sun6i-dma.c 30.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Copyright (C) 2013-2014 Allwinner Tech Co., Ltd
 * Author: Sugar <shuge@allwinnertech.com>
 *
 * Copyright (C) 2014 Maxime Ripard
 * Maxime Ripard <maxime.ripard@free-electrons.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_dma.h>
21
#include <linux/of_device.h>
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/types.h>

#include "virt-dma.h"

/*
 * Common registers
 */
#define DMA_IRQ_EN(x)		((x) * 0x04)
#define DMA_IRQ_HALF			BIT(0)
#define DMA_IRQ_PKG			BIT(1)
#define DMA_IRQ_QUEUE			BIT(2)

#define DMA_IRQ_CHAN_NR			8
#define DMA_IRQ_CHAN_WIDTH		4


#define DMA_IRQ_STAT(x)		((x) * 0x04 + 0x10)

#define DMA_STAT		0x30

45 46 47 48 49 50
/*
 * sun8i specific registers
 */
#define SUN8I_DMA_GATE		0x20
#define SUN8I_DMA_GATE_ENABLE	0x4

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/*
 * Channels specific registers
 */
#define DMA_CHAN_ENABLE		0x00
#define DMA_CHAN_ENABLE_START		BIT(0)
#define DMA_CHAN_ENABLE_STOP		0

#define DMA_CHAN_PAUSE		0x04
#define DMA_CHAN_PAUSE_PAUSE		BIT(1)
#define DMA_CHAN_PAUSE_RESUME		0

#define DMA_CHAN_LLI_ADDR	0x08

#define DMA_CHAN_CUR_CFG	0x0c
#define DMA_CHAN_CFG_SRC_DRQ(x)		((x) & 0x1f)
#define DMA_CHAN_CFG_SRC_IO_MODE	BIT(5)
#define DMA_CHAN_CFG_SRC_LINEAR_MODE	(0 << 5)
#define DMA_CHAN_CFG_SRC_BURST(x)	(((x) & 0x3) << 7)
#define DMA_CHAN_CFG_SRC_WIDTH(x)	(((x) & 0x3) << 9)

#define DMA_CHAN_CFG_DST_DRQ(x)		(DMA_CHAN_CFG_SRC_DRQ(x) << 16)
#define DMA_CHAN_CFG_DST_IO_MODE	(DMA_CHAN_CFG_SRC_IO_MODE << 16)
#define DMA_CHAN_CFG_DST_LINEAR_MODE	(DMA_CHAN_CFG_SRC_LINEAR_MODE << 16)
#define DMA_CHAN_CFG_DST_BURST(x)	(DMA_CHAN_CFG_SRC_BURST(x) << 16)
#define DMA_CHAN_CFG_DST_WIDTH(x)	(DMA_CHAN_CFG_SRC_WIDTH(x) << 16)

#define DMA_CHAN_CUR_SRC	0x10

#define DMA_CHAN_CUR_DST	0x14

#define DMA_CHAN_CUR_CNT	0x18

#define DMA_CHAN_CUR_PARA	0x1c


/*
 * Various hardware related defines
 */
#define LLI_LAST_ITEM	0xfffff800
#define NORMAL_WAIT	8
#define DRQ_SDRAM	1

93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * Hardware channels / ports representation
 *
 * The hardware is used in several SoCs, with differing numbers
 * of channels and endpoints. This structure ties those numbers
 * to a certain compatible string.
 */
struct sun6i_dma_config {
	u32 nr_max_channels;
	u32 nr_max_requests;
	u32 nr_max_vchans;
};

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/*
 * Hardware representation of the LLI
 *
 * The hardware will be fed the physical address of this structure,
 * and read its content in order to start the transfer.
 */
struct sun6i_dma_lli {
	u32			cfg;
	u32			src;
	u32			dst;
	u32			len;
	u32			para;
	u32			p_lli_next;

	/*
	 * This field is not used by the DMA controller, but will be
	 * used by the CPU to go through the list (mostly for dumping
	 * or freeing it).
	 */
	struct sun6i_dma_lli	*v_lli_next;
};


struct sun6i_desc {
	struct virt_dma_desc	vd;
	dma_addr_t		p_lli;
	struct sun6i_dma_lli	*v_lli;
};

struct sun6i_pchan {
	u32			idx;
	void __iomem		*base;
	struct sun6i_vchan	*vchan;
	struct sun6i_desc	*desc;
	struct sun6i_desc	*done;
};

struct sun6i_vchan {
	struct virt_dma_chan	vc;
	struct list_head	node;
	struct dma_slave_config	cfg;
	struct sun6i_pchan	*phy;
	u8			port;
149 150
	u8			irq_type;
	bool			cyclic;
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
};

struct sun6i_dma_dev {
	struct dma_device	slave;
	void __iomem		*base;
	struct clk		*clk;
	int			irq;
	spinlock_t		lock;
	struct reset_control	*rstc;
	struct tasklet_struct	task;
	atomic_t		tasklet_shutdown;
	struct list_head	pending;
	struct dma_pool		*pool;
	struct sun6i_pchan	*pchans;
	struct sun6i_vchan	*vchans;
166
	const struct sun6i_dma_config *cfg;
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
};

static struct device *chan2dev(struct dma_chan *chan)
{
	return &chan->dev->device;
}

static inline struct sun6i_dma_dev *to_sun6i_dma_dev(struct dma_device *d)
{
	return container_of(d, struct sun6i_dma_dev, slave);
}

static inline struct sun6i_vchan *to_sun6i_vchan(struct dma_chan *chan)
{
	return container_of(chan, struct sun6i_vchan, vc.chan);
}

static inline struct sun6i_desc *
to_sun6i_desc(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct sun6i_desc, vd.tx);
}

static inline void sun6i_dma_dump_com_regs(struct sun6i_dma_dev *sdev)
{
	dev_dbg(sdev->slave.dev, "Common register:\n"
		"\tmask0(%04x): 0x%08x\n"
		"\tmask1(%04x): 0x%08x\n"
		"\tpend0(%04x): 0x%08x\n"
		"\tpend1(%04x): 0x%08x\n"
		"\tstats(%04x): 0x%08x\n",
		DMA_IRQ_EN(0), readl(sdev->base + DMA_IRQ_EN(0)),
		DMA_IRQ_EN(1), readl(sdev->base + DMA_IRQ_EN(1)),
		DMA_IRQ_STAT(0), readl(sdev->base + DMA_IRQ_STAT(0)),
		DMA_IRQ_STAT(1), readl(sdev->base + DMA_IRQ_STAT(1)),
		DMA_STAT, readl(sdev->base + DMA_STAT));
}

static inline void sun6i_dma_dump_chan_regs(struct sun6i_dma_dev *sdev,
					    struct sun6i_pchan *pchan)
{
208
	phys_addr_t reg = virt_to_phys(pchan->base);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

	dev_dbg(sdev->slave.dev, "Chan %d reg: %pa\n"
		"\t___en(%04x): \t0x%08x\n"
		"\tpause(%04x): \t0x%08x\n"
		"\tstart(%04x): \t0x%08x\n"
		"\t__cfg(%04x): \t0x%08x\n"
		"\t__src(%04x): \t0x%08x\n"
		"\t__dst(%04x): \t0x%08x\n"
		"\tcount(%04x): \t0x%08x\n"
		"\t_para(%04x): \t0x%08x\n\n",
		pchan->idx, &reg,
		DMA_CHAN_ENABLE,
		readl(pchan->base + DMA_CHAN_ENABLE),
		DMA_CHAN_PAUSE,
		readl(pchan->base + DMA_CHAN_PAUSE),
		DMA_CHAN_LLI_ADDR,
		readl(pchan->base + DMA_CHAN_LLI_ADDR),
		DMA_CHAN_CUR_CFG,
		readl(pchan->base + DMA_CHAN_CUR_CFG),
		DMA_CHAN_CUR_SRC,
		readl(pchan->base + DMA_CHAN_CUR_SRC),
		DMA_CHAN_CUR_DST,
		readl(pchan->base + DMA_CHAN_CUR_DST),
		DMA_CHAN_CUR_CNT,
		readl(pchan->base + DMA_CHAN_CUR_CNT),
		DMA_CHAN_CUR_PARA,
		readl(pchan->base + DMA_CHAN_CUR_PARA));
}

238
static inline s8 convert_burst(u32 maxburst)
239 240 241
{
	switch (maxburst) {
	case 1:
242
		return 0;
243
	case 8:
244
		return 2;
245 246 247 248 249
	default:
		return -EINVAL;
	}
}

250
static inline s8 convert_buswidth(enum dma_slave_buswidth addr_width)
251
{
252 253
	if ((addr_width < DMA_SLAVE_BUSWIDTH_1_BYTE) ||
	    (addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES))
254 255
		return -EINVAL;

256
	return addr_width >> 1;
257 258
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
static size_t sun6i_get_chan_size(struct sun6i_pchan *pchan)
{
	struct sun6i_desc *txd = pchan->desc;
	struct sun6i_dma_lli *lli;
	size_t bytes;
	dma_addr_t pos;

	pos = readl(pchan->base + DMA_CHAN_LLI_ADDR);
	bytes = readl(pchan->base + DMA_CHAN_CUR_CNT);

	if (pos == LLI_LAST_ITEM)
		return bytes;

	for (lli = txd->v_lli; lli; lli = lli->v_lli_next) {
		if (lli->p_lli_next == pos) {
			for (lli = lli->v_lli_next; lli; lli = lli->v_lli_next)
				bytes += lli->len;
			break;
		}
	}

	return bytes;
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
static void *sun6i_dma_lli_add(struct sun6i_dma_lli *prev,
			       struct sun6i_dma_lli *next,
			       dma_addr_t next_phy,
			       struct sun6i_desc *txd)
{
	if ((!prev && !txd) || !next)
		return NULL;

	if (!prev) {
		txd->p_lli = next_phy;
		txd->v_lli = next;
	} else {
		prev->p_lli_next = next_phy;
		prev->v_lli_next = next;
	}

	next->p_lli_next = LLI_LAST_ITEM;
	next->v_lli_next = NULL;

	return next;
}

static inline void sun6i_dma_dump_lli(struct sun6i_vchan *vchan,
				      struct sun6i_dma_lli *lli)
{
308
	phys_addr_t p_lli = virt_to_phys(lli);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

	dev_dbg(chan2dev(&vchan->vc.chan),
		"\n\tdesc:   p - %pa v - 0x%p\n"
		"\t\tc - 0x%08x s - 0x%08x d - 0x%08x\n"
		"\t\tl - 0x%08x p - 0x%08x n - 0x%08x\n",
		&p_lli, lli,
		lli->cfg, lli->src, lli->dst,
		lli->len, lli->para, lli->p_lli_next);
}

static void sun6i_dma_free_desc(struct virt_dma_desc *vd)
{
	struct sun6i_desc *txd = to_sun6i_desc(&vd->tx);
	struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(vd->tx.chan->device);
	struct sun6i_dma_lli *v_lli, *v_next;
	dma_addr_t p_lli, p_next;

	if (unlikely(!txd))
		return;

	p_lli = txd->p_lli;
	v_lli = txd->v_lli;

	while (v_lli) {
		v_next = v_lli->v_lli_next;
		p_next = v_lli->p_lli_next;

		dma_pool_free(sdev->pool, v_lli, p_lli);

		v_lli = v_next;
		p_lli = p_next;
	}

	kfree(txd);
}

static int sun6i_dma_start_desc(struct sun6i_vchan *vchan)
{
	struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(vchan->vc.chan.device);
	struct virt_dma_desc *desc = vchan_next_desc(&vchan->vc);
	struct sun6i_pchan *pchan = vchan->phy;
	u32 irq_val, irq_reg, irq_offset;

	if (!pchan)
		return -EAGAIN;

	if (!desc) {
		pchan->desc = NULL;
		pchan->done = NULL;
		return -EAGAIN;
	}

	list_del(&desc->node);

	pchan->desc = to_sun6i_desc(&desc->tx);
	pchan->done = NULL;

	sun6i_dma_dump_lli(vchan, pchan->desc->v_lli);

	irq_reg = pchan->idx / DMA_IRQ_CHAN_NR;
	irq_offset = pchan->idx % DMA_IRQ_CHAN_NR;

371 372
	vchan->irq_type = vchan->cyclic ? DMA_IRQ_PKG : DMA_IRQ_QUEUE;

373
	irq_val = readl(sdev->base + DMA_IRQ_EN(irq_reg));
374 375 376
	irq_val &= ~((DMA_IRQ_HALF | DMA_IRQ_PKG | DMA_IRQ_QUEUE) <<
			(irq_offset * DMA_IRQ_CHAN_WIDTH));
	irq_val |= vchan->irq_type << (irq_offset * DMA_IRQ_CHAN_WIDTH);
377
	writel(irq_val, sdev->base + DMA_IRQ_EN(irq_reg));
378 379 380 381 382 383 384 385 386 387 388 389 390

	writel(pchan->desc->p_lli, pchan->base + DMA_CHAN_LLI_ADDR);
	writel(DMA_CHAN_ENABLE_START, pchan->base + DMA_CHAN_ENABLE);

	sun6i_dma_dump_com_regs(sdev);
	sun6i_dma_dump_chan_regs(sdev, pchan);

	return 0;
}

static void sun6i_dma_tasklet(unsigned long data)
{
	struct sun6i_dma_dev *sdev = (struct sun6i_dma_dev *)data;
391
	const struct sun6i_dma_config *cfg = sdev->cfg;
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	struct sun6i_vchan *vchan;
	struct sun6i_pchan *pchan;
	unsigned int pchan_alloc = 0;
	unsigned int pchan_idx;

	list_for_each_entry(vchan, &sdev->slave.channels, vc.chan.device_node) {
		spin_lock_irq(&vchan->vc.lock);

		pchan = vchan->phy;

		if (pchan && pchan->done) {
			if (sun6i_dma_start_desc(vchan)) {
				/*
				 * No current txd associated with this channel
				 */
				dev_dbg(sdev->slave.dev, "pchan %u: free\n",
					pchan->idx);

				/* Mark this channel free */
				vchan->phy = NULL;
				pchan->vchan = NULL;
			}
		}
		spin_unlock_irq(&vchan->vc.lock);
	}

	spin_lock_irq(&sdev->lock);
419
	for (pchan_idx = 0; pchan_idx < cfg->nr_max_channels; pchan_idx++) {
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
		pchan = &sdev->pchans[pchan_idx];

		if (pchan->vchan || list_empty(&sdev->pending))
			continue;

		vchan = list_first_entry(&sdev->pending,
					 struct sun6i_vchan, node);

		/* Remove from pending channels */
		list_del_init(&vchan->node);
		pchan_alloc |= BIT(pchan_idx);

		/* Mark this channel allocated */
		pchan->vchan = vchan;
		vchan->phy = pchan;
		dev_dbg(sdev->slave.dev, "pchan %u: alloc vchan %p\n",
			pchan->idx, &vchan->vc);
	}
	spin_unlock_irq(&sdev->lock);

440
	for (pchan_idx = 0; pchan_idx < cfg->nr_max_channels; pchan_idx++) {
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
		if (!(pchan_alloc & BIT(pchan_idx)))
			continue;

		pchan = sdev->pchans + pchan_idx;
		vchan = pchan->vchan;
		if (vchan) {
			spin_lock_irq(&vchan->vc.lock);
			sun6i_dma_start_desc(vchan);
			spin_unlock_irq(&vchan->vc.lock);
		}
	}
}

static irqreturn_t sun6i_dma_interrupt(int irq, void *dev_id)
{
	struct sun6i_dma_dev *sdev = dev_id;
	struct sun6i_vchan *vchan;
	struct sun6i_pchan *pchan;
	int i, j, ret = IRQ_NONE;
	u32 status;

462
	for (i = 0; i < sdev->cfg->nr_max_channels / DMA_IRQ_CHAN_NR; i++) {
463 464 465 466 467 468 469 470 471
		status = readl(sdev->base + DMA_IRQ_STAT(i));
		if (!status)
			continue;

		dev_dbg(sdev->slave.dev, "DMA irq status %s: 0x%x\n",
			i ? "high" : "low", status);

		writel(status, sdev->base + DMA_IRQ_STAT(i));

472
		for (j = 0; (j < DMA_IRQ_CHAN_NR) && status; j++) {
473 474 475 476 477 478
			pchan = sdev->pchans + j;
			vchan = pchan->vchan;
			if (vchan && (status & vchan->irq_type)) {
				if (vchan->cyclic) {
					vchan_cyclic_callback(&pchan->desc->vd);
				} else {
479 480 481 482 483 484 485
					spin_lock(&vchan->vc.lock);
					vchan_cookie_complete(&pchan->desc->vd);
					pchan->done = pchan->desc;
					spin_unlock(&vchan->vc.lock);
				}
			}

486
			status = status >> DMA_IRQ_CHAN_WIDTH;
487 488 489 490 491 492 493 494 495 496
		}

		if (!atomic_read(&sdev->tasklet_shutdown))
			tasklet_schedule(&sdev->task);
		ret = IRQ_HANDLED;
	}

	return ret;
}

497 498 499 500 501 502 503
static int set_config(struct sun6i_dma_dev *sdev,
			struct dma_slave_config *sconfig,
			enum dma_transfer_direction direction,
			u32 *p_cfg)
{
	s8 src_width, dst_width, src_burst, dst_burst;

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
	switch (direction) {
	case DMA_MEM_TO_DEV:
		src_burst = convert_burst(sconfig->src_maxburst ?
					sconfig->src_maxburst : 8);
		src_width = convert_buswidth(sconfig->src_addr_width !=
						DMA_SLAVE_BUSWIDTH_UNDEFINED ?
				sconfig->src_addr_width :
				DMA_SLAVE_BUSWIDTH_4_BYTES);
		dst_burst = convert_burst(sconfig->dst_maxburst);
		dst_width = convert_buswidth(sconfig->dst_addr_width);
		break;
	case DMA_DEV_TO_MEM:
		src_burst = convert_burst(sconfig->src_maxburst);
		src_width = convert_buswidth(sconfig->src_addr_width);
		dst_burst = convert_burst(sconfig->dst_maxburst ?
					sconfig->dst_maxburst : 8);
		dst_width = convert_buswidth(sconfig->dst_addr_width !=
						DMA_SLAVE_BUSWIDTH_UNDEFINED ?
				sconfig->dst_addr_width :
				DMA_SLAVE_BUSWIDTH_4_BYTES);
		break;
	default:
		return -EINVAL;
	}
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

	if (src_burst < 0)
		return src_burst;
	if (src_width < 0)
		return src_width;
	if (dst_burst < 0)
		return dst_burst;
	if (dst_width < 0)
		return dst_width;

	*p_cfg = DMA_CHAN_CFG_SRC_BURST(src_burst) |
		DMA_CHAN_CFG_SRC_WIDTH(src_width) |
		DMA_CHAN_CFG_DST_BURST(dst_burst) |
		DMA_CHAN_CFG_DST_WIDTH(dst_width);

	return 0;
}

546 547 548 549 550 551 552 553 554
static struct dma_async_tx_descriptor *sun6i_dma_prep_dma_memcpy(
		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
	struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
	struct sun6i_dma_lli *v_lli;
	struct sun6i_desc *txd;
	dma_addr_t p_lli;
555
	s8 burst, width;
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570

	dev_dbg(chan2dev(chan),
		"%s; chan: %d, dest: %pad, src: %pad, len: %zu. flags: 0x%08lx\n",
		__func__, vchan->vc.chan.chan_id, &dest, &src, len, flags);

	if (!len)
		return NULL;

	txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
	if (!txd)
		return NULL;

	v_lli = dma_pool_alloc(sdev->pool, GFP_NOWAIT, &p_lli);
	if (!v_lli) {
		dev_err(sdev->slave.dev, "Failed to alloc lli memory\n");
571
		goto err_txd_free;
572 573
	}

574 575 576 577
	v_lli->src = src;
	v_lli->dst = dest;
	v_lli->len = len;
	v_lli->para = NORMAL_WAIT;
578

579 580
	burst = convert_burst(8);
	width = convert_buswidth(DMA_SLAVE_BUSWIDTH_4_BYTES);
581 582 583
	v_lli->cfg |= DMA_CHAN_CFG_SRC_DRQ(DRQ_SDRAM) |
		DMA_CHAN_CFG_DST_DRQ(DRQ_SDRAM) |
		DMA_CHAN_CFG_DST_LINEAR_MODE |
584 585 586 587 588
		DMA_CHAN_CFG_SRC_LINEAR_MODE |
		DMA_CHAN_CFG_SRC_BURST(burst) |
		DMA_CHAN_CFG_SRC_WIDTH(width) |
		DMA_CHAN_CFG_DST_BURST(burst) |
		DMA_CHAN_CFG_DST_WIDTH(width);
589 590 591 592 593 594 595

	sun6i_dma_lli_add(NULL, v_lli, p_lli, txd);

	sun6i_dma_dump_lli(vchan, v_lli);

	return vchan_tx_prep(&vchan->vc, &txd->vd, flags);

596 597
err_txd_free:
	kfree(txd);
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	return NULL;
}

static struct dma_async_tx_descriptor *sun6i_dma_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
		unsigned int sg_len, enum dma_transfer_direction dir,
		unsigned long flags, void *context)
{
	struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
	struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
	struct dma_slave_config *sconfig = &vchan->cfg;
	struct sun6i_dma_lli *v_lli, *prev = NULL;
	struct sun6i_desc *txd;
	struct scatterlist *sg;
	dma_addr_t p_lli;
613
	u32 lli_cfg;
614 615 616 617 618
	int i, ret;

	if (!sgl)
		return NULL;

619 620 621 622 623 624
	ret = set_config(sdev, sconfig, dir, &lli_cfg);
	if (ret) {
		dev_err(chan2dev(chan), "Invalid DMA configuration\n");
		return NULL;
	}

625 626 627 628 629 630
	txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
	if (!txd)
		return NULL;

	for_each_sg(sgl, sg, sg_len, i) {
		v_lli = dma_pool_alloc(sdev->pool, GFP_NOWAIT, &p_lli);
631 632
		if (!v_lli)
			goto err_lli_free;
633

634 635
		v_lli->len = sg_dma_len(sg);
		v_lli->para = NORMAL_WAIT;
636

637 638 639 640 641
		if (dir == DMA_MEM_TO_DEV) {
			v_lli->src = sg_dma_address(sg);
			v_lli->dst = sconfig->dst_addr;
			v_lli->cfg = lli_cfg |
				DMA_CHAN_CFG_DST_IO_MODE |
642 643 644 645 646
				DMA_CHAN_CFG_SRC_LINEAR_MODE |
				DMA_CHAN_CFG_SRC_DRQ(DRQ_SDRAM) |
				DMA_CHAN_CFG_DST_DRQ(vchan->port);

			dev_dbg(chan2dev(chan),
647
				"%s; chan: %d, dest: %pad, src: %pad, len: %u. flags: 0x%08lx\n",
648 649 650 651 652
				__func__, vchan->vc.chan.chan_id,
				&sconfig->dst_addr, &sg_dma_address(sg),
				sg_dma_len(sg), flags);

		} else {
653 654 655 656
			v_lli->src = sconfig->src_addr;
			v_lli->dst = sg_dma_address(sg);
			v_lli->cfg = lli_cfg |
				DMA_CHAN_CFG_DST_LINEAR_MODE |
657 658 659 660 661
				DMA_CHAN_CFG_SRC_IO_MODE |
				DMA_CHAN_CFG_DST_DRQ(DRQ_SDRAM) |
				DMA_CHAN_CFG_SRC_DRQ(vchan->port);

			dev_dbg(chan2dev(chan),
662
				"%s; chan: %d, dest: %pad, src: %pad, len: %u. flags: 0x%08lx\n",
663 664 665 666 667 668 669 670 671 672 673 674 675 676
				__func__, vchan->vc.chan.chan_id,
				&sg_dma_address(sg), &sconfig->src_addr,
				sg_dma_len(sg), flags);
		}

		prev = sun6i_dma_lli_add(prev, v_lli, p_lli, txd);
	}

	dev_dbg(chan2dev(chan), "First: %pad\n", &txd->p_lli);
	for (prev = txd->v_lli; prev; prev = prev->v_lli_next)
		sun6i_dma_dump_lli(vchan, prev);

	return vchan_tx_prep(&vchan->vc, &txd->vd, flags);

677 678 679 680
err_lli_free:
	for (prev = txd->v_lli; prev; prev = prev->v_lli_next)
		dma_pool_free(sdev->pool, prev, virt_to_phys(prev));
	kfree(txd);
681 682 683
	return NULL;
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
static struct dma_async_tx_descriptor *sun6i_dma_prep_dma_cyclic(
					struct dma_chan *chan,
					dma_addr_t buf_addr,
					size_t buf_len,
					size_t period_len,
					enum dma_transfer_direction dir,
					unsigned long flags)
{
	struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
	struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
	struct dma_slave_config *sconfig = &vchan->cfg;
	struct sun6i_dma_lli *v_lli, *prev = NULL;
	struct sun6i_desc *txd;
	dma_addr_t p_lli;
	u32 lli_cfg;
	unsigned int i, periods = buf_len / period_len;
	int ret;

	ret = set_config(sdev, sconfig, dir, &lli_cfg);
	if (ret) {
		dev_err(chan2dev(chan), "Invalid DMA configuration\n");
		return NULL;
	}

	txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
	if (!txd)
		return NULL;

	for (i = 0; i < periods; i++) {
		v_lli = dma_pool_alloc(sdev->pool, GFP_NOWAIT, &p_lli);
		if (!v_lli) {
			dev_err(sdev->slave.dev, "Failed to alloc lli memory\n");
			goto err_lli_free;
		}

		v_lli->len = period_len;
		v_lli->para = NORMAL_WAIT;

		if (dir == DMA_MEM_TO_DEV) {
			v_lli->src = buf_addr + period_len * i;
			v_lli->dst = sconfig->dst_addr;
			v_lli->cfg = lli_cfg |
				DMA_CHAN_CFG_DST_IO_MODE |
				DMA_CHAN_CFG_SRC_LINEAR_MODE |
				DMA_CHAN_CFG_SRC_DRQ(DRQ_SDRAM) |
				DMA_CHAN_CFG_DST_DRQ(vchan->port);
		} else {
			v_lli->src = sconfig->src_addr;
			v_lli->dst = buf_addr + period_len * i;
			v_lli->cfg = lli_cfg |
				DMA_CHAN_CFG_DST_LINEAR_MODE |
				DMA_CHAN_CFG_SRC_IO_MODE |
				DMA_CHAN_CFG_DST_DRQ(DRQ_SDRAM) |
				DMA_CHAN_CFG_SRC_DRQ(vchan->port);
		}

		prev = sun6i_dma_lli_add(prev, v_lli, p_lli, txd);
	}

	prev->p_lli_next = txd->p_lli;		/* cyclic list */

	vchan->cyclic = true;

	return vchan_tx_prep(&vchan->vc, &txd->vd, flags);

err_lli_free:
	for (prev = txd->v_lli; prev; prev = prev->v_lli_next)
		dma_pool_free(sdev->pool, prev, virt_to_phys(prev));
	kfree(txd);
	return NULL;
}

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
static int sun6i_dma_config(struct dma_chan *chan,
			    struct dma_slave_config *config)
{
	struct sun6i_vchan *vchan = to_sun6i_vchan(chan);

	memcpy(&vchan->cfg, config, sizeof(*config));

	return 0;
}

static int sun6i_dma_pause(struct dma_chan *chan)
{
	struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
	struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
	struct sun6i_pchan *pchan = vchan->phy;

	dev_dbg(chan2dev(chan), "vchan %p: pause\n", &vchan->vc);

	if (pchan) {
		writel(DMA_CHAN_PAUSE_PAUSE,
		       pchan->base + DMA_CHAN_PAUSE);
	} else {
		spin_lock(&sdev->lock);
		list_del_init(&vchan->node);
		spin_unlock(&sdev->lock);
	}

	return 0;
}

static int sun6i_dma_resume(struct dma_chan *chan)
787 788 789 790 791 792
{
	struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
	struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
	struct sun6i_pchan *pchan = vchan->phy;
	unsigned long flags;

793
	dev_dbg(chan2dev(chan), "vchan %p: resume\n", &vchan->vc);
794

795
	spin_lock_irqsave(&vchan->vc.lock, flags);
796

797 798 799 800 801 802 803 804
	if (pchan) {
		writel(DMA_CHAN_PAUSE_RESUME,
		       pchan->base + DMA_CHAN_PAUSE);
	} else if (!list_empty(&vchan->vc.desc_issued)) {
		spin_lock(&sdev->lock);
		list_add_tail(&vchan->node, &sdev->pending);
		spin_unlock(&sdev->lock);
	}
805

806
	spin_unlock_irqrestore(&vchan->vc.lock, flags);
807

808 809
	return 0;
}
810

811 812 813 814 815 816 817 818 819 820 821 822 823 824
static int sun6i_dma_terminate_all(struct dma_chan *chan)
{
	struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
	struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
	struct sun6i_pchan *pchan = vchan->phy;
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock(&sdev->lock);
	list_del_init(&vchan->node);
	spin_unlock(&sdev->lock);

	spin_lock_irqsave(&vchan->vc.lock, flags);

825 826 827 828 829 830 831 832 833 834
	if (vchan->cyclic) {
		vchan->cyclic = false;
		if (pchan && pchan->desc) {
			struct virt_dma_desc *vd = &pchan->desc->vd;
			struct virt_dma_chan *vc = &vchan->vc;

			list_add_tail(&vd->node, &vc->desc_completed);
		}
	}

835 836 837 838 839 840 841 842 843 844
	vchan_get_all_descriptors(&vchan->vc, &head);

	if (pchan) {
		writel(DMA_CHAN_ENABLE_STOP, pchan->base + DMA_CHAN_ENABLE);
		writel(DMA_CHAN_PAUSE_RESUME, pchan->base + DMA_CHAN_PAUSE);

		vchan->phy = NULL;
		pchan->vchan = NULL;
		pchan->desc = NULL;
		pchan->done = NULL;
845
	}
846 847 848 849 850 851

	spin_unlock_irqrestore(&vchan->vc.lock, flags);

	vchan_dma_desc_free_list(&vchan->vc, &head);

	return 0;
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
}

static enum dma_status sun6i_dma_tx_status(struct dma_chan *chan,
					   dma_cookie_t cookie,
					   struct dma_tx_state *state)
{
	struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
	struct sun6i_pchan *pchan = vchan->phy;
	struct sun6i_dma_lli *lli;
	struct virt_dma_desc *vd;
	struct sun6i_desc *txd;
	enum dma_status ret;
	unsigned long flags;
	size_t bytes = 0;

	ret = dma_cookie_status(chan, cookie, state);
868
	if (ret == DMA_COMPLETE || !state)
869 870 871 872 873 874 875 876 877 878 879 880 881
		return ret;

	spin_lock_irqsave(&vchan->vc.lock, flags);

	vd = vchan_find_desc(&vchan->vc, cookie);
	txd = to_sun6i_desc(&vd->tx);

	if (vd) {
		for (lli = txd->v_lli; lli != NULL; lli = lli->v_lli_next)
			bytes += lli->len;
	} else if (!pchan || !pchan->desc) {
		bytes = 0;
	} else {
882
		bytes = sun6i_get_chan_size(pchan);
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	}

	spin_unlock_irqrestore(&vchan->vc.lock, flags);

	dma_set_residue(state, bytes);

	return ret;
}

static void sun6i_dma_issue_pending(struct dma_chan *chan)
{
	struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
	struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
	unsigned long flags;

	spin_lock_irqsave(&vchan->vc.lock, flags);

	if (vchan_issue_pending(&vchan->vc)) {
		spin_lock(&sdev->lock);

		if (!vchan->phy && list_empty(&vchan->node)) {
			list_add_tail(&vchan->node, &sdev->pending);
			tasklet_schedule(&sdev->task);
			dev_dbg(chan2dev(chan), "vchan %p: issued\n",
				&vchan->vc);
		}

		spin_unlock(&sdev->lock);
	} else {
		dev_dbg(chan2dev(chan), "vchan %p: nothing to issue\n",
			&vchan->vc);
	}

	spin_unlock_irqrestore(&vchan->vc.lock, flags);
}

static void sun6i_dma_free_chan_resources(struct dma_chan *chan)
{
	struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device);
	struct sun6i_vchan *vchan = to_sun6i_vchan(chan);
	unsigned long flags;

	spin_lock_irqsave(&sdev->lock, flags);
	list_del_init(&vchan->node);
	spin_unlock_irqrestore(&sdev->lock, flags);

	vchan_free_chan_resources(&vchan->vc);
}

static struct dma_chan *sun6i_dma_of_xlate(struct of_phandle_args *dma_spec,
					   struct of_dma *ofdma)
{
	struct sun6i_dma_dev *sdev = ofdma->of_dma_data;
	struct sun6i_vchan *vchan;
	struct dma_chan *chan;
	u8 port = dma_spec->args[0];

940
	if (port > sdev->cfg->nr_max_requests)
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
		return NULL;

	chan = dma_get_any_slave_channel(&sdev->slave);
	if (!chan)
		return NULL;

	vchan = to_sun6i_vchan(chan);
	vchan->port = port;

	return chan;
}

static inline void sun6i_kill_tasklet(struct sun6i_dma_dev *sdev)
{
	/* Disable all interrupts from DMA */
	writel(0, sdev->base + DMA_IRQ_EN(0));
	writel(0, sdev->base + DMA_IRQ_EN(1));

	/* Prevent spurious interrupts from scheduling the tasklet */
	atomic_inc(&sdev->tasklet_shutdown);

962 963
	/* Make sure we won't have any further interrupts */
	devm_free_irq(sdev->slave.dev, sdev->irq, sdev);
964 965 966 967 968 969 970 971 972

	/* Actually prevent the tasklet from being scheduled */
	tasklet_kill(&sdev->task);
}

static inline void sun6i_dma_free(struct sun6i_dma_dev *sdev)
{
	int i;

973
	for (i = 0; i < sdev->cfg->nr_max_vchans; i++) {
974 975 976 977 978 979 980
		struct sun6i_vchan *vchan = &sdev->vchans[i];

		list_del(&vchan->vc.chan.device_node);
		tasklet_kill(&vchan->vc.task);
	}
}

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
/*
 * For A31:
 *
 * There's 16 physical channels that can work in parallel.
 *
 * However we have 30 different endpoints for our requests.
 *
 * Since the channels are able to handle only an unidirectional
 * transfer, we need to allocate more virtual channels so that
 * everyone can grab one channel.
 *
 * Some devices can't work in both direction (mostly because it
 * wouldn't make sense), so we have a bit fewer virtual channels than
 * 2 channels per endpoints.
 */

static struct sun6i_dma_config sun6i_a31_dma_cfg = {
	.nr_max_channels = 16,
	.nr_max_requests = 30,
	.nr_max_vchans   = 53,
};

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
/*
 * The A23 only has 8 physical channels, a maximum DRQ port id of 24,
 * and a total of 37 usable source and destination endpoints.
 */

static struct sun6i_dma_config sun8i_a23_dma_cfg = {
	.nr_max_channels = 8,
	.nr_max_requests = 24,
	.nr_max_vchans   = 37,
};

1014 1015 1016 1017 1018 1019
static struct sun6i_dma_config sun8i_a83t_dma_cfg = {
	.nr_max_channels = 8,
	.nr_max_requests = 28,
	.nr_max_vchans   = 39,
};

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/*
 * The H3 has 12 physical channels, a maximum DRQ port id of 27,
 * and a total of 34 usable source and destination endpoints.
 */

static struct sun6i_dma_config sun8i_h3_dma_cfg = {
	.nr_max_channels = 12,
	.nr_max_requests = 27,
	.nr_max_vchans   = 34,
};

1031
static const struct of_device_id sun6i_dma_match[] = {
1032
	{ .compatible = "allwinner,sun6i-a31-dma", .data = &sun6i_a31_dma_cfg },
1033
	{ .compatible = "allwinner,sun8i-a23-dma", .data = &sun8i_a23_dma_cfg },
1034
	{ .compatible = "allwinner,sun8i-a83t-dma", .data = &sun8i_a83t_dma_cfg },
1035
	{ .compatible = "allwinner,sun8i-h3-dma", .data = &sun8i_h3_dma_cfg },
1036 1037
	{ /* sentinel */ }
};
1038
MODULE_DEVICE_TABLE(of, sun6i_dma_match);
1039

1040 1041
static int sun6i_dma_probe(struct platform_device *pdev)
{
1042
	const struct of_device_id *device;
1043 1044 1045 1046 1047 1048 1049 1050
	struct sun6i_dma_dev *sdc;
	struct resource *res;
	int ret, i;

	sdc = devm_kzalloc(&pdev->dev, sizeof(*sdc), GFP_KERNEL);
	if (!sdc)
		return -ENOMEM;

1051 1052 1053 1054 1055
	device = of_match_device(sun6i_dma_match, &pdev->dev);
	if (!device)
		return -ENODEV;
	sdc->cfg = device->data;

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	sdc->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(sdc->base))
		return PTR_ERR(sdc->base);

	sdc->irq = platform_get_irq(pdev, 0);
	if (sdc->irq < 0) {
		dev_err(&pdev->dev, "Cannot claim IRQ\n");
		return sdc->irq;
	}

	sdc->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(sdc->clk)) {
		dev_err(&pdev->dev, "No clock specified\n");
		return PTR_ERR(sdc->clk);
	}

	sdc->rstc = devm_reset_control_get(&pdev->dev, NULL);
	if (IS_ERR(sdc->rstc)) {
		dev_err(&pdev->dev, "No reset controller specified\n");
		return PTR_ERR(sdc->rstc);
	}

	sdc->pool = dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
				     sizeof(struct sun6i_dma_lli), 4, 0);
	if (!sdc->pool) {
		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, sdc);
	INIT_LIST_HEAD(&sdc->pending);
	spin_lock_init(&sdc->lock);

	dma_cap_set(DMA_PRIVATE, sdc->slave.cap_mask);
	dma_cap_set(DMA_MEMCPY, sdc->slave.cap_mask);
	dma_cap_set(DMA_SLAVE, sdc->slave.cap_mask);
1093
	dma_cap_set(DMA_CYCLIC, sdc->slave.cap_mask);
1094 1095 1096 1097 1098 1099 1100

	INIT_LIST_HEAD(&sdc->slave.channels);
	sdc->slave.device_free_chan_resources	= sun6i_dma_free_chan_resources;
	sdc->slave.device_tx_status		= sun6i_dma_tx_status;
	sdc->slave.device_issue_pending		= sun6i_dma_issue_pending;
	sdc->slave.device_prep_slave_sg		= sun6i_dma_prep_slave_sg;
	sdc->slave.device_prep_dma_memcpy	= sun6i_dma_prep_dma_memcpy;
1101
	sdc->slave.device_prep_dma_cyclic	= sun6i_dma_prep_dma_cyclic;
1102
	sdc->slave.copy_align			= DMAENGINE_ALIGN_4_BYTES;
1103 1104 1105 1106
	sdc->slave.device_config		= sun6i_dma_config;
	sdc->slave.device_pause			= sun6i_dma_pause;
	sdc->slave.device_resume		= sun6i_dma_resume;
	sdc->slave.device_terminate_all		= sun6i_dma_terminate_all;
1107 1108 1109 1110 1111 1112 1113 1114 1115
	sdc->slave.src_addr_widths		= BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
						  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
						  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
	sdc->slave.dst_addr_widths		= BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
						  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
						  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
	sdc->slave.directions			= BIT(DMA_DEV_TO_MEM) |
						  BIT(DMA_MEM_TO_DEV);
	sdc->slave.residue_granularity		= DMA_RESIDUE_GRANULARITY_BURST;
1116 1117
	sdc->slave.dev = &pdev->dev;

1118
	sdc->pchans = devm_kcalloc(&pdev->dev, sdc->cfg->nr_max_channels,
1119 1120 1121 1122
				   sizeof(struct sun6i_pchan), GFP_KERNEL);
	if (!sdc->pchans)
		return -ENOMEM;

1123
	sdc->vchans = devm_kcalloc(&pdev->dev, sdc->cfg->nr_max_vchans,
1124 1125 1126 1127 1128 1129
				   sizeof(struct sun6i_vchan), GFP_KERNEL);
	if (!sdc->vchans)
		return -ENOMEM;

	tasklet_init(&sdc->task, sun6i_dma_tasklet, (unsigned long)sdc);

1130
	for (i = 0; i < sdc->cfg->nr_max_channels; i++) {
1131 1132 1133 1134 1135 1136
		struct sun6i_pchan *pchan = &sdc->pchans[i];

		pchan->idx = i;
		pchan->base = sdc->base + 0x100 + i * 0x40;
	}

1137
	for (i = 0; i < sdc->cfg->nr_max_vchans; i++) {
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
		struct sun6i_vchan *vchan = &sdc->vchans[i];

		INIT_LIST_HEAD(&vchan->node);
		vchan->vc.desc_free = sun6i_dma_free_desc;
		vchan_init(&vchan->vc, &sdc->slave);
	}

	ret = reset_control_deassert(sdc->rstc);
	if (ret) {
		dev_err(&pdev->dev, "Couldn't deassert the device from reset\n");
		goto err_chan_free;
	}

	ret = clk_prepare_enable(sdc->clk);
	if (ret) {
		dev_err(&pdev->dev, "Couldn't enable the clock\n");
		goto err_reset_assert;
	}

	ret = devm_request_irq(&pdev->dev, sdc->irq, sun6i_dma_interrupt, 0,
			       dev_name(&pdev->dev), sdc);
	if (ret) {
		dev_err(&pdev->dev, "Cannot request IRQ\n");
		goto err_clk_disable;
	}

	ret = dma_async_device_register(&sdc->slave);
	if (ret) {
		dev_warn(&pdev->dev, "Failed to register DMA engine device\n");
		goto err_irq_disable;
	}

	ret = of_dma_controller_register(pdev->dev.of_node, sun6i_dma_of_xlate,
					 sdc);
	if (ret) {
		dev_err(&pdev->dev, "of_dma_controller_register failed\n");
		goto err_dma_unregister;
	}

1177 1178 1179 1180 1181 1182 1183 1184 1185
	/*
	 * sun8i variant requires us to toggle a dma gating register,
	 * as seen in Allwinner's SDK. This register is not documented
	 * in the A23 user manual.
	 */
	if (of_device_is_compatible(pdev->dev.of_node,
				    "allwinner,sun8i-a23-dma"))
		writel(SUN8I_DMA_GATE_ENABLE, sdc->base + SUN8I_DMA_GATE);

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	return 0;

err_dma_unregister:
	dma_async_device_unregister(&sdc->slave);
err_irq_disable:
	sun6i_kill_tasklet(sdc);
err_clk_disable:
	clk_disable_unprepare(sdc->clk);
err_reset_assert:
	reset_control_assert(sdc->rstc);
err_chan_free:
	sun6i_dma_free(sdc);
	return ret;
}

static int sun6i_dma_remove(struct platform_device *pdev)
{
	struct sun6i_dma_dev *sdc = platform_get_drvdata(pdev);

	of_dma_controller_free(pdev->dev.of_node);
	dma_async_device_unregister(&sdc->slave);

	sun6i_kill_tasklet(sdc);

	clk_disable_unprepare(sdc->clk);
	reset_control_assert(sdc->rstc);

	sun6i_dma_free(sdc);

	return 0;
}

static struct platform_driver sun6i_dma_driver = {
	.probe		= sun6i_dma_probe,
	.remove		= sun6i_dma_remove,
	.driver = {
		.name		= "sun6i-dma",
		.of_match_table	= sun6i_dma_match,
	},
};
module_platform_driver(sun6i_dma_driver);

MODULE_DESCRIPTION("Allwinner A31 DMA Controller Driver");
MODULE_AUTHOR("Sugar <shuge@allwinnertech.com>");
MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
MODULE_LICENSE("GPL");