dma-mapping.c 15.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  linux/arch/arm/mm/dma-mapping.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
#include <linux/module.h>
#include <linux/mm.h>
14
#include <linux/gfp.h>
L
Linus Torvalds 已提交
15 16 17 18 19
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
20
#include <linux/highmem.h>
L
Linus Torvalds 已提交
21

22
#include <asm/memory.h>
23
#include <asm/highmem.h>
L
Linus Torvalds 已提交
24 25
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
26 27
#include <asm/sizes.h>

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
static u64 get_coherent_dma_mask(struct device *dev)
{
	u64 mask = ISA_DMA_THRESHOLD;

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

		if ((~mask) & ISA_DMA_THRESHOLD) {
			dev_warn(dev, "coherent DMA mask %#llx is smaller "
				 "than system GFP_DMA mask %#llx\n",
				 mask, (unsigned long long)ISA_DMA_THRESHOLD);
			return 0;
		}
	}
L
Linus Torvalds 已提交
51

52 53 54
	return mask;
}

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;
	void *ptr;
	u64 mask = get_coherent_dma_mask(dev);

#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
	ptr = page_address(page);
	memset(ptr, 0, size);
	dmac_flush_range(ptr, ptr + size);
	outer_flush_range(__pa(ptr), __pa(ptr) + size);

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

117
#ifdef CONFIG_MMU
118 119 120 121 122 123 124 125 126
/* Sanity check size */
#if (CONSISTENT_DMA_SIZE % SZ_2M)
#error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
#endif

#define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
#define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)

L
Linus Torvalds 已提交
127
/*
128
 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
L
Linus Torvalds 已提交
129
 */
130
static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
L
Linus Torvalds 已提交
131

132
#include "vmregion.h"
L
Linus Torvalds 已提交
133

134 135
static struct arm_vmregion_head consistent_head = {
	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
L
Linus Torvalds 已提交
136 137 138 139 140 141 142 143 144
	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
	.vm_start	= CONSISTENT_BASE,
	.vm_end		= CONSISTENT_END,
};

#ifdef CONFIG_HUGETLB_PAGE
#error ARM Coherent DMA allocator does not (yet) support huge TLB
#endif

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
/*
 * Initialise the consistent memory allocation.
 */
static int __init consistent_init(void)
{
	int ret = 0;
	pgd_t *pgd;
	pmd_t *pmd;
	pte_t *pte;
	int i = 0;
	u32 base = CONSISTENT_BASE;

	do {
		pgd = pgd_offset(&init_mm, base);
		pmd = pmd_alloc(&init_mm, pgd, base);
		if (!pmd) {
			printk(KERN_ERR "%s: no pmd tables\n", __func__);
			ret = -ENOMEM;
			break;
		}
		WARN_ON(!pmd_none(*pmd));

		pte = pte_alloc_kernel(pmd, base);
		if (!pte) {
			printk(KERN_ERR "%s: no pte tables\n", __func__);
			ret = -ENOMEM;
			break;
		}

		consistent_pte[i++] = pte;
		base += (1 << PGDIR_SHIFT);
	} while (base < CONSISTENT_END);

	return ret;
}

core_initcall(consistent_init);

L
Linus Torvalds 已提交
183
static void *
184
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
L
Linus Torvalds 已提交
185
{
186
	struct arm_vmregion *c;
187 188
	size_t align;
	int bit;
L
Linus Torvalds 已提交
189

190 191 192 193 194 195
	if (!consistent_pte[0]) {
		printk(KERN_ERR "%s: not initialised\n", __func__);
		dump_stack();
		return NULL;
	}

196 197 198 199 200 201
	/*
	 * Align the virtual region allocation - maximum alignment is
	 * a section size, minimum is a page size.  This helps reduce
	 * fragmentation of the DMA space, and also prevents allocations
	 * smaller than a section from crossing a section boundary.
	 */
202
	bit = fls(size - 1);
203 204 205 206
	if (bit > SECTION_SHIFT)
		bit = SECTION_SHIFT;
	align = 1 << bit;

L
Linus Torvalds 已提交
207 208 209
	/*
	 * Allocate a virtual address in the consistent mapping region.
	 */
210
	c = arm_vmregion_alloc(&consistent_head, align, size,
L
Linus Torvalds 已提交
211 212
			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
	if (c) {
213 214 215
		pte_t *pte;
		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
L
Linus Torvalds 已提交
216

217
		pte = consistent_pte[idx] + off;
L
Linus Torvalds 已提交
218 219 220 221 222
		c->vm_pages = page;

		do {
			BUG_ON(!pte_none(*pte));

R
Russell King 已提交
223
			set_pte_ext(pte, mk_pte(page, prot), 0);
L
Linus Torvalds 已提交
224 225
			page++;
			pte++;
226 227 228 229 230
			off++;
			if (off >= PTRS_PER_PTE) {
				off = 0;
				pte = consistent_pte[++idx];
			}
L
Linus Torvalds 已提交
231 232
		} while (size -= PAGE_SIZE);

233 234
		dsb();

L
Linus Torvalds 已提交
235 236 237 238
		return (void *)c->vm_start;
	}
	return NULL;
}
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

static void __dma_free_remap(void *cpu_addr, size_t size)
{
	struct arm_vmregion *c;
	unsigned long addr;
	pte_t *ptep;
	int idx;
	u32 off;

	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
	if (!c) {
		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
		       __func__, cpu_addr);
		dump_stack();
		return;
	}

	if ((c->vm_end - c->vm_start) != size) {
		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
		       __func__, c->vm_end - c->vm_start, size);
		dump_stack();
		size = c->vm_end - c->vm_start;
	}

	idx = CONSISTENT_PTE_INDEX(c->vm_start);
	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
	ptep = consistent_pte[idx] + off;
	addr = c->vm_start;
	do {
		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);

		ptep++;
		addr += PAGE_SIZE;
		off++;
		if (off >= PTRS_PER_PTE) {
			off = 0;
			ptep = consistent_pte[++idx];
		}

278 279 280
		if (pte_none(pte) || !pte_present(pte))
			printk(KERN_CRIT "%s: bad page in kernel page table\n",
			       __func__);
281 282 283 284 285 286 287
	} while (size -= PAGE_SIZE);

	flush_tlb_kernel_range(c->vm_start, c->vm_end);

	arm_vmregion_free(&consistent_head, c);
}

288
#else	/* !CONFIG_MMU */
289

290 291 292 293 294
#define __dma_alloc_remap(page, size, gfp, prot)	page_address(page)
#define __dma_free_remap(addr, size)			do { } while (0)

#endif	/* CONFIG_MMU */

295 296 297 298
static void *
__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
	    pgprot_t prot)
{
299
	struct page *page;
300
	void *addr;
301

302 303
	*handle = ~0;
	size = PAGE_ALIGN(size);
304

305 306 307
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;
308

309 310 311 312
	if (!arch_is_coherent())
		addr = __dma_alloc_remap(page, size, gfp, prot);
	else
		addr = page_address(page);
313

314 315
	if (addr)
		*handle = page_to_dma(dev, page);
316

317 318
	return addr;
}
L
Linus Torvalds 已提交
319 320 321 322 323 324

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
void *
A
Al Viro 已提交
325
dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
L
Linus Torvalds 已提交
326
{
327 328 329 330 331
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

L
Linus Torvalds 已提交
332
	return __dma_alloc(dev, size, handle, gfp,
333
			   pgprot_dmacoherent(pgprot_kernel));
L
Linus Torvalds 已提交
334 335 336 337 338 339 340 341
}
EXPORT_SYMBOL(dma_alloc_coherent);

/*
 * Allocate a writecombining region, in much the same way as
 * dma_alloc_coherent above.
 */
void *
A
Al Viro 已提交
342
dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
L
Linus Torvalds 已提交
343 344 345 346 347 348 349 350 351
{
	return __dma_alloc(dev, size, handle, gfp,
			   pgprot_writecombine(pgprot_kernel));
}
EXPORT_SYMBOL(dma_alloc_writecombine);

static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
352 353
	int ret = -ENXIO;
#ifdef CONFIG_MMU
354 355
	unsigned long user_size, kern_size;
	struct arm_vmregion *c;
L
Linus Torvalds 已提交
356 357 358

	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;

359
	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
L
Linus Torvalds 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372
	if (c) {
		unsigned long off = vma->vm_pgoff;

		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;

		if (off < kern_size &&
		    user_size <= (kern_size - off)) {
			ret = remap_pfn_range(vma, vma->vm_start,
					      page_to_pfn(c->vm_pages) + off,
					      user_size << PAGE_SHIFT,
					      vma->vm_page_prot);
		}
	}
373
#endif	/* CONFIG_MMU */
L
Linus Torvalds 已提交
374 375 376 377 378 379 380

	return ret;
}

int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
381
	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
L
Linus Torvalds 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395
	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
}
EXPORT_SYMBOL(dma_mmap_coherent);

int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
}
EXPORT_SYMBOL(dma_mmap_writecombine);

/*
 * free a page as defined by the above mapping.
396
 * Must not be called with IRQs disabled.
L
Linus Torvalds 已提交
397 398 399
 */
void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
{
400 401
	WARN_ON(irqs_disabled());

402 403 404
	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
		return;

405 406
	size = PAGE_ALIGN(size);

407 408
	if (!arch_is_coherent())
		__dma_free_remap(cpu_addr, size);
409 410

	__dma_free_buffer(dma_to_page(dev, handle), size);
L
Linus Torvalds 已提交
411 412 413 414 415
}
EXPORT_SYMBOL(dma_free_coherent);

/*
 * Make an area consistent for devices.
416 417 418
 * Note: Drivers should NOT use this function directly, as it will break
 * platforms with CONFIG_DMABOUNCE.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
L
Linus Torvalds 已提交
419
 */
420 421 422
void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
	enum dma_data_direction dir)
{
423 424
	unsigned long paddr;

425 426 427
	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));

	dmac_map_area(kaddr, size, dir);
428 429 430 431 432 433 434 435

	paddr = __pa(kaddr);
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
436 437 438 439 440 441
}
EXPORT_SYMBOL(___dma_single_cpu_to_dev);

void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
	enum dma_data_direction dir)
{
442 443
	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));

444 445 446 447 448 449 450
	/* FIXME: non-speculating: not required */
	/* don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE) {
		unsigned long paddr = __pa(kaddr);
		outer_inv_range(paddr, paddr + size);
	}

451
	dmac_unmap_area(kaddr, size, dir);
452 453
}
EXPORT_SYMBOL(___dma_single_dev_to_cpu);
454

455
static void dma_cache_maint_page(struct page *page, unsigned long offset,
456 457
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
458 459 460 461 462 463 464 465 466 467
{
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	size_t left = size;
	do {
		size_t len = left;
468 469 470 471 472 473 474 475 476 477 478 479 480
		void *vaddr;

		if (PageHighMem(page)) {
			if (len + offset > PAGE_SIZE) {
				if (offset >= PAGE_SIZE) {
					page += offset / PAGE_SIZE;
					offset %= PAGE_SIZE;
				}
				len = PAGE_SIZE - offset;
			}
			vaddr = kmap_high_get(page);
			if (vaddr) {
				vaddr += offset;
481
				op(vaddr, len, dir);
482
				kunmap_high(page);
483
			} else if (cache_is_vipt()) {
484 485
				/* unmapped pages might still be cached */
				vaddr = kmap_atomic(page);
486
				op(vaddr + offset, len, dir);
487
				kunmap_atomic(vaddr);
488
			}
489 490
		} else {
			vaddr = page_address(page) + offset;
491
			op(vaddr, len, dir);
492 493 494 495 496 497
		}
		offset = 0;
		page++;
		left -= len;
	} while (left);
}
498 499 500 501

void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
	size_t size, enum dma_data_direction dir)
{
502 503
	unsigned long paddr;

504
	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
505 506

	paddr = page_to_phys(page) + off;
507 508 509 510 511 512
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
513 514 515 516 517 518
}
EXPORT_SYMBOL(___dma_page_cpu_to_dev);

void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
	size_t size, enum dma_data_direction dir)
{
519 520 521 522 523 524 525
	unsigned long paddr = page_to_phys(page) + off;

	/* FIXME: non-speculating: not required */
	/* don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE)
		outer_inv_range(paddr, paddr + size);

526
	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
527 528 529 530 531 532

	/*
	 * Mark the D-cache clean for this page to avoid extra flushing.
	 */
	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
		set_bit(PG_dcache_clean, &page->flags);
533 534
}
EXPORT_SYMBOL(___dma_page_dev_to_cpu);
535

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
/**
 * dma_map_sg - map a set of SG buffers for streaming mode DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir)
{
	struct scatterlist *s;
556
	int i, j;
557 558

	for_each_sg(sg, s, nents, i) {
559 560 561 562
		s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
						s->length, dir);
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
563 564
	}
	return nents;
565 566 567 568 569

 bad_mapping:
	for_each_sg(sg, s, i, j)
		dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
	return 0;
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
}
EXPORT_SYMBOL(dma_map_sg);

/**
 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to unmap (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir)
{
586 587 588 589 590
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
		dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
}
EXPORT_SYMBOL(dma_unmap_sg);

/**
 * dma_sync_sg_for_cpu
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
608 609 610 611 612 613
		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
					    sg_dma_len(s), dir))
			continue;

		__dma_page_dev_to_cpu(sg_page(s), s->offset,
				      s->length, dir);
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
	}
}
EXPORT_SYMBOL(dma_sync_sg_for_cpu);

/**
 * dma_sync_sg_for_device
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
632 633 634 635
		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
					sg_dma_len(s), dir))
			continue;

636 637
		__dma_page_cpu_to_dev(sg_page(s), s->offset,
				      s->length, dir);
638 639 640
	}
}
EXPORT_SYMBOL(dma_sync_sg_for_device);