property.c 38.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * property.c - Unified device property interface.
 *
 * Copyright (C) 2014, Intel Corporation
 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
 *          Mika Westerberg <mika.westerberg@linux.intel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/acpi.h>
14 15
#include <linux/export.h>
#include <linux/kernel.h>
16
#include <linux/of.h>
17
#include <linux/of_address.h>
18
#include <linux/of_graph.h>
19
#include <linux/property.h>
20 21
#include <linux/etherdevice.h>
#include <linux/phy.h>
22

23 24
struct property_set {
	struct fwnode_handle fwnode;
25
	const struct property_entry *properties;
26 27
};

28 29
static const struct fwnode_operations pset_fwnode_ops;

30
static inline bool is_pset_node(const struct fwnode_handle *fwnode)
31
{
32
	return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &pset_fwnode_ops;
33 34
}

35 36 37 38 39 40 41 42 43 44 45 46
#define to_pset_node(__fwnode)						\
	({								\
		typeof(__fwnode) __to_pset_node_fwnode = __fwnode;	\
									\
		is_pset_node(__to_pset_node_fwnode) ?			\
			container_of(__to_pset_node_fwnode,		\
				     struct property_set, fwnode) :	\
			NULL;						\
	})

static const struct property_entry *
pset_prop_get(const struct property_set *pset, const char *name)
47
{
48
	const struct property_entry *prop;
49 50 51 52 53 54 55 56 57 58 59

	if (!pset || !pset->properties)
		return NULL;

	for (prop = pset->properties; prop->name; prop++)
		if (!strcmp(name, prop->name))
			return prop;

	return NULL;
}

60
static const void *pset_prop_find(const struct property_set *pset,
61
				  const char *propname, size_t length)
62
{
63 64
	const struct property_entry *prop;
	const void *pointer;
65

66 67 68
	prop = pset_prop_get(pset, propname);
	if (!prop)
		return ERR_PTR(-EINVAL);
69 70 71 72
	if (prop->is_array)
		pointer = prop->pointer.raw_data;
	else
		pointer = &prop->value.raw_data;
73 74 75 76 77 78 79
	if (!pointer)
		return ERR_PTR(-ENODATA);
	if (length > prop->length)
		return ERR_PTR(-EOVERFLOW);
	return pointer;
}

80
static int pset_prop_read_u8_array(const struct property_set *pset,
81 82 83
				   const char *propname,
				   u8 *values, size_t nval)
{
84
	const void *pointer;
85 86 87 88 89 90 91 92 93 94
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

95
static int pset_prop_read_u16_array(const struct property_set *pset,
96 97 98
				    const char *propname,
				    u16 *values, size_t nval)
{
99
	const void *pointer;
100 101 102 103 104 105 106 107 108 109
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

110
static int pset_prop_read_u32_array(const struct property_set *pset,
111 112 113
				    const char *propname,
				    u32 *values, size_t nval)
{
114
	const void *pointer;
115 116 117 118 119 120 121 122 123 124
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

125
static int pset_prop_read_u64_array(const struct property_set *pset,
126 127 128
				    const char *propname,
				    u64 *values, size_t nval)
{
129
	const void *pointer;
130 131 132 133 134 135 136 137 138 139
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

140
static int pset_prop_count_elems_of_size(const struct property_set *pset,
141 142
					 const char *propname, size_t length)
{
143
	const struct property_entry *prop;
144 145

	prop = pset_prop_get(pset, propname);
146 147
	if (!prop)
		return -EINVAL;
148 149 150 151

	return prop->length / length;
}

152
static int pset_prop_read_string_array(const struct property_set *pset,
153 154 155
				       const char *propname,
				       const char **strings, size_t nval)
{
156
	const struct property_entry *prop;
157
	const void *pointer;
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
	size_t array_len, length;

	/* Find out the array length. */
	prop = pset_prop_get(pset, propname);
	if (!prop)
		return -EINVAL;

	if (!prop->is_array)
		/* The array length for a non-array string property is 1. */
		array_len = 1;
	else
		/* Find the length of an array. */
		array_len = pset_prop_count_elems_of_size(pset, propname,
							  sizeof(const char *));

	/* Return how many there are if strings is NULL. */
	if (!strings)
		return array_len;

	array_len = min(nval, array_len);
	length = array_len * sizeof(*strings);
179 180 181 182 183 184

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(strings, pointer, length);
185

186
	return array_len;
187
}
188

189
struct fwnode_handle *dev_fwnode(struct device *dev)
190 191 192 193
{
	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
		&dev->of_node->fwnode : dev->fwnode;
}
194
EXPORT_SYMBOL_GPL(dev_fwnode);
195

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
static bool pset_fwnode_property_present(struct fwnode_handle *fwnode,
					 const char *propname)
{
	return !!pset_prop_get(to_pset_node(fwnode), propname);
}

static int pset_fwnode_read_int_array(struct fwnode_handle *fwnode,
				      const char *propname,
				      unsigned int elem_size, void *val,
				      size_t nval)
{
	struct property_set *node = to_pset_node(fwnode);

	if (!val)
		return pset_prop_count_elems_of_size(node, propname, elem_size);

	switch (elem_size) {
	case sizeof(u8):
		return pset_prop_read_u8_array(node, propname, val, nval);
	case sizeof(u16):
		return pset_prop_read_u16_array(node, propname, val, nval);
	case sizeof(u32):
		return pset_prop_read_u32_array(node, propname, val, nval);
	case sizeof(u64):
		return pset_prop_read_u64_array(node, propname, val, nval);
	}

	return -ENXIO;
}

static int pset_fwnode_property_read_string_array(struct fwnode_handle *fwnode,
						  const char *propname,
						  const char **val, size_t nval)
{
	return pset_prop_read_string_array(to_pset_node(fwnode), propname,
					   val, nval);
}

static const struct fwnode_operations pset_fwnode_ops = {
	.property_present = pset_fwnode_property_present,
	.property_read_int_array = pset_fwnode_read_int_array,
	.property_read_string_array = pset_fwnode_property_read_string_array,
};

240 241 242 243 244 245 246 247 248
/**
 * device_property_present - check if a property of a device is present
 * @dev: Device whose property is being checked
 * @propname: Name of the property
 *
 * Check if property @propname is present in the device firmware description.
 */
bool device_property_present(struct device *dev, const char *propname)
{
249
	return fwnode_property_present(dev_fwnode(dev), propname);
250 251 252
}
EXPORT_SYMBOL_GPL(device_property_present);

253 254 255 256 257 258 259 260 261
/**
 * fwnode_property_present - check if a property of a firmware node is present
 * @fwnode: Firmware node whose property to check
 * @propname: Name of the property
 */
bool fwnode_property_present(struct fwnode_handle *fwnode, const char *propname)
{
	bool ret;

262
	ret = fwnode_call_bool_op(fwnode, property_present, propname);
263 264
	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
265
		ret = fwnode_call_bool_op(fwnode->secondary, property_present,
266
					 propname);
267 268
	return ret;
}
269 270
EXPORT_SYMBOL_GPL(fwnode_property_present);

271 272 273 274
/**
 * device_property_read_u8_array - return a u8 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
275
 * @val: The values are stored here or %NULL to return the number of values
276 277 278 279 280
 * @nval: Size of the @val array
 *
 * Function reads an array of u8 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
281 282
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
283 284 285 286
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
287
 *	   %-ENXIO if no suitable firmware interface is present.
288 289 290 291
 */
int device_property_read_u8_array(struct device *dev, const char *propname,
				  u8 *val, size_t nval)
{
292
	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
293 294 295 296 297 298 299
}
EXPORT_SYMBOL_GPL(device_property_read_u8_array);

/**
 * device_property_read_u16_array - return a u16 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
300
 * @val: The values are stored here or %NULL to return the number of values
301 302 303 304 305
 * @nval: Size of the @val array
 *
 * Function reads an array of u16 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
306 307
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
308 309 310 311
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
312
 *	   %-ENXIO if no suitable firmware interface is present.
313 314 315 316
 */
int device_property_read_u16_array(struct device *dev, const char *propname,
				   u16 *val, size_t nval)
{
317
	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
318 319 320 321 322 323 324
}
EXPORT_SYMBOL_GPL(device_property_read_u16_array);

/**
 * device_property_read_u32_array - return a u32 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
325
 * @val: The values are stored here or %NULL to return the number of values
326 327 328 329 330
 * @nval: Size of the @val array
 *
 * Function reads an array of u32 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
331 332
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
333 334 335 336
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
337
 *	   %-ENXIO if no suitable firmware interface is present.
338 339 340 341
 */
int device_property_read_u32_array(struct device *dev, const char *propname,
				   u32 *val, size_t nval)
{
342
	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
343 344 345 346 347 348 349
}
EXPORT_SYMBOL_GPL(device_property_read_u32_array);

/**
 * device_property_read_u64_array - return a u64 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
350
 * @val: The values are stored here or %NULL to return the number of values
351 352 353 354 355
 * @nval: Size of the @val array
 *
 * Function reads an array of u64 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
356 357
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
358 359 360 361
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
362
 *	   %-ENXIO if no suitable firmware interface is present.
363 364 365 366
 */
int device_property_read_u64_array(struct device *dev, const char *propname,
				   u64 *val, size_t nval)
{
367
	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
368 369 370 371 372 373 374
}
EXPORT_SYMBOL_GPL(device_property_read_u64_array);

/**
 * device_property_read_string_array - return a string array property of device
 * @dev: Device to get the property of
 * @propname: Name of the property
375
 * @val: The values are stored here or %NULL to return the number of values
376 377 378 379 380
 * @nval: Size of the @val array
 *
 * Function reads an array of string properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
381 382
 * Return: number of values read on success if @val is non-NULL,
 *	   number of values available on success if @val is NULL,
383 384 385 386
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 *	   %-EOVERFLOW if the size of the property is not as expected.
387
 *	   %-ENXIO if no suitable firmware interface is present.
388 389 390 391
 */
int device_property_read_string_array(struct device *dev, const char *propname,
				      const char **val, size_t nval)
{
392
	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
}
EXPORT_SYMBOL_GPL(device_property_read_string_array);

/**
 * device_property_read_string - return a string property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
 * @val: The value is stored here
 *
 * Function reads property @propname from the device firmware description and
 * stores the value into @val if found. The value is checked to be a string.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
409
 *	   %-ENXIO if no suitable firmware interface is present.
410 411 412 413
 */
int device_property_read_string(struct device *dev, const char *propname,
				const char **val)
{
414
	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
415 416
}
EXPORT_SYMBOL_GPL(device_property_read_string);
417

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/**
 * device_property_match_string - find a string in an array and return index
 * @dev: Device to get the property of
 * @propname: Name of the property holding the array
 * @string: String to look for
 *
 * Find a given string in a string array and if it is found return the
 * index back.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of strings,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int device_property_match_string(struct device *dev, const char *propname,
				 const char *string)
{
	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
}
EXPORT_SYMBOL_GPL(device_property_match_string);

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
static int fwnode_property_read_int_array(struct fwnode_handle *fwnode,
					  const char *propname,
					  unsigned int elem_size, void *val,
					  size_t nval)
{
	int ret;

	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
				 elem_size, val, nval);
	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
		ret = fwnode_call_int_op(
			fwnode->secondary, property_read_int_array, propname,
			elem_size, val, nval);

	return ret;
}
457

458 459 460 461
/**
 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
462
 * @val: The values are stored here or %NULL to return the number of values
463 464 465 466 467
 * @nval: Size of the @val array
 *
 * Read an array of u8 properties with @propname from @fwnode and stores them to
 * @val if found.
 *
468 469
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
470 471 472 473 474 475 476 477 478
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_u8_array(struct fwnode_handle *fwnode,
				  const char *propname, u8 *val, size_t nval)
{
479 480
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
					      val, nval);
481 482 483 484 485 486 487
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);

/**
 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
488
 * @val: The values are stored here or %NULL to return the number of values
489 490 491 492 493
 * @nval: Size of the @val array
 *
 * Read an array of u16 properties with @propname from @fwnode and store them to
 * @val if found.
 *
494 495
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
496 497 498 499 500 501 502 503 504
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_u16_array(struct fwnode_handle *fwnode,
				   const char *propname, u16 *val, size_t nval)
{
505 506
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
					      val, nval);
507 508 509 510 511 512 513
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);

/**
 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
514
 * @val: The values are stored here or %NULL to return the number of values
515 516 517 518 519
 * @nval: Size of the @val array
 *
 * Read an array of u32 properties with @propname from @fwnode store them to
 * @val if found.
 *
520 521
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
522 523 524 525 526 527 528 529 530
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_u32_array(struct fwnode_handle *fwnode,
				   const char *propname, u32 *val, size_t nval)
{
531 532
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
					      val, nval);
533 534 535 536 537 538 539
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);

/**
 * fwnode_property_read_u64_array - return a u64 array property firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
540
 * @val: The values are stored here or %NULL to return the number of values
541 542 543 544 545
 * @nval: Size of the @val array
 *
 * Read an array of u64 properties with @propname from @fwnode and store them to
 * @val if found.
 *
546 547
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
548 549 550 551 552 553 554 555 556
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_u64_array(struct fwnode_handle *fwnode,
				   const char *propname, u64 *val, size_t nval)
{
557 558
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
					      val, nval);
559 560 561 562 563 564 565
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);

/**
 * fwnode_property_read_string_array - return string array property of a node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
566
 * @val: The values are stored here or %NULL to return the number of values
567 568 569 570 571
 * @nval: Size of the @val array
 *
 * Read an string list property @propname from the given firmware node and store
 * them to @val if found.
 *
572 573
 * Return: number of values read on success if @val is non-NULL,
 *	   number of values available on success if @val is NULL,
574 575
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
576
 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
577 578 579 580 581 582 583
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_string_array(struct fwnode_handle *fwnode,
				      const char *propname, const char **val,
				      size_t nval)
{
584 585
	int ret;

586 587
	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
				 val, nval);
588 589
	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
590 591 592
		ret = fwnode_call_int_op(fwnode->secondary,
					 property_read_string_array, propname,
					 val, nval);
593
	return ret;
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
}
EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);

/**
 * fwnode_property_read_string - return a string property of a firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
 * @val: The value is stored here
 *
 * Read property @propname from the given firmware node and store the value into
 * @val if found.  The value is checked to be a string.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_string(struct fwnode_handle *fwnode,
				const char *propname, const char **val)
{
615
	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
616

617
	return ret < 0 ? ret : 0;
618 619 620
}
EXPORT_SYMBOL_GPL(fwnode_property_read_string);

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
/**
 * fwnode_property_match_string - find a string in an array and return index
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property holding the array
 * @string: String to look for
 *
 * Find a given string in a string array and if it is found return the
 * index back.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of strings,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_match_string(struct fwnode_handle *fwnode,
	const char *propname, const char *string)
{
	const char **values;
640
	int nval, ret;
641 642 643 644 645

	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
	if (nval < 0)
		return nval;

646 647 648
	if (nval == 0)
		return -ENODATA;

649 650 651 652 653 654 655 656
	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
	if (!values)
		return -ENOMEM;

	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
	if (ret < 0)
		goto out;

657 658 659
	ret = match_string(values, nval, string);
	if (ret < 0)
		ret = -ENODATA;
660 661 662 663 664 665
out:
	kfree(values);
	return ret;
}
EXPORT_SYMBOL_GPL(fwnode_property_match_string);

666 667
static int property_copy_string_array(struct property_entry *dst,
				      const struct property_entry *src)
668
{
669 670 671
	char **d;
	size_t nval = src->length / sizeof(*d);
	int i;
672

673 674 675
	d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
	if (!d)
		return -ENOMEM;
676

677 678 679 680 681 682 683
	for (i = 0; i < nval; i++) {
		d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
		if (!d[i] && src->pointer.str[i]) {
			while (--i >= 0)
				kfree(d[i]);
			kfree(d);
			return -ENOMEM;
684 685 686
		}
	}

687 688
	dst->pointer.raw_data = d;
	return 0;
689 690
}

691 692
static int property_entry_copy_data(struct property_entry *dst,
				    const struct property_entry *src)
693
{
694
	int error;
695 696 697 698 699 700

	dst->name = kstrdup(src->name, GFP_KERNEL);
	if (!dst->name)
		return -ENOMEM;

	if (src->is_array) {
701 702 703 704
		if (!src->length) {
			error = -ENODATA;
			goto out_free_name;
		}
705

706
		if (src->is_string) {
707 708 709
			error = property_copy_string_array(dst, src);
			if (error)
				goto out_free_name;
710 711 712
		} else {
			dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
							src->length, GFP_KERNEL);
713 714 715 716
			if (!dst->pointer.raw_data) {
				error = -ENOMEM;
				goto out_free_name;
			}
717 718 719
		}
	} else if (src->is_string) {
		dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
720 721 722 723
		if (!dst->value.str && src->value.str) {
			error = -ENOMEM;
			goto out_free_name;
		}
724 725 726 727 728 729 730 731 732
	} else {
		dst->value.raw_data = src->value.raw_data;
	}

	dst->length = src->length;
	dst->is_array = src->is_array;
	dst->is_string = src->is_string;

	return 0;
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821

out_free_name:
	kfree(dst->name);
	return error;
}

static void property_entry_free_data(const struct property_entry *p)
{
	size_t i, nval;

	if (p->is_array) {
		if (p->is_string && p->pointer.str) {
			nval = p->length / sizeof(const char *);
			for (i = 0; i < nval; i++)
				kfree(p->pointer.str[i]);
		}
		kfree(p->pointer.raw_data);
	} else if (p->is_string) {
		kfree(p->value.str);
	}
	kfree(p->name);
}

/**
 * property_entries_dup - duplicate array of properties
 * @properties: array of properties to copy
 *
 * This function creates a deep copy of the given NULL-terminated array
 * of property entries.
 */
struct property_entry *
property_entries_dup(const struct property_entry *properties)
{
	struct property_entry *p;
	int i, n = 0;

	while (properties[n].name)
		n++;

	p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < n; i++) {
		int ret = property_entry_copy_data(&p[i], &properties[i]);
		if (ret) {
			while (--i >= 0)
				property_entry_free_data(&p[i]);
			kfree(p);
			return ERR_PTR(ret);
		}
	}

	return p;
}
EXPORT_SYMBOL_GPL(property_entries_dup);

/**
 * property_entries_free - free previously allocated array of properties
 * @properties: array of properties to destroy
 *
 * This function frees given NULL-terminated array of property entries,
 * along with their data.
 */
void property_entries_free(const struct property_entry *properties)
{
	const struct property_entry *p;

	for (p = properties; p->name; p++)
		property_entry_free_data(p);

	kfree(properties);
}
EXPORT_SYMBOL_GPL(property_entries_free);

/**
 * pset_free_set - releases memory allocated for copied property set
 * @pset: Property set to release
 *
 * Function takes previously copied property set and releases all the
 * memory allocated to it.
 */
static void pset_free_set(struct property_set *pset)
{
	if (!pset)
		return;

	property_entries_free(pset->properties);
	kfree(pset);
822 823 824 825 826 827 828 829 830 831 832 833 834 835
}

/**
 * pset_copy_set - copies property set
 * @pset: Property set to copy
 *
 * This function takes a deep copy of the given property set and returns
 * pointer to the copy. Call device_free_property_set() to free resources
 * allocated in this function.
 *
 * Return: Pointer to the new property set or error pointer.
 */
static struct property_set *pset_copy_set(const struct property_set *pset)
{
836
	struct property_entry *properties;
837 838 839 840 841 842
	struct property_set *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

843 844
	properties = property_entries_dup(pset->properties);
	if (IS_ERR(properties)) {
845
		kfree(p);
846
		return ERR_CAST(properties);
847 848
	}

849
	p->properties = properties;
850 851 852 853
	return p;
}

/**
854
 * device_remove_properties - Remove properties from a device object.
855 856 857
 * @dev: Device whose properties to remove.
 *
 * The function removes properties previously associated to the device
858
 * secondary firmware node with device_add_properties(). Memory allocated
859 860
 * to the properties will also be released.
 */
861
void device_remove_properties(struct device *dev)
862 863 864 865 866 867 868 869 870 871 872
{
	struct fwnode_handle *fwnode;

	fwnode = dev_fwnode(dev);
	if (!fwnode)
		return;
	/*
	 * Pick either primary or secondary node depending which one holds
	 * the pset. If there is no real firmware node (ACPI/DT) primary
	 * will hold the pset.
	 */
873 874
	if (is_pset_node(fwnode)) {
		set_primary_fwnode(dev, NULL);
875
		pset_free_set(to_pset_node(fwnode));
876 877 878 879 880 881 882
	} else {
		fwnode = fwnode->secondary;
		if (!IS_ERR(fwnode) && is_pset_node(fwnode)) {
			set_secondary_fwnode(dev, NULL);
			pset_free_set(to_pset_node(fwnode));
		}
	}
883
}
884
EXPORT_SYMBOL_GPL(device_remove_properties);
885 886

/**
887
 * device_add_properties - Add a collection of properties to a device object.
888
 * @dev: Device to add properties to.
889
 * @properties: Collection of properties to add.
890
 *
891 892 893
 * Associate a collection of device properties represented by @properties with
 * @dev as its secondary firmware node. The function takes a copy of
 * @properties.
894
 */
895 896
int device_add_properties(struct device *dev,
			  const struct property_entry *properties)
897
{
898
	struct property_set *p, pset;
899

900
	if (!properties)
901 902
		return -EINVAL;

903 904 905
	pset.properties = properties;

	p = pset_copy_set(&pset);
906 907 908
	if (IS_ERR(p))
		return PTR_ERR(p);

909
	p->fwnode.ops = &pset_fwnode_ops;
910 911 912
	set_secondary_fwnode(dev, &p->fwnode);
	return 0;
}
913
EXPORT_SYMBOL_GPL(device_add_properties);
914

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
/**
 * fwnode_get_next_parent - Iterate to the node's parent
 * @fwnode: Firmware whose parent is retrieved
 *
 * This is like fwnode_get_parent() except that it drops the refcount
 * on the passed node, making it suitable for iterating through a
 * node's parents.
 *
 * Returns a node pointer with refcount incremented, use
 * fwnode_handle_node() on it when done.
 */
struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
{
	struct fwnode_handle *parent = fwnode_get_parent(fwnode);

	fwnode_handle_put(fwnode);

	return parent;
}
EXPORT_SYMBOL_GPL(fwnode_get_next_parent);

936 937 938 939 940 941 942 943 944
/**
 * fwnode_get_parent - Return parent firwmare node
 * @fwnode: Firmware whose parent is retrieved
 *
 * Return parent firmware node of the given node if possible or %NULL if no
 * parent was available.
 */
struct fwnode_handle *fwnode_get_parent(struct fwnode_handle *fwnode)
{
945
	return fwnode_call_ptr_op(fwnode, get_parent);
946 947 948
}
EXPORT_SYMBOL_GPL(fwnode_get_parent);

949
/**
950 951 952
 * fwnode_get_next_child_node - Return the next child node handle for a node
 * @fwnode: Firmware node to find the next child node for.
 * @child: Handle to one of the node's child nodes or a %NULL handle.
953
 */
954
struct fwnode_handle *fwnode_get_next_child_node(struct fwnode_handle *fwnode,
955 956
						 struct fwnode_handle *child)
{
957
	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
958
}
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);

/**
 * device_get_next_child_node - Return the next child node handle for a device
 * @dev: Device to find the next child node for.
 * @child: Handle to one of the device's child nodes or a null handle.
 */
struct fwnode_handle *device_get_next_child_node(struct device *dev,
						 struct fwnode_handle *child)
{
	struct acpi_device *adev = ACPI_COMPANION(dev);
	struct fwnode_handle *fwnode = NULL;

	if (dev->of_node)
		fwnode = &dev->of_node->fwnode;
	else if (adev)
		fwnode = acpi_fwnode_handle(adev);

	return fwnode_get_next_child_node(fwnode, child);
}
979 980
EXPORT_SYMBOL_GPL(device_get_next_child_node);

981
/**
982 983
 * fwnode_get_named_child_node - Return first matching named child node handle
 * @fwnode: Firmware node to find the named child node for.
984 985
 * @childname: String to match child node name against.
 */
986
struct fwnode_handle *fwnode_get_named_child_node(struct fwnode_handle *fwnode,
987 988
						  const char *childname)
{
989
	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
990
}
991 992 993 994 995 996 997 998 999 1000 1001 1002
EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);

/**
 * device_get_named_child_node - Return first matching named child node handle
 * @dev: Device to find the named child node for.
 * @childname: String to match child node name against.
 */
struct fwnode_handle *device_get_named_child_node(struct device *dev,
						  const char *childname)
{
	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
}
1003 1004
EXPORT_SYMBOL_GPL(device_get_named_child_node);

1005 1006 1007 1008 1009 1010
/**
 * fwnode_handle_get - Obtain a reference to a device node
 * @fwnode: Pointer to the device node to obtain the reference to.
 */
void fwnode_handle_get(struct fwnode_handle *fwnode)
{
1011
	fwnode_call_void_op(fwnode, get);
1012 1013 1014
}
EXPORT_SYMBOL_GPL(fwnode_handle_get);

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
/**
 * fwnode_handle_put - Drop reference to a device node
 * @fwnode: Pointer to the device node to drop the reference to.
 *
 * This has to be used when terminating device_for_each_child_node() iteration
 * with break or return to prevent stale device node references from being left
 * behind.
 */
void fwnode_handle_put(struct fwnode_handle *fwnode)
{
1025
	fwnode_call_void_op(fwnode, put);
1026 1027 1028
}
EXPORT_SYMBOL_GPL(fwnode_handle_put);

1029 1030 1031 1032 1033 1034
/**
 * fwnode_device_is_available - check if a device is available for use
 * @fwnode: Pointer to the fwnode of the device.
 */
bool fwnode_device_is_available(struct fwnode_handle *fwnode)
{
1035
	return fwnode_call_bool_op(fwnode, device_is_available);
1036 1037 1038
}
EXPORT_SYMBOL_GPL(fwnode_device_is_available);

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
/**
 * device_get_child_node_count - return the number of child nodes for device
 * @dev: Device to cound the child nodes for
 */
unsigned int device_get_child_node_count(struct device *dev)
{
	struct fwnode_handle *child;
	unsigned int count = 0;

	device_for_each_child_node(dev, child)
		count++;

	return count;
}
EXPORT_SYMBOL_GPL(device_get_child_node_count);
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
bool device_dma_supported(struct device *dev)
{
	/* For DT, this is always supported.
	 * For ACPI, this depends on CCA, which
	 * is determined by the acpi_dma_supported().
	 */
	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
		return true;

	return acpi_dma_supported(ACPI_COMPANION(dev));
}
EXPORT_SYMBOL_GPL(device_dma_supported);

enum dev_dma_attr device_get_dma_attr(struct device *dev)
{
	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;

	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
		if (of_dma_is_coherent(dev->of_node))
			attr = DEV_DMA_COHERENT;
		else
			attr = DEV_DMA_NON_COHERENT;
	} else
		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));

	return attr;
}
EXPORT_SYMBOL_GPL(device_get_dma_attr);

1084
/**
1085
 * device_get_phy_mode - Get phy mode for given device
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
 * @dev:	Pointer to the given device
 *
 * The function gets phy interface string from property 'phy-mode' or
 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 * error case.
 */
int device_get_phy_mode(struct device *dev)
{
	const char *pm;
	int err, i;

	err = device_property_read_string(dev, "phy-mode", &pm);
	if (err < 0)
		err = device_property_read_string(dev,
						  "phy-connection-type", &pm);
	if (err < 0)
		return err;

	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
		if (!strcasecmp(pm, phy_modes(i)))
			return i;

	return -ENODEV;
}
EXPORT_SYMBOL_GPL(device_get_phy_mode);

static void *device_get_mac_addr(struct device *dev,
				 const char *name, char *addr,
				 int alen)
{
	int ret = device_property_read_u8_array(dev, name, addr, alen);

1118
	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1119 1120 1121 1122 1123
		return addr;
	return NULL;
}

/**
1124 1125 1126 1127 1128 1129
 * device_get_mac_address - Get the MAC for a given device
 * @dev:	Pointer to the device
 * @addr:	Address of buffer to store the MAC in
 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
 *
 * Search the firmware node for the best MAC address to use.  'mac-address' is
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
 * checked first, because that is supposed to contain to "most recent" MAC
 * address. If that isn't set, then 'local-mac-address' is checked next,
 * because that is the default address.  If that isn't set, then the obsolete
 * 'address' is checked, just in case we're using an old device tree.
 *
 * Note that the 'address' property is supposed to contain a virtual address of
 * the register set, but some DTS files have redefined that property to be the
 * MAC address.
 *
 * All-zero MAC addresses are rejected, because those could be properties that
1140 1141 1142 1143 1144
 * exist in the firmware tables, but were not updated by the firmware.  For
 * example, the DTS could define 'mac-address' and 'local-mac-address', with
 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
 * exists but is all zeros.
1145 1146 1147
*/
void *device_get_mac_address(struct device *dev, char *addr, int alen)
{
1148
	char *res;
1149

1150 1151 1152 1153 1154 1155 1156
	res = device_get_mac_addr(dev, "mac-address", addr, alen);
	if (res)
		return res;

	res = device_get_mac_addr(dev, "local-mac-address", addr, alen);
	if (res)
		return res;
1157 1158 1159 1160

	return device_get_mac_addr(dev, "address", addr, alen);
}
EXPORT_SYMBOL(device_get_mac_address);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

/**
 * device_graph_get_next_endpoint - Get next endpoint firmware node
 * @fwnode: Pointer to the parent firmware node
 * @prev: Previous endpoint node or %NULL to get the first
 *
 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
 * are available.
 */
struct fwnode_handle *
fwnode_graph_get_next_endpoint(struct fwnode_handle *fwnode,
			       struct fwnode_handle *prev)
{
1174
	return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
1175 1176 1177
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
/**
 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
 * @endpoint: Endpoint firmware node of the port
 *
 * Return: the firmware node of the device the @endpoint belongs to.
 */
struct fwnode_handle *
fwnode_graph_get_port_parent(struct fwnode_handle *endpoint)
{
	struct fwnode_handle *port, *parent;

	port = fwnode_get_parent(endpoint);
	parent = fwnode_call_ptr_op(port, graph_get_port_parent);

	fwnode_handle_put(port);

	return parent;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);

1198 1199 1200 1201 1202 1203 1204 1205 1206
/**
 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 *
 * Extracts firmware node of a remote device the @fwnode points to.
 */
struct fwnode_handle *
fwnode_graph_get_remote_port_parent(struct fwnode_handle *fwnode)
{
1207
	struct fwnode_handle *endpoint, *parent;
1208

1209 1210
	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
	parent = fwnode_graph_get_port_parent(endpoint);
1211

1212
	fwnode_handle_put(endpoint);
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

	return parent;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);

/**
 * fwnode_graph_get_remote_port - Return fwnode of a remote port
 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 *
 * Extracts firmware node of a remote port the @fwnode points to.
 */
struct fwnode_handle *fwnode_graph_get_remote_port(struct fwnode_handle *fwnode)
{
1226
	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);

/**
 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 *
 * Extracts firmware node of a remote endpoint the @fwnode points to.
 */
struct fwnode_handle *
fwnode_graph_get_remote_endpoint(struct fwnode_handle *fwnode)
{
1239
	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1240 1241
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1242

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
/**
 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
 * @port_id: identifier of the parent port node
 * @endpoint_id: identifier of the endpoint node
 *
 * Return: Remote fwnode handle associated with remote endpoint node linked
 *	   to @node. Use fwnode_node_put() on it when done.
 */
struct fwnode_handle *fwnode_graph_get_remote_node(struct fwnode_handle *fwnode,
						   u32 port_id, u32 endpoint_id)
{
	struct fwnode_handle *endpoint = NULL;

	while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
		struct fwnode_endpoint fwnode_ep;
		struct fwnode_handle *remote;
		int ret;

		ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
		if (ret < 0)
			continue;

		if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
			continue;

		remote = fwnode_graph_get_remote_port_parent(endpoint);
		if (!remote)
			return NULL;

		return fwnode_device_is_available(remote) ? remote : NULL;
	}

	return NULL;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
/**
 * fwnode_graph_parse_endpoint - parse common endpoint node properties
 * @fwnode: pointer to endpoint fwnode_handle
 * @endpoint: pointer to the fwnode endpoint data structure
 *
 * Parse @fwnode representing a graph endpoint node and store the
 * information in @endpoint. The caller must hold a reference to
 * @fwnode.
 */
int fwnode_graph_parse_endpoint(struct fwnode_handle *fwnode,
				struct fwnode_endpoint *endpoint)
{
	memset(endpoint, 0, sizeof(*endpoint));

1294
	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1295 1296
}
EXPORT_SYMBOL(fwnode_graph_parse_endpoint);