skx_edac.c 29.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * EDAC driver for Intel(R) Xeon(R) Skylake processors
 * Copyright (c) 2016, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/module.h>
#include <linux/init.h>
17 18
#include <linux/acpi.h>
#include <linux/dmi.h>
19 20 21 22 23 24 25 26 27 28
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <linux/bitmap.h>
#include <linux/math64.h>
#include <linux/mod_devicetable.h>
29
#include <acpi/nfit.h>
30
#include <asm/cpu_device_id.h>
31
#include <asm/intel-family.h>
32 33 34
#include <asm/processor.h>
#include <asm/mce.h>

35
#include "edac_module.h"
36

37 38
#define EDAC_MOD_STR    "skx_edac"

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/*
 * Debug macros
 */
#define skx_printk(level, fmt, arg...)			\
	edac_printk(level, "skx", fmt, ##arg)

#define skx_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)

/*
 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
 */
#define GET_BITFIELD(v, lo, hi) \
	(((v) & GENMASK_ULL((hi), (lo))) >> (lo))

static LIST_HEAD(skx_edac_list);

static u64 skx_tolm, skx_tohm;

#define NUM_IMC			2	/* memory controllers per socket */
#define NUM_CHANNELS		3	/* channels per memory controller */
#define NUM_DIMMS		2	/* Max DIMMS per channel */

#define	MASK26	0x3FFFFFF		/* Mask for 2^26 */
#define MASK29	0x1FFFFFFF		/* Mask for 2^29 */

/*
 * Each cpu socket contains some pci devices that provide global
 * information, and also some that are local to each of the two
 * memory controllers on the die.
 */
struct skx_dev {
	struct list_head	list;
	u8			bus[4];
73
	int			seg;
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	struct pci_dev	*sad_all;
	struct pci_dev	*util_all;
	u32	mcroute;
	struct skx_imc {
		struct mem_ctl_info *mci;
		u8	mc;	/* system wide mc# */
		u8	lmc;	/* socket relative mc# */
		u8	src_id, node_id;
		struct skx_channel {
			struct pci_dev *cdev;
			struct skx_dimm {
				u8	close_pg;
				u8	bank_xor_enable;
				u8	fine_grain_bank;
				u8	rowbits;
				u8	colbits;
			} dimms[NUM_DIMMS];
		} chan[NUM_CHANNELS];
	} imc[NUM_IMC];
};
static int skx_num_sockets;

struct skx_pvt {
	struct skx_imc	*imc;
};

struct decoded_addr {
	struct skx_dev *dev;
	u64	addr;
	int	socket;
	int	imc;
	int	channel;
	u64	chan_addr;
	int	sktways;
	int	chanways;
	int	dimm;
	int	rank;
	int	channel_rank;
	u64	rank_address;
	int	row;
	int	column;
	int	bank_address;
	int	bank_group;
};

119
static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
120 121 122 123
{
	struct skx_dev *d;

	list_for_each_entry(d, &skx_edac_list, list) {
124
		if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
			return d;
	}

	return NULL;
}

enum munittype {
	CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD
};

struct munit {
	u16	did;
	u16	devfn[NUM_IMC];
	u8	busidx;
	u8	per_socket;
	enum munittype mtype;
};

/*
 * List of PCI device ids that we need together with some device
 * number and function numbers to tell which memory controller the
 * device belongs to.
 */
static const struct munit skx_all_munits[] = {
	{ 0x2054, { }, 1, 1, SAD_ALL },
	{ 0x2055, { }, 1, 1, UTIL_ALL },
	{ 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
	{ 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
	{ 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
	{ 0x208e, { }, 1, 0, SAD },
	{ }
};

/*
 * We use the per-socket device 0x2016 to count how many sockets are present,
 * and to detemine which PCI buses are associated with each socket. Allocate
 * and build the full list of all the skx_dev structures that we need here.
 */
static int get_all_bus_mappings(void)
{
	struct pci_dev *pdev, *prev;
	struct skx_dev *d;
	u32 reg;
	int ndev = 0;

	prev = NULL;
	for (;;) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev);
		if (!pdev)
			break;
		ndev++;
		d = kzalloc(sizeof(*d), GFP_KERNEL);
		if (!d) {
			pci_dev_put(pdev);
			return -ENOMEM;
		}
181
		d->seg = pci_domain_nr(pdev->bus);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
		pci_read_config_dword(pdev, 0xCC, &reg);
		d->bus[0] =  GET_BITFIELD(reg, 0, 7);
		d->bus[1] =  GET_BITFIELD(reg, 8, 15);
		d->bus[2] =  GET_BITFIELD(reg, 16, 23);
		d->bus[3] =  GET_BITFIELD(reg, 24, 31);
		edac_dbg(2, "busses: %x, %x, %x, %x\n",
			 d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
		list_add_tail(&d->list, &skx_edac_list);
		skx_num_sockets++;
		prev = pdev;
	}

	return ndev;
}

static int get_all_munits(const struct munit *m)
{
	struct pci_dev *pdev, *prev;
	struct skx_dev *d;
	u32 reg;
	int i = 0, ndev = 0;

	prev = NULL;
	for (;;) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
		if (!pdev)
			break;
		ndev++;
		if (m->per_socket == NUM_IMC) {
			for (i = 0; i < NUM_IMC; i++)
				if (m->devfn[i] == pdev->devfn)
					break;
			if (i == NUM_IMC)
				goto fail;
		}
217
		d = get_skx_dev(pdev->bus, m->busidx);
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
		if (!d)
			goto fail;

		/* Be sure that the device is enabled */
		if (unlikely(pci_enable_device(pdev) < 0)) {
			skx_printk(KERN_ERR,
				"Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did);
			goto fail;
		}

		switch (m->mtype) {
		case CHAN0: case CHAN1: case CHAN2:
			pci_dev_get(pdev);
			d->imc[i].chan[m->mtype].cdev = pdev;
			break;
		case SAD_ALL:
			pci_dev_get(pdev);
			d->sad_all = pdev;
			break;
		case UTIL_ALL:
			pci_dev_get(pdev);
			d->util_all = pdev;
			break;
		case SAD:
			/*
			 * one of these devices per core, including cores
			 * that don't exist on this SKU. Ignore any that
			 * read a route table of zero, make sure all the
			 * non-zero values match.
			 */
			pci_read_config_dword(pdev, 0xB4, &reg);
			if (reg != 0) {
				if (d->mcroute == 0)
					d->mcroute = reg;
				else if (d->mcroute != reg) {
					skx_printk(KERN_ERR,
						"mcroute mismatch\n");
					goto fail;
				}
			}
			ndev--;
			break;
		}

		prev = pdev;
	}

	return ndev;
fail:
	pci_dev_put(pdev);
	return -ENODEV;
}

271
static const struct x86_cpu_id skx_cpuids[] = {
272
	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 },
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);

static u8 get_src_id(struct skx_dev *d)
{
	u32 reg;

	pci_read_config_dword(d->util_all, 0xF0, &reg);

	return GET_BITFIELD(reg, 12, 14);
}

static u8 skx_get_node_id(struct skx_dev *d)
{
	u32 reg;

	pci_read_config_dword(d->util_all, 0xF4, &reg);

	return GET_BITFIELD(reg, 0, 2);
}

static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval,
			 int maxval, char *name)
{
	u32 val = GET_BITFIELD(reg, lobit, hibit);

	if (val < minval || val > maxval) {
		edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg);
		return -EINVAL;
	}
	return val + add;
}

#define IS_DIMM_PRESENT(mtr)		GET_BITFIELD((mtr), 15, 15)
308
#define IS_NVDIMM_PRESENT(mcddrtcfg, i)	GET_BITFIELD((mcddrtcfg), (i), (i))
309

310
#define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 0, 2, "ranks")
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
#define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows")
#define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols")

static int get_width(u32 mtr)
{
	switch (GET_BITFIELD(mtr, 8, 9)) {
	case 0:
		return DEV_X4;
	case 1:
		return DEV_X8;
	case 2:
		return DEV_X16;
	}
	return DEV_UNKNOWN;
}

static int skx_get_hi_lo(void)
{
	struct pci_dev *pdev;
	u32 reg;

	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL);
	if (!pdev) {
		edac_dbg(0, "Can't get tolm/tohm\n");
		return -ENODEV;
	}

	pci_read_config_dword(pdev, 0xD0, &reg);
	skx_tolm = reg;
	pci_read_config_dword(pdev, 0xD4, &reg);
	skx_tohm = reg;
	pci_read_config_dword(pdev, 0xD8, &reg);
	skx_tohm |= (u64)reg << 32;

	pci_dev_put(pdev);
	edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm);

	return 0;
}

static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm,
			 struct skx_imc *imc, int chan, int dimmno)
{
	int  banks = 16, ranks, rows, cols, npages;
	u64 size;

	ranks = numrank(mtr);
	rows = numrow(mtr);
	cols = numcol(mtr);

	/*
	 * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
	 */
	size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
	npages = MiB_TO_PAGES(size);

367
	edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
368
		 imc->mc, chan, dimmno, size, npages,
369
		 banks, 1 << ranks, rows, cols);
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

	imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0);
	imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9);
	imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
	imc->chan[chan].dimms[dimmno].rowbits = rows;
	imc->chan[chan].dimms[dimmno].colbits = cols;

	dimm->nr_pages = npages;
	dimm->grain = 32;
	dimm->dtype = get_width(mtr);
	dimm->mtype = MEM_DDR4;
	dimm->edac_mode = EDAC_SECDED; /* likely better than this */
	snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
		 imc->src_id, imc->lmc, chan, dimmno);

	return 1;
}

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
static int get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc,
			   int chan, int dimmno)
{
	int smbios_handle;
	u32 dev_handle;
	u16 flags;
	u64 size = 0;

	dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc,
						   imc->src_id, 0);

	smbios_handle = nfit_get_smbios_id(dev_handle, &flags);
	if (smbios_handle == -EOPNOTSUPP) {
		pr_warn_once(EDAC_MOD_STR ": Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n");
		goto unknown_size;
	}

	if (smbios_handle < 0) {
		skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=%x\n", dev_handle);
		goto unknown_size;
	}

	if (flags & ACPI_NFIT_MEM_MAP_FAILED) {
		skx_printk(KERN_ERR, "NVDIMM ADR=%x is not mapped\n", dev_handle);
		goto unknown_size;
	}

	size = dmi_memdev_size(smbios_handle);
	if (size == ~0ull)
		skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=%x/SMBIOS=%x\n",
			   dev_handle, smbios_handle);

unknown_size:
	dimm->nr_pages = size >> PAGE_SHIFT;
	dimm->grain = 32;
	dimm->dtype = DEV_UNKNOWN;
	dimm->mtype = MEM_NVDIMM;
	dimm->edac_mode = EDAC_SECDED; /* likely better than this */

427
	edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n",
428 429 430 431 432 433 434 435
		 imc->mc, chan, dimmno, size >> 20, dimm->nr_pages);

	snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
		 imc->src_id, imc->lmc, chan, dimmno);

	return (size == 0 || size == ~0ull) ? 0 : 1;
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
#define SKX_GET_MTMTR(dev, reg) \
	pci_read_config_dword((dev), 0x87c, &reg)

static bool skx_check_ecc(struct pci_dev *pdev)
{
	u32 mtmtr;

	SKX_GET_MTMTR(pdev, mtmtr);

	return !!GET_BITFIELD(mtmtr, 2, 2);
}

static int skx_get_dimm_config(struct mem_ctl_info *mci)
{
	struct skx_pvt *pvt = mci->pvt_info;
	struct skx_imc *imc = pvt->imc;
452
	u32 mtr, amap, mcddrtcfg;
453 454 455 456 457 458 459
	struct dimm_info *dimm;
	int i, j;
	int ndimms;

	for (i = 0; i < NUM_CHANNELS; i++) {
		ndimms = 0;
		pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
460
		pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg);
461 462 463 464 465
		for (j = 0; j < NUM_DIMMS; j++) {
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
					     mci->n_layers, i, j, 0);
			pci_read_config_dword(imc->chan[i].cdev,
					0x80 + 4*j, &mtr);
466 467 468 469
			if (IS_DIMM_PRESENT(mtr))
				ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j);
			else if (IS_NVDIMM_PRESENT(mcddrtcfg, j))
				ndimms += get_nvdimm_info(dimm, imc, i, j);
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
		}
		if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) {
			skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
			return -ENODEV;
		}
	}

	return 0;
}

static void skx_unregister_mci(struct skx_imc *imc)
{
	struct mem_ctl_info *mci = imc->mci;

	if (!mci)
		return;

	edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);

	/* Remove MC sysfs nodes */
	edac_mc_del_mc(mci->pdev);

	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
	kfree(mci->ctl_name);
	edac_mc_free(mci);
}

static int skx_register_mci(struct skx_imc *imc)
{
	struct mem_ctl_info *mci;
	struct edac_mc_layer layers[2];
	struct pci_dev *pdev = imc->chan[0].cdev;
	struct skx_pvt *pvt;
	int rc;

	/* allocate a new MC control structure */
	layers[0].type = EDAC_MC_LAYER_CHANNEL;
	layers[0].size = NUM_CHANNELS;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
	layers[1].size = NUM_DIMMS;
	layers[1].is_virt_csrow = true;
	mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
			    sizeof(struct skx_pvt));

	if (unlikely(!mci))
		return -ENOMEM;

	edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);

	/* Associate skx_dev and mci for future usage */
	imc->mci = mci;
	pvt = mci->pvt_info;
	pvt->imc = imc;

525 526
	mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d",
				  imc->node_id, imc->lmc);
527 528 529 530 531
	if (!mci->ctl_name) {
		rc = -ENOMEM;
		goto fail0;
	}

532
	mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM;
533 534
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
535
	mci->mod_name = EDAC_MOD_STR;
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	mci->dev_name = pci_name(imc->chan[0].cdev);
	mci->ctl_page_to_phys = NULL;

	rc = skx_get_dimm_config(mci);
	if (rc < 0)
		goto fail;

	/* record ptr to the generic device */
	mci->pdev = &pdev->dev;

	/* add this new MC control structure to EDAC's list of MCs */
	if (unlikely(edac_mc_add_mc(mci))) {
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
		rc = -EINVAL;
		goto fail;
	}

	return 0;

fail:
	kfree(mci->ctl_name);
557
fail0:
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	edac_mc_free(mci);
	imc->mci = NULL;
	return rc;
}

#define	SKX_MAX_SAD 24

#define SKX_GET_SAD(d, i, reg)	\
	pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &reg)
#define SKX_GET_ILV(d, i, reg)	\
	pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &reg)

#define	SKX_SAD_MOD3MODE(sad)	GET_BITFIELD((sad), 30, 31)
#define	SKX_SAD_MOD3(sad)	GET_BITFIELD((sad), 27, 27)
#define SKX_SAD_LIMIT(sad)	(((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
#define	SKX_SAD_MOD3ASMOD2(sad)	GET_BITFIELD((sad), 5, 6)
#define	SKX_SAD_ATTR(sad)	GET_BITFIELD((sad), 3, 4)
#define	SKX_SAD_INTERLEAVE(sad)	GET_BITFIELD((sad), 1, 2)
#define SKX_SAD_ENABLE(sad)	GET_BITFIELD((sad), 0, 0)

#define SKX_ILV_REMOTE(tgt)	(((tgt) & 8) == 0)
#define SKX_ILV_TARGET(tgt)	((tgt) & 7)

static bool skx_sad_decode(struct decoded_addr *res)
{
	struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list);
	u64 addr = res->addr;
	int i, idx, tgt, lchan, shift;
	u32 sad, ilv;
	u64 limit, prev_limit;
	int remote = 0;

	/* Simple sanity check for I/O space or out of range */
	if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
		edac_dbg(0, "Address %llx out of range\n", addr);
		return false;
	}

restart:
	prev_limit = 0;
	for (i = 0; i < SKX_MAX_SAD; i++) {
		SKX_GET_SAD(d, i, sad);
		limit = SKX_SAD_LIMIT(sad);
		if (SKX_SAD_ENABLE(sad)) {
			if (addr >= prev_limit && addr <= limit)
				goto sad_found;
		}
		prev_limit = limit + 1;
	}
	edac_dbg(0, "No SAD entry for %llx\n", addr);
	return false;

sad_found:
	SKX_GET_ILV(d, i, ilv);

	switch (SKX_SAD_INTERLEAVE(sad)) {
	case 0:
		idx = GET_BITFIELD(addr, 6, 8);
		break;
	case 1:
		idx = GET_BITFIELD(addr, 8, 10);
		break;
	case 2:
		idx = GET_BITFIELD(addr, 12, 14);
		break;
	case 3:
		idx = GET_BITFIELD(addr, 30, 32);
		break;
	}

	tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);

	/* If point to another node, find it and start over */
	if (SKX_ILV_REMOTE(tgt)) {
		if (remote) {
			edac_dbg(0, "Double remote!\n");
			return false;
		}
		remote = 1;
		list_for_each_entry(d, &skx_edac_list, list) {
			if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
				goto restart;
		}
		edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
		return false;
	}

	if (SKX_SAD_MOD3(sad) == 0)
		lchan = SKX_ILV_TARGET(tgt);
	else {
		switch (SKX_SAD_MOD3MODE(sad)) {
		case 0:
			shift = 6;
			break;
		case 1:
			shift = 8;
			break;
		case 2:
			shift = 12;
			break;
		default:
			edac_dbg(0, "illegal mod3mode\n");
			return false;
		}
		switch (SKX_SAD_MOD3ASMOD2(sad)) {
		case 0:
			lchan = (addr >> shift) % 3;
			break;
		case 1:
			lchan = (addr >> shift) % 2;
			break;
		case 2:
			lchan = (addr >> shift) % 2;
671
			lchan = (lchan << 1) | !lchan;
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
			break;
		case 3:
			lchan = ((addr >> shift) % 2) << 1;
			break;
		}
		lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
	}

	res->dev = d;
	res->socket = d->imc[0].src_id;
	res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
	res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);

	edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n",
		 res->addr, res->socket, res->imc, res->channel);
	return true;
}

#define	SKX_MAX_TAD 8

#define SKX_GET_TADBASE(d, mc, i, reg)			\
	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &reg)
#define SKX_GET_TADWAYNESS(d, mc, i, reg)		\
	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &reg)
#define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg)	\
	pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &reg)

#define	SKX_TAD_BASE(b)		((u64)GET_BITFIELD((b), 12, 31) << 26)
#define SKX_TAD_SKT_GRAN(b)	GET_BITFIELD((b), 4, 5)
#define SKX_TAD_CHN_GRAN(b)	GET_BITFIELD((b), 6, 7)
#define	SKX_TAD_LIMIT(b)	(((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
#define	SKX_TAD_OFFSET(b)	((u64)GET_BITFIELD((b), 4, 23) << 26)
#define	SKX_TAD_SKTWAYS(b)	(1 << GET_BITFIELD((b), 10, 11))
#define	SKX_TAD_CHNWAYS(b)	(GET_BITFIELD((b), 8, 9) + 1)

/* which bit used for both socket and channel interleave */
static int skx_granularity[] = { 6, 8, 12, 30 };

static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
{
	addr >>= shift;
	addr /= ways;
	addr <<= shift;

	return addr | (lowbits & ((1ull << shift) - 1));
}

static bool skx_tad_decode(struct decoded_addr *res)
{
	int i;
	u32 base, wayness, chnilvoffset;
	int skt_interleave_bit, chn_interleave_bit;
	u64 channel_addr;

	for (i = 0; i < SKX_MAX_TAD; i++) {
		SKX_GET_TADBASE(res->dev, res->imc, i, base);
		SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
		if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
			goto tad_found;
	}
	edac_dbg(0, "No TAD entry for %llx\n", res->addr);
	return false;

tad_found:
	res->sktways = SKX_TAD_SKTWAYS(wayness);
	res->chanways = SKX_TAD_CHNWAYS(wayness);
	skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
	chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];

	SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
	channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);

	if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
		/* Must handle channel first, then socket */
		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
						 res->chanways, channel_addr);
		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
						 res->sktways, channel_addr);
	} else {
		/* Handle socket then channel. Preserve low bits from original address */
		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
						 res->sktways, res->addr);
		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
						 res->chanways, res->addr);
	}

	res->chan_addr = channel_addr;

	edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n",
		 res->addr, res->chan_addr, res->sktways, res->chanways);
	return true;
}

#define SKX_MAX_RIR 4

#define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg)		\
	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
			      0x108 + 4 * (i), &reg)
#define SKX_GET_RIRILV(d, mc, ch, idx, i, reg)		\
	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
			      0x120 + 16 * idx + 4 * (i), &reg)

#define	SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
#define	SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
#define	SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
#define	SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
#define	SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))

static bool skx_rir_decode(struct decoded_addr *res)
{
	int i, idx, chan_rank;
	int shift;
	u32 rirway, rirlv;
	u64 rank_addr, prev_limit = 0, limit;

	if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
		shift = 6;
	else
		shift = 13;

	for (i = 0; i < SKX_MAX_RIR; i++) {
		SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
		limit = SKX_RIR_LIMIT(rirway);
		if (SKX_RIR_VALID(rirway)) {
			if (prev_limit <= res->chan_addr &&
			    res->chan_addr <= limit)
				goto rir_found;
		}
		prev_limit = limit;
	}
	edac_dbg(0, "No RIR entry for %llx\n", res->addr);
	return false;

rir_found:
	rank_addr = res->chan_addr >> shift;
	rank_addr /= SKX_RIR_WAYS(rirway);
	rank_addr <<= shift;
	rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);

	res->rank_address = rank_addr;
	idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);

	SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
	res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
	chan_rank = SKX_RIR_CHAN_RANK(rirlv);
	res->channel_rank = chan_rank;
	res->dimm = chan_rank / 4;
	res->rank = chan_rank % 4;

	edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n",
		 res->addr, res->dimm, res->rank,
		 res->channel_rank, res->rank_address);
	return true;
}

static u8 skx_close_row[] = {
	15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
};
static u8 skx_close_column[] = {
	3, 4, 5, 14, 19, 23, 24, 25, 26, 27
};
static u8 skx_open_row[] = {
	14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
};
static u8 skx_open_column[] = {
	3, 4, 5, 6, 7, 8, 9, 10, 11, 12
};
static u8 skx_open_fine_column[] = {
	3, 4, 5, 7, 8, 9, 10, 11, 12, 13
};

static int skx_bits(u64 addr, int nbits, u8 *bits)
{
	int i, res = 0;

	for (i = 0; i < nbits; i++)
		res |= ((addr >> bits[i]) & 1) << i;
	return res;
}

static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
{
	int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);

	if (do_xor)
		ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);

	return ret;
}

static bool skx_mad_decode(struct decoded_addr *r)
{
	struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
	int bg0 = dimm->fine_grain_bank ? 6 : 13;

	if (dimm->close_pg) {
		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
		r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
		r->column |= 0x400; /* C10 is autoprecharge, always set */
		r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
		r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
	} else {
		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
		if (dimm->fine_grain_bank)
			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
		else
			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
		r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
		r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
	}
	r->row &= (1u << dimm->rowbits) - 1;

	edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n",
		 r->addr, r->row, r->column, r->bank_address,
		 r->bank_group);
	return true;
}

static bool skx_decode(struct decoded_addr *res)
{

	return skx_sad_decode(res) && skx_tad_decode(res) &&
		skx_rir_decode(res) && skx_mad_decode(res);
}

#ifdef CONFIG_EDAC_DEBUG
/*
 * Debug feature. Make /sys/kernel/debug/skx_edac_test/addr.
 * Write an address to this file to exercise the address decode
 * logic in this driver.
 */
static struct dentry *skx_test;
static u64 skx_fake_addr;

static int debugfs_u64_set(void *data, u64 val)
{
	struct decoded_addr res;

	res.addr = val;
	skx_decode(&res);

	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");

static struct dentry *mydebugfs_create(const char *name, umode_t mode,
				       struct dentry *parent, u64 *value)
{
	return debugfs_create_file(name, mode, parent, value, &fops_u64_wo);
}

static void setup_skx_debug(void)
{
	skx_test = debugfs_create_dir("skx_edac_test", NULL);
	mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr);
}

static void teardown_skx_debug(void)
{
	debugfs_remove_recursive(skx_test);
}
#else
static void setup_skx_debug(void)
{
}

static void teardown_skx_debug(void)
{
}
#endif /*CONFIG_EDAC_DEBUG*/

static void skx_mce_output_error(struct mem_ctl_info *mci,
				 const struct mce *m,
				 struct decoded_addr *res)
{
	enum hw_event_mc_err_type tp_event;
	char *type, *optype, msg[256];
	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
	bool overflow = GET_BITFIELD(m->status, 62, 62);
	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
	bool recoverable;
	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
	u32 mscod = GET_BITFIELD(m->status, 16, 31);
	u32 errcode = GET_BITFIELD(m->status, 0, 15);
	u32 optypenum = GET_BITFIELD(m->status, 4, 6);

	recoverable = GET_BITFIELD(m->status, 56, 56);

	if (uncorrected_error) {
962
		core_err_cnt = 1;
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
		if (ripv) {
			type = "FATAL";
			tp_event = HW_EVENT_ERR_FATAL;
		} else {
			type = "NON_FATAL";
			tp_event = HW_EVENT_ERR_UNCORRECTED;
		}
	} else {
		type = "CORRECTED";
		tp_event = HW_EVENT_ERR_CORRECTED;
	}

	/*
	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
	 * memory errors should fit in this mask:
	 *	000f 0000 1mmm cccc (binary)
	 * where:
	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
	 *	    won't be shown
	 *	mmm = error type
	 *	cccc = channel
	 * If the mask doesn't match, report an error to the parsing logic
	 */
	if (!((errcode & 0xef80) == 0x80)) {
		optype = "Can't parse: it is not a mem";
	} else {
		switch (optypenum) {
		case 0:
			optype = "generic undef request error";
			break;
		case 1:
			optype = "memory read error";
			break;
		case 2:
			optype = "memory write error";
			break;
		case 3:
			optype = "addr/cmd error";
			break;
		case 4:
			optype = "memory scrubbing error";
			break;
		default:
			optype = "reserved";
			break;
		}
	}

	snprintf(msg, sizeof(msg),
		 "%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x",
		 overflow ? " OVERFLOW" : "",
		 (uncorrected_error && recoverable) ? " recoverable" : "",
		 mscod, errcode,
		 res->socket, res->imc, res->rank,
		 res->bank_group, res->bank_address, res->row, res->column);

	edac_dbg(0, "%s\n", msg);

	/* Call the helper to output message */
	edac_mc_handle_error(tp_event, mci, core_err_cnt,
			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
			     res->channel, res->dimm, -1,
			     optype, msg);
}

static int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
			       void *data)
{
	struct mce *mce = (struct mce *)data;
	struct decoded_addr res;
	struct mem_ctl_info *mci;
	char *type;

1036
	if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
		return NOTIFY_DONE;

	/* ignore unless this is memory related with an address */
	if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
		return NOTIFY_DONE;

	res.addr = mce->addr;
	if (!skx_decode(&res))
		return NOTIFY_DONE;
	mci = res.dev->imc[res.imc].mci;

	if (mce->mcgstatus & MCG_STATUS_MCIP)
		type = "Exception";
	else
		type = "Event";

	skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");

	skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
			  "Bank %d: %016Lx\n", mce->extcpu, type,
			  mce->mcgstatus, mce->bank, mce->status);
	skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
	skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
	skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);

	skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
			  mce->time, mce->socketid, mce->apicid);

	skx_mce_output_error(mci, mce, &res);

	return NOTIFY_DONE;
}

static struct notifier_block skx_mce_dec = {
1072 1073
	.notifier_call	= skx_mce_check_error,
	.priority	= MCE_PRIO_EDAC,
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
};

static void skx_remove(void)
{
	int i, j;
	struct skx_dev *d, *tmp;

	edac_dbg(0, "\n");

	list_for_each_entry_safe(d, tmp, &skx_edac_list, list) {
		list_del(&d->list);
		for (i = 0; i < NUM_IMC; i++) {
			skx_unregister_mci(&d->imc[i]);
			for (j = 0; j < NUM_CHANNELS; j++)
				pci_dev_put(d->imc[i].chan[j].cdev);
		}
		pci_dev_put(d->util_all);
		pci_dev_put(d->sad_all);

		kfree(d);
	}
}

/*
 * skx_init:
 *	make sure we are running on the correct cpu model
 *	search for all the devices we need
 *	check which DIMMs are present.
 */
1103
static int __init skx_init(void)
1104 1105 1106
{
	const struct x86_cpu_id *id;
	const struct munit *m;
1107
	const char *owner;
1108 1109 1110 1111 1112 1113
	int rc = 0, i;
	u8 mc = 0, src_id, node_id;
	struct skx_dev *d;

	edac_dbg(2, "\n");

1114 1115 1116 1117
	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	id = x86_match_cpu(skx_cpuids);
	if (!id)
		return -ENODEV;

	rc = skx_get_hi_lo();
	if (rc)
		return rc;

	rc = get_all_bus_mappings();
	if (rc < 0)
		goto fail;
	if (rc == 0) {
		edac_dbg(2, "No memory controllers found\n");
		return -ENODEV;
	}

	for (m = skx_all_munits; m->did; m++) {
		rc = get_all_munits(m);
		if (rc < 0)
			goto fail;
		if (rc != m->per_socket * skx_num_sockets) {
			edac_dbg(2, "Expected %d, got %d of %x\n",
				 m->per_socket * skx_num_sockets, rc, m->did);
			rc = -ENODEV;
			goto fail;
		}
	}

	list_for_each_entry(d, &skx_edac_list, list) {
		src_id = get_src_id(d);
		node_id = skx_get_node_id(d);
		edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
		for (i = 0; i < NUM_IMC; i++) {
			d->imc[i].mc = mc++;
			d->imc[i].lmc = i;
			d->imc[i].src_id = src_id;
			d->imc[i].node_id = node_id;
			rc = skx_register_mci(&d->imc[i]);
			if (rc < 0)
				goto fail;
		}
	}

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

	setup_skx_debug();

	mce_register_decode_chain(&skx_mce_dec);

	return 0;
fail:
	skx_remove();
	return rc;
}

static void __exit skx_exit(void)
{
	edac_dbg(2, "\n");
	mce_unregister_decode_chain(&skx_mce_dec);
	skx_remove();
	teardown_skx_debug();
}

module_init(skx_init);
module_exit(skx_exit);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Tony Luck");
MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");