mask to 26 bits to match the low address field */
	ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
	ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
};

static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
	mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
	mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
	mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
	mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
};

union TCP_WATCH_CNTL_BITS {
	struct {
		uint32_t mask:24;
		uint32_t vmid:4;
		uint32_t atc:1;
		uint32_t mode:2;
		uint32_t valid:1;
	} bitfields, bits;
	uint32_t u32All;
	signed int i32All;
	float f32All;
};

/*
 * Register access functions
 */

static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
		uint32_t sh_mem_config,	uint32_t sh_mem_ape1_base,
		uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);

static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
					unsigned int vmid);

static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
				uint32_t hpd_size, uint64_t hpd_gpu_addr);
static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
105 106 107
			uint32_t queue_id, uint32_t __user *wptr,
			uint32_t wptr_shift, uint32_t wptr_mask,
			struct mm_struct *mm);
108 109 110
static int kgd_hqd_dump(struct kgd_dev *kgd,
			uint32_t pipe_id, uint32_t queue_id,
			uint32_t (**dump)[2], uint32_t *n_regs);
111 112
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
			     uint32_t __user *wptr, struct mm_struct *mm);
113 114 115
static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
			     uint32_t engine_id, uint32_t queue_id,
			     uint32_t (**dump)[2], uint32_t *n_regs);
116 117 118
static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
				uint32_t pipe_id, uint32_t queue_id);

119 120
static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
				enum kfd_preempt_type reset_type,
121
				unsigned int utimeout, uint32_t pipe_id,
122 123 124
				uint32_t queue_id);
static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
125
				unsigned int utimeout);
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
static int kgd_address_watch_disable(struct kgd_dev *kgd);
static int kgd_address_watch_execute(struct kgd_dev *kgd,
					unsigned int watch_point_id,
					uint32_t cntl_val,
					uint32_t addr_hi,
					uint32_t addr_lo);
static int kgd_wave_control_execute(struct kgd_dev *kgd,
					uint32_t gfx_index_val,
					uint32_t sq_cmd);
static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
					unsigned int watch_point_id,
					unsigned int reg_offset);

static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
							uint8_t vmid);

static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
144 145
static void set_scratch_backing_va(struct kgd_dev *kgd,
					uint64_t va, uint32_t vmid);
146

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/* Because of REG_GET_FIELD() being used, we put this function in the
 * asic specific file.
 */
static int get_tile_config(struct kgd_dev *kgd,
		struct tile_config *config)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;

	config->gb_addr_config = adev->gfx.config.gb_addr_config;
	config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
				MC_ARB_RAMCFG, NOOFBANK);
	config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
				MC_ARB_RAMCFG, NOOFRANKS);

	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
	config->num_tile_configs =
			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
	config->macro_tile_config_ptr =
			adev->gfx.config.macrotile_mode_array;
	config->num_macro_tile_configs =
			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);

	return 0;
}

172 173 174
static const struct kfd2kgd_calls kfd2kgd = {
	.init_gtt_mem_allocation = alloc_gtt_mem,
	.free_gtt_mem = free_gtt_mem,
175
	.get_local_mem_info = get_local_mem_info,
176 177
	.get_gpu_clock_counter = get_gpu_clock_counter,
	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
178 179
	.alloc_pasid = amdgpu_pasid_alloc,
	.free_pasid = amdgpu_pasid_free,
180 181 182 183 184 185
	.program_sh_mem_settings = kgd_program_sh_mem_settings,
	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
	.init_pipeline = kgd_init_pipeline,
	.init_interrupts = kgd_init_interrupts,
	.hqd_load = kgd_hqd_load,
	.hqd_sdma_load = kgd_hqd_sdma_load,
186 187
	.hqd_dump = kgd_hqd_dump,
	.hqd_sdma_dump = kgd_hqd_sdma_dump,
188 189 190 191 192 193 194 195 196 197
	.hqd_is_occupied = kgd_hqd_is_occupied,
	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
	.hqd_destroy = kgd_hqd_destroy,
	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
	.address_watch_disable = kgd_address_watch_disable,
	.address_watch_execute = kgd_address_watch_execute,
	.wave_control_execute = kgd_wave_control_execute,
	.address_watch_get_offset = kgd_address_watch_get_offset,
	.get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
	.get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
198 199
	.get_fw_version = get_fw_version,
	.set_scratch_backing_va = set_scratch_backing_va,
200
	.get_tile_config = get_tile_config,
201 202
	.get_cu_info = get_cu_info,
	.get_vram_usage = amdgpu_amdkfd_get_vram_usage
203 204
};

205
struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
{
	return (struct kfd2kgd_calls *)&kfd2kgd;
}

static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
{
	return (struct amdgpu_device *)kgd;
}

static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
			uint32_t queue, uint32_t vmid)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);

	mutex_lock(&adev->srbm_mutex);
	WREG32(mmSRBM_GFX_CNTL, value);
}

static void unlock_srbm(struct kgd_dev *kgd)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);

	WREG32(mmSRBM_GFX_CNTL, 0);
	mutex_unlock(&adev->srbm_mutex);
}

static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
				uint32_t queue_id)
{
236 237
	struct amdgpu_device *adev = get_amdgpu_device(kgd);

238
	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
239
	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

	lock_srbm(kgd, mec, pipe, queue_id, 0);
}

static void release_queue(struct kgd_dev *kgd)
{
	unlock_srbm(kgd);
}

static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
					uint32_t sh_mem_config,
					uint32_t sh_mem_ape1_base,
					uint32_t sh_mem_ape1_limit,
					uint32_t sh_mem_bases)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);

	lock_srbm(kgd, 0, 0, 0, vmid);

	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
	WREG32(mmSH_MEM_BASES, sh_mem_bases);

	unlock_srbm(kgd);
}

static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
					unsigned int vmid)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);

	/*
	 * We have to assume that there is no outstanding mapping.
	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
	 * a mapping is in progress or because a mapping finished and the
	 * SW cleared it. So the protocol is to always wait & clear.
	 */
	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
			ATC_VMID0_PASID_MAPPING__VALID_MASK;

	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);

	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
		cpu_relax();
	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);

	/* Mapping vmid to pasid also for IH block */
	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);

	return 0;
}

static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
				uint32_t hpd_size, uint64_t hpd_gpu_addr)
{
296
	/* amdgpu owns the per-pipe state */
297 298 299 300 301 302 303 304 305
	return 0;
}

static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	uint32_t mec;
	uint32_t pipe;

306 307
	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

	lock_srbm(kgd, mec, pipe, 0, 0);

	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);

	unlock_srbm(kgd);

	return 0;
}

static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
{
	uint32_t retval;

	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;

	pr_debug("kfd: sdma base address: 0x%x\n", retval);

	return retval;
}

static inline struct cik_mqd *get_mqd(void *mqd)
{
	return (struct cik_mqd *)mqd;
}

static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
{
	return (struct cik_sdma_rlc_registers *)mqd;
}

static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
342 343 344
			uint32_t queue_id, uint32_t __user *wptr,
			uint32_t wptr_shift, uint32_t wptr_mask,
			struct mm_struct *mm)
345 346 347
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	struct cik_mqd *m;
348 349
	uint32_t *mqd_hqd;
	uint32_t reg, wptr_val, data;
350
	bool valid_wptr = false;
351 352 353

	m = get_mqd(mqd);

354
	acquire_queue(kgd, pipe_id, queue_id);
355 356 357 358 359 360 361 362 363 364 365 366 367 368

	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
	mqd_hqd = &m->cp_mqd_base_addr_lo;

	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);

	/* Copy userspace write pointer value to register.
	 * Activate doorbell logic to monitor subsequent changes.
	 */
	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);

369 370 371 372 373 374 375 376
	/* read_user_ptr may take the mm->mmap_sem.
	 * release srbm_mutex to avoid circular dependency between
	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
	 */
	release_queue(kgd);
	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
	acquire_queue(kgd, pipe_id, queue_id);
	if (valid_wptr)
377 378 379 380 381
		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);

	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
	WREG32(mmCP_HQD_ACTIVE, data);

382 383 384 385 386
	release_queue(kgd);

	return 0;
}

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
static int kgd_hqd_dump(struct kgd_dev *kgd,
			uint32_t pipe_id, uint32_t queue_id,
			uint32_t (**dump)[2], uint32_t *n_regs)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	uint32_t i = 0, reg;
#define HQD_N_REGS (35+4)
#define DUMP_REG(addr) do {				\
		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
			break;				\
		(*dump)[i][0] = (addr) << 2;		\
		(*dump)[i++][1] = RREG32(addr);		\
	} while (0)

	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
	if (*dump == NULL)
		return -ENOMEM;

	acquire_queue(kgd, pipe_id, queue_id);

	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);

	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
		DUMP_REG(reg);

	release_queue(kgd);

	WARN_ON_ONCE(i != HQD_N_REGS);
	*n_regs = i;

	return 0;
}

423 424
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
			     uint32_t __user *wptr, struct mm_struct *mm)
425 426 427
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	struct cik_sdma_rlc_registers *m;
428
	unsigned long end_jiffies;
429
	uint32_t sdma_base_addr;
430
	uint32_t data;
431 432 433 434

	m = get_sdma_mqd(mqd);
	sdma_base_addr = get_sdma_base_addr(m);

435 436
	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
		m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
437

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
	end_jiffies = msecs_to_jiffies(2000) + jiffies;
	while (true) {
		data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
			break;
		if (time_after(jiffies, end_jiffies))
			return -ETIME;
		usleep_range(500, 1000);
	}
	if (m->sdma_engine_id) {
		data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
		data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
				RESUME_CTX, 0);
		WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
	} else {
		data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
		data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
				RESUME_CTX, 0);
		WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
	}
458

459 460 461 462 463 464 465 466 467 468 469
	data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
			     ENABLE, 1);
	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);

	if (read_user_wptr(mm, wptr, data))
		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
	else
		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
		       m->sdma_rlc_rb_rptr);

470 471 472
	WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
				m->sdma_rlc_virtual_addr);
	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
473 474 475 476 477 478
	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
			m->sdma_rlc_rb_base_hi);
	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
			m->sdma_rlc_rb_rptr_addr_lo);
	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
			m->sdma_rlc_rb_rptr_addr_hi);
479 480 481 482

	data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
			     RB_ENABLE, 1);
	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
483 484 485 486

	return 0;
}

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
			     uint32_t engine_id, uint32_t queue_id,
			     uint32_t (**dump)[2], uint32_t *n_regs)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
		queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
	uint32_t i = 0, reg;
#undef HQD_N_REGS
#define HQD_N_REGS (19+4)

	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
	if (*dump == NULL)
		return -ENOMEM;

	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
		DUMP_REG(sdma_offset + reg);
	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
	     reg++)
		DUMP_REG(sdma_offset + reg);

	WARN_ON_ONCE(i != HQD_N_REGS);
	*n_regs = i;

	return 0;
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
				uint32_t pipe_id, uint32_t queue_id)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	uint32_t act;
	bool retval = false;
	uint32_t low, high;

	acquire_queue(kgd, pipe_id, queue_id);
	act = RREG32(mmCP_HQD_ACTIVE);
	if (act) {
		low = lower_32_bits(queue_address >> 8);
		high = upper_32_bits(queue_address >> 8);

		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
				high == RREG32(mmCP_HQD_PQ_BASE_HI))
			retval = true;
	}
	release_queue(kgd);
	return retval;
}

static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	struct cik_sdma_rlc_registers *m;
	uint32_t sdma_base_addr;
	uint32_t sdma_rlc_rb_cntl;

	m = get_sdma_mqd(mqd);
	sdma_base_addr = get_sdma_base_addr(m);

	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);

	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
		return true;

	return false;
}

554 555
static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
				enum kfd_preempt_type reset_type,
556
				unsigned int utimeout, uint32_t pipe_id,
557 558 559 560
				uint32_t queue_id)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	uint32_t temp;
561 562 563
	enum hqd_dequeue_request_type type;
	unsigned long flags, end_jiffies;
	int retry;
564 565 566 567

	acquire_queue(kgd, pipe_id, queue_id);
	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);

568 569 570 571 572 573 574 575 576 577 578
	switch (reset_type) {
	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
		type = DRAIN_PIPE;
		break;
	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
		type = RESET_WAVES;
		break;
	default:
		type = DRAIN_PIPE;
		break;
	}
579

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	/* Workaround: If IQ timer is active and the wait time is close to or
	 * equal to 0, dequeueing is not safe. Wait until either the wait time
	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
	 * cleared before continuing. Also, ensure wait times are set to at
	 * least 0x3.
	 */
	local_irq_save(flags);
	preempt_disable();
	retry = 5000; /* wait for 500 usecs at maximum */
	while (true) {
		temp = RREG32(mmCP_HQD_IQ_TIMER);
		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
			pr_debug("HW is processing IQ\n");
			goto loop;
		}
		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
					== 3) /* SEM-rearm is safe */
				break;
			/* Wait time 3 is safe for CP, but our MMIO read/write
			 * time is close to 1 microsecond, so check for 10 to
			 * leave more buffer room
			 */
			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
					>= 10)
				break;
			pr_debug("IQ timer is active\n");
		} else
			break;
loop:
		if (!retry) {
			pr_err("CP HQD IQ timer status time out\n");
			break;
		}
		ndelay(100);
		--retry;
	}
	retry = 1000;
	while (true) {
		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
			break;
		pr_debug("Dequeue request is pending\n");

		if (!retry) {
			pr_err("CP HQD dequeue request time out\n");
			break;
		}
		ndelay(100);
		--retry;
	}
	local_irq_restore(flags);
	preempt_enable();

	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);

	end_jiffies = (utimeout * HZ / 1000) + jiffies;
637 638
	while (true) {
		temp = RREG32(mmCP_HQD_ACTIVE);
639
		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
640
			break;
641 642
		if (time_after(jiffies, end_jiffies)) {
			pr_err("cp queue preemption time out\n");
643 644 645
			release_queue(kgd);
			return -ETIME;
		}
646
		usleep_range(500, 1000);
647 648 649 650 651 652 653
	}

	release_queue(kgd);
	return 0;
}

static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
654
				unsigned int utimeout)
655 656 657 658 659
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	struct cik_sdma_rlc_registers *m;
	uint32_t sdma_base_addr;
	uint32_t temp;
660
	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
661 662 663 664 665 666 667 668 669 670 671 672

	m = get_sdma_mqd(mqd);
	sdma_base_addr = get_sdma_base_addr(m);

	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);

	while (true) {
		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
		if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
			break;
673
		if (time_after(jiffies, end_jiffies))
674
			return -ETIME;
675
		usleep_range(500, 1000);
676 677 678
	}

	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
679 680 681
	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
		RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
682

683 684
	m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	return 0;
}

static int kgd_address_watch_disable(struct kgd_dev *kgd)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	union TCP_WATCH_CNTL_BITS cntl;
	unsigned int i;

	cntl.u32All = 0;

	cntl.bitfields.valid = 0;
	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
	cntl.bitfields.atc = 1;

	/* Turning off this address until we set all the registers */
	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
		WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
			ADDRESS_WATCH_REG_CNTL], cntl.u32All);

	return 0;
}

static int kgd_address_watch_execute(struct kgd_dev *kgd,
					unsigned int watch_point_id,
					uint32_t cntl_val,
					uint32_t addr_hi,
					uint32_t addr_lo)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	union TCP_WATCH_CNTL_BITS cntl;

	cntl.u32All = cntl_val;

	/* Turning off this watch point until we set all the registers */
	cntl.bitfields.valid = 0;
	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
		ADDRESS_WATCH_REG_CNTL], cntl.u32All);

	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
		ADDRESS_WATCH_REG_ADDR_HI], addr_hi);

	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
		ADDRESS_WATCH_REG_ADDR_LO], addr_lo);

	/* Enable the watch point */
	cntl.bitfields.valid = 1;

	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
		ADDRESS_WATCH_REG_CNTL], cntl.u32All);

	return 0;
}

static int kgd_wave_control_execute(struct kgd_dev *kgd,
					uint32_t gfx_index_val,
					uint32_t sq_cmd)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	uint32_t data;

	mutex_lock(&adev->grbm_idx_mutex);

	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
	WREG32(mmSQ_CMD, sq_cmd);

	/*  Restore the GRBM_GFX_INDEX register  */

	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;

	WREG32(mmGRBM_GFX_INDEX, data);

	mutex_unlock(&adev->grbm_idx_mutex);

	return 0;
}

static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
					unsigned int watch_point_id,
					unsigned int reg_offset)
{
	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
}

static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
							uint8_t vmid)
{
	uint32_t reg;
	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;

	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
}

static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
								uint8_t vmid)
{
	uint32_t reg;
	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;

	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
788
	return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
789 790
}

791 792 793 794 795 796 797 798 799 800
static void set_scratch_backing_va(struct kgd_dev *kgd,
					uint64_t va, uint32_t vmid)
{
	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;

	lock_srbm(kgd, 0, 0, 0, vmid);
	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
	unlock_srbm(kgd);
}

801 802 803 804 805 806 807 808
static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
{
	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
	const union amdgpu_firmware_header *hdr;

	switch (type) {
	case KGD_ENGINE_PFP:
		hdr = (const union amdgpu_firmware_header *)
809
						adev->gfx.pfp_fw->data;
810 811 812 813
		break;

	case KGD_ENGINE_ME:
		hdr = (const union amdgpu_firmware_header *)
814
						adev->gfx.me_fw->data;
815 816 817 818
		break;

	case KGD_ENGINE_CE:
		hdr = (const union amdgpu_firmware_header *)
819
						adev->gfx.ce_fw->data;
820 821 822 823
		break;

	case KGD_ENGINE_MEC1:
		hdr = (const union amdgpu_firmware_header *)
824
						adev->gfx.mec_fw->data;
825 826 827 828
		break;

	case KGD_ENGINE_MEC2:
		hdr = (const union amdgpu_firmware_header *)
829
						adev->gfx.mec2_fw->data;
830 831 832 833
		break;

	case KGD_ENGINE_RLC:
		hdr = (const union amdgpu_firmware_header *)
834
						adev->gfx.rlc_fw->data;
835 836 837 838
		break;

	case KGD_ENGINE_SDMA1:
		hdr = (const union amdgpu_firmware_header *)
839
						adev->sdma.instance[0].fw->data;
840 841 842 843
		break;

	case KGD_ENGINE_SDMA2:
		hdr = (const union amdgpu_firmware_header *)
844
						adev->sdma.instance[1].fw->data;
845 846 847 848 849 850 851 852 853 854 855 856 857
		break;

	default:
		return 0;
	}

	if (hdr == NULL)
		return 0;

	/* Only 12 bit in use*/
	return hdr->common.ucode_version;
}