ib_srp.c 87.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * Copyright (c) 2005 Cisco Systems.  All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

33
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34

35 36 37 38 39 40 41
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/string.h>
#include <linux/parser.h>
#include <linux/random.h>
42
#include <linux/jiffies.h>
43

A
Arun Sharma 已提交
44
#include <linux/atomic.h>
45 46 47 48

#include <scsi/scsi.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_dbg.h>
49
#include <scsi/scsi_tcq.h>
50
#include <scsi/srp.h>
51
#include <scsi/scsi_transport_srp.h>
52 53 54 55 56

#include "ib_srp.h"

#define DRV_NAME	"ib_srp"
#define PFX		DRV_NAME ": "
57 58
#define DRV_VERSION	"1.0"
#define DRV_RELDATE	"July 1, 2013"
59 60 61 62 63 64

MODULE_AUTHOR("Roland Dreier");
MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator "
		   "v" DRV_VERSION " (" DRV_RELDATE ")");
MODULE_LICENSE("Dual BSD/GPL");

65 66
static unsigned int srp_sg_tablesize;
static unsigned int cmd_sg_entries;
67 68
static unsigned int indirect_sg_entries;
static bool allow_ext_sg;
69
static bool prefer_fr;
70
static bool register_always;
71
static int topspin_workarounds = 1;
72

73 74
module_param(srp_sg_tablesize, uint, 0444);
MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
75

76 77 78
module_param(cmd_sg_entries, uint, 0444);
MODULE_PARM_DESC(cmd_sg_entries,
		 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
79

80 81 82 83 84 85 86 87
module_param(indirect_sg_entries, uint, 0444);
MODULE_PARM_DESC(indirect_sg_entries,
		 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")");

module_param(allow_ext_sg, bool, 0444);
MODULE_PARM_DESC(allow_ext_sg,
		  "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");

88 89 90 91
module_param(topspin_workarounds, int, 0444);
MODULE_PARM_DESC(topspin_workarounds,
		 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");

92 93 94 95
module_param(prefer_fr, bool, 0444);
MODULE_PARM_DESC(prefer_fr,
"Whether to use fast registration if both FMR and fast registration are supported");

96 97 98 99
module_param(register_always, bool, 0444);
MODULE_PARM_DESC(register_always,
		 "Use memory registration even for contiguous memory regions");

100 101
static struct kernel_param_ops srp_tmo_ops;

102 103 104 105 106
static int srp_reconnect_delay = 10;
module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
		S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");

107 108 109 110 111 112 113 114
static int srp_fast_io_fail_tmo = 15;
module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
		S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(fast_io_fail_tmo,
		 "Number of seconds between the observation of a transport"
		 " layer error and failing all I/O. \"off\" means that this"
		 " functionality is disabled.");

115
static int srp_dev_loss_tmo = 600;
116 117 118 119 120 121 122 123 124 125
module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
		S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dev_loss_tmo,
		 "Maximum number of seconds that the SRP transport should"
		 " insulate transport layer errors. After this time has been"
		 " exceeded the SCSI host is removed. Should be"
		 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
		 " if fast_io_fail_tmo has not been set. \"off\" means that"
		 " this functionality is disabled.");

126 127
static void srp_add_one(struct ib_device *device);
static void srp_remove_one(struct ib_device *device);
128 129
static void srp_recv_completion(struct ib_cq *cq, void *target_ptr);
static void srp_send_completion(struct ib_cq *cq, void *target_ptr);
130 131
static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);

132
static struct scsi_transport_template *ib_srp_transport_template;
133
static struct workqueue_struct *srp_remove_wq;
134

135 136 137 138 139 140
static struct ib_client srp_client = {
	.name   = "srp",
	.add    = srp_add_one,
	.remove = srp_remove_one
};

141 142
static struct ib_sa_client srp_sa_client;

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
{
	int tmo = *(int *)kp->arg;

	if (tmo >= 0)
		return sprintf(buffer, "%d", tmo);
	else
		return sprintf(buffer, "off");
}

static int srp_tmo_set(const char *val, const struct kernel_param *kp)
{
	int tmo, res;

	if (strncmp(val, "off", 3) != 0) {
		res = kstrtoint(val, 0, &tmo);
		if (res)
			goto out;
	} else {
		tmo = -1;
	}
164 165 166 167 168
	if (kp->arg == &srp_reconnect_delay)
		res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
				    srp_dev_loss_tmo);
	else if (kp->arg == &srp_fast_io_fail_tmo)
		res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
169
	else
170 171
		res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
				    tmo);
172 173 174 175 176 177 178 179 180 181 182 183 184
	if (res)
		goto out;
	*(int *)kp->arg = tmo;

out:
	return res;
}

static struct kernel_param_ops srp_tmo_ops = {
	.get = srp_tmo_get,
	.set = srp_tmo_set,
};

185 186 187 188 189 190 191 192 193 194
static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
{
	return (struct srp_target_port *) host->hostdata;
}

static const char *srp_target_info(struct Scsi_Host *host)
{
	return host_to_target(host)->target_name;
}

195 196 197
static int srp_target_is_topspin(struct srp_target_port *target)
{
	static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
198
	static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
199 200

	return topspin_workarounds &&
201 202
		(!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
		 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
203 204
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218
static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
				   gfp_t gfp_mask,
				   enum dma_data_direction direction)
{
	struct srp_iu *iu;

	iu = kmalloc(sizeof *iu, gfp_mask);
	if (!iu)
		goto out;

	iu->buf = kzalloc(size, gfp_mask);
	if (!iu->buf)
		goto out_free_iu;

219 220 221
	iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
				    direction);
	if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
		goto out_free_buf;

	iu->size      = size;
	iu->direction = direction;

	return iu;

out_free_buf:
	kfree(iu->buf);
out_free_iu:
	kfree(iu);
out:
	return NULL;
}

static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
{
	if (!iu)
		return;

242 243
	ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
			    iu->direction);
244 245 246 247 248 249
	kfree(iu->buf);
	kfree(iu);
}

static void srp_qp_event(struct ib_event *event, void *context)
{
250
	pr_debug("QP event %d\n", event->event);
251 252 253 254 255 256 257 258 259 260 261 262
}

static int srp_init_qp(struct srp_target_port *target,
		       struct ib_qp *qp)
{
	struct ib_qp_attr *attr;
	int ret;

	attr = kmalloc(sizeof *attr, GFP_KERNEL);
	if (!attr)
		return -ENOMEM;

263 264 265 266
	ret = ib_find_pkey(target->srp_host->srp_dev->dev,
			   target->srp_host->port,
			   be16_to_cpu(target->path.pkey),
			   &attr->pkey_index);
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	if (ret)
		goto out;

	attr->qp_state        = IB_QPS_INIT;
	attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
				    IB_ACCESS_REMOTE_WRITE);
	attr->port_num        = target->srp_host->port;

	ret = ib_modify_qp(qp, attr,
			   IB_QP_STATE		|
			   IB_QP_PKEY_INDEX	|
			   IB_QP_ACCESS_FLAGS	|
			   IB_QP_PORT);

out:
	kfree(attr);
	return ret;
}

D
David Dillow 已提交
286 287 288 289
static int srp_new_cm_id(struct srp_target_port *target)
{
	struct ib_cm_id *new_cm_id;

290
	new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
D
David Dillow 已提交
291 292 293 294 295 296 297 298 299 300 301
				    srp_cm_handler, target);
	if (IS_ERR(new_cm_id))
		return PTR_ERR(new_cm_id);

	if (target->cm_id)
		ib_destroy_cm_id(target->cm_id);
	target->cm_id = new_cm_id;

	return 0;
}

302 303 304 305 306 307 308 309 310
static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
{
	struct srp_device *dev = target->srp_host->srp_dev;
	struct ib_fmr_pool_param fmr_param;

	memset(&fmr_param, 0, sizeof(fmr_param));
	fmr_param.pool_size	    = target->scsi_host->can_queue;
	fmr_param.dirty_watermark   = fmr_param.pool_size / 4;
	fmr_param.cache		    = 1;
311 312
	fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
	fmr_param.page_shift	    = ilog2(dev->mr_page_size);
313 314 315 316 317 318 319
	fmr_param.access	    = (IB_ACCESS_LOCAL_WRITE |
				       IB_ACCESS_REMOTE_WRITE |
				       IB_ACCESS_REMOTE_READ);

	return ib_create_fmr_pool(dev->pd, &fmr_param);
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
/**
 * srp_destroy_fr_pool() - free the resources owned by a pool
 * @pool: Fast registration pool to be destroyed.
 */
static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
{
	int i;
	struct srp_fr_desc *d;

	if (!pool)
		return;

	for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
		if (d->frpl)
			ib_free_fast_reg_page_list(d->frpl);
		if (d->mr)
			ib_dereg_mr(d->mr);
	}
	kfree(pool);
}

/**
 * srp_create_fr_pool() - allocate and initialize a pool for fast registration
 * @device:            IB device to allocate fast registration descriptors for.
 * @pd:                Protection domain associated with the FR descriptors.
 * @pool_size:         Number of descriptors to allocate.
 * @max_page_list_len: Maximum fast registration work request page list length.
 */
static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
					      struct ib_pd *pd, int pool_size,
					      int max_page_list_len)
{
	struct srp_fr_pool *pool;
	struct srp_fr_desc *d;
	struct ib_mr *mr;
	struct ib_fast_reg_page_list *frpl;
	int i, ret = -EINVAL;

	if (pool_size <= 0)
		goto err;
	ret = -ENOMEM;
	pool = kzalloc(sizeof(struct srp_fr_pool) +
		       pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
	if (!pool)
		goto err;
	pool->size = pool_size;
	pool->max_page_list_len = max_page_list_len;
	spin_lock_init(&pool->lock);
	INIT_LIST_HEAD(&pool->free_list);

	for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
		mr = ib_alloc_fast_reg_mr(pd, max_page_list_len);
		if (IS_ERR(mr)) {
			ret = PTR_ERR(mr);
			goto destroy_pool;
		}
		d->mr = mr;
		frpl = ib_alloc_fast_reg_page_list(device, max_page_list_len);
		if (IS_ERR(frpl)) {
			ret = PTR_ERR(frpl);
			goto destroy_pool;
		}
		d->frpl = frpl;
		list_add_tail(&d->entry, &pool->free_list);
	}

out:
	return pool;

destroy_pool:
	srp_destroy_fr_pool(pool);

err:
	pool = ERR_PTR(ret);
	goto out;
}

/**
 * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
 * @pool: Pool to obtain descriptor from.
 */
static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
{
	struct srp_fr_desc *d = NULL;
	unsigned long flags;

	spin_lock_irqsave(&pool->lock, flags);
	if (!list_empty(&pool->free_list)) {
		d = list_first_entry(&pool->free_list, typeof(*d), entry);
		list_del(&d->entry);
	}
	spin_unlock_irqrestore(&pool->lock, flags);

	return d;
}

/**
 * srp_fr_pool_put() - put an FR descriptor back in the free list
 * @pool: Pool the descriptor was allocated from.
 * @desc: Pointer to an array of fast registration descriptor pointers.
 * @n:    Number of descriptors to put back.
 *
 * Note: The caller must already have queued an invalidation request for
 * desc->mr->rkey before calling this function.
 */
static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
			    int n)
{
	unsigned long flags;
	int i;

	spin_lock_irqsave(&pool->lock, flags);
	for (i = 0; i < n; i++)
		list_add(&desc[i]->entry, &pool->free_list);
	spin_unlock_irqrestore(&pool->lock, flags);
}

static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
{
	struct srp_device *dev = target->srp_host->srp_dev;

	return srp_create_fr_pool(dev->dev, dev->pd,
				  target->scsi_host->can_queue,
				  dev->max_pages_per_mr);
}

446 447
static int srp_create_target_ib(struct srp_target_port *target)
{
448
	struct srp_device *dev = target->srp_host->srp_dev;
449
	struct ib_qp_init_attr *init_attr;
450 451
	struct ib_cq *recv_cq, *send_cq;
	struct ib_qp *qp;
452
	struct ib_fmr_pool *fmr_pool = NULL;
453 454
	struct srp_fr_pool *fr_pool = NULL;
	const int m = 1 + dev->use_fast_reg;
455 456 457 458 459 460
	int ret;

	init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
	if (!init_attr)
		return -ENOMEM;

461
	recv_cq = ib_create_cq(dev->dev, srp_recv_completion, NULL, target,
462
			       target->queue_size, target->comp_vector);
463 464
	if (IS_ERR(recv_cq)) {
		ret = PTR_ERR(recv_cq);
465
		goto err;
466 467
	}

468
	send_cq = ib_create_cq(dev->dev, srp_send_completion, NULL, target,
469
			       m * target->queue_size, target->comp_vector);
470 471
	if (IS_ERR(send_cq)) {
		ret = PTR_ERR(send_cq);
472
		goto err_recv_cq;
473 474
	}

475
	ib_req_notify_cq(recv_cq, IB_CQ_NEXT_COMP);
476 477

	init_attr->event_handler       = srp_qp_event;
478
	init_attr->cap.max_send_wr     = m * target->queue_size;
479
	init_attr->cap.max_recv_wr     = target->queue_size;
480 481
	init_attr->cap.max_recv_sge    = 1;
	init_attr->cap.max_send_sge    = 1;
482
	init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
483
	init_attr->qp_type             = IB_QPT_RC;
484 485
	init_attr->send_cq             = send_cq;
	init_attr->recv_cq             = recv_cq;
486

487
	qp = ib_create_qp(dev->pd, init_attr);
488 489
	if (IS_ERR(qp)) {
		ret = PTR_ERR(qp);
490
		goto err_send_cq;
491 492
	}

493
	ret = srp_init_qp(target, qp);
494 495
	if (ret)
		goto err_qp;
496

497 498 499 500 501 502 503 504 505 506 507 508
	if (dev->use_fast_reg && dev->has_fr) {
		fr_pool = srp_alloc_fr_pool(target);
		if (IS_ERR(fr_pool)) {
			ret = PTR_ERR(fr_pool);
			shost_printk(KERN_WARNING, target->scsi_host, PFX
				     "FR pool allocation failed (%d)\n", ret);
			goto err_qp;
		}
		if (target->fr_pool)
			srp_destroy_fr_pool(target->fr_pool);
		target->fr_pool = fr_pool;
	} else if (!dev->use_fast_reg && dev->has_fmr) {
509 510 511 512 513 514 515 516 517 518 519 520
		fmr_pool = srp_alloc_fmr_pool(target);
		if (IS_ERR(fmr_pool)) {
			ret = PTR_ERR(fmr_pool);
			shost_printk(KERN_WARNING, target->scsi_host, PFX
				     "FMR pool allocation failed (%d)\n", ret);
			goto err_qp;
		}
		if (target->fmr_pool)
			ib_destroy_fmr_pool(target->fmr_pool);
		target->fmr_pool = fmr_pool;
	}

521 522 523 524 525 526 527 528 529 530 531
	if (target->qp)
		ib_destroy_qp(target->qp);
	if (target->recv_cq)
		ib_destroy_cq(target->recv_cq);
	if (target->send_cq)
		ib_destroy_cq(target->send_cq);

	target->qp = qp;
	target->recv_cq = recv_cq;
	target->send_cq = send_cq;

532 533 534 535
	kfree(init_attr);
	return 0;

err_qp:
536
	ib_destroy_qp(qp);
537 538

err_send_cq:
539
	ib_destroy_cq(send_cq);
540 541

err_recv_cq:
542
	ib_destroy_cq(recv_cq);
543 544

err:
545 546 547 548
	kfree(init_attr);
	return ret;
}

549 550 551 552
/*
 * Note: this function may be called without srp_alloc_iu_bufs() having been
 * invoked. Hence the target->[rt]x_ring checks.
 */
553 554
static void srp_free_target_ib(struct srp_target_port *target)
{
555
	struct srp_device *dev = target->srp_host->srp_dev;
556 557
	int i;

558 559 560 561 562
	if (target->cm_id) {
		ib_destroy_cm_id(target->cm_id);
		target->cm_id = NULL;
	}

563 564 565 566 567 568 569
	if (dev->use_fast_reg) {
		if (target->fr_pool)
			srp_destroy_fr_pool(target->fr_pool);
	} else {
		if (target->fmr_pool)
			ib_destroy_fmr_pool(target->fmr_pool);
	}
570
	ib_destroy_qp(target->qp);
571 572
	ib_destroy_cq(target->send_cq);
	ib_destroy_cq(target->recv_cq);
573

574 575 576
	target->qp = NULL;
	target->send_cq = target->recv_cq = NULL;

577 578 579 580 581 582 583 584 585 586 587 588
	if (target->rx_ring) {
		for (i = 0; i < target->queue_size; ++i)
			srp_free_iu(target->srp_host, target->rx_ring[i]);
		kfree(target->rx_ring);
		target->rx_ring = NULL;
	}
	if (target->tx_ring) {
		for (i = 0; i < target->queue_size; ++i)
			srp_free_iu(target->srp_host, target->tx_ring[i]);
		kfree(target->tx_ring);
		target->tx_ring = NULL;
	}
589 590 591 592 593 594 595 596 597 598
}

static void srp_path_rec_completion(int status,
				    struct ib_sa_path_rec *pathrec,
				    void *target_ptr)
{
	struct srp_target_port *target = target_ptr;

	target->status = status;
	if (status)
599 600
		shost_printk(KERN_ERR, target->scsi_host,
			     PFX "Got failed path rec status %d\n", status);
601 602 603 604 605 606 607
	else
		target->path = *pathrec;
	complete(&target->done);
}

static int srp_lookup_path(struct srp_target_port *target)
{
608 609
	int ret;

610 611 612 613
	target->path.numb_path = 1;

	init_completion(&target->done);

614
	target->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
615
						   target->srp_host->srp_dev->dev,
616 617
						   target->srp_host->port,
						   &target->path,
618
						   IB_SA_PATH_REC_SERVICE_ID	|
619 620 621 622 623 624 625 626 627 628 629
						   IB_SA_PATH_REC_DGID		|
						   IB_SA_PATH_REC_SGID		|
						   IB_SA_PATH_REC_NUMB_PATH	|
						   IB_SA_PATH_REC_PKEY,
						   SRP_PATH_REC_TIMEOUT_MS,
						   GFP_KERNEL,
						   srp_path_rec_completion,
						   target, &target->path_query);
	if (target->path_query_id < 0)
		return target->path_query_id;

630 631 632
	ret = wait_for_completion_interruptible(&target->done);
	if (ret < 0)
		return ret;
633 634

	if (target->status < 0)
635 636
		shost_printk(KERN_WARNING, target->scsi_host,
			     PFX "Path record query failed\n");
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671

	return target->status;
}

static int srp_send_req(struct srp_target_port *target)
{
	struct {
		struct ib_cm_req_param param;
		struct srp_login_req   priv;
	} *req = NULL;
	int status;

	req = kzalloc(sizeof *req, GFP_KERNEL);
	if (!req)
		return -ENOMEM;

	req->param.primary_path 	      = &target->path;
	req->param.alternate_path 	      = NULL;
	req->param.service_id 		      = target->service_id;
	req->param.qp_num 		      = target->qp->qp_num;
	req->param.qp_type 		      = target->qp->qp_type;
	req->param.private_data 	      = &req->priv;
	req->param.private_data_len 	      = sizeof req->priv;
	req->param.flow_control 	      = 1;

	get_random_bytes(&req->param.starting_psn, 4);
	req->param.starting_psn 	     &= 0xffffff;

	/*
	 * Pick some arbitrary defaults here; we could make these
	 * module parameters if anyone cared about setting them.
	 */
	req->param.responder_resources	      = 4;
	req->param.remote_cm_response_timeout = 20;
	req->param.local_cm_response_timeout  = 20;
672
	req->param.retry_count                = target->tl_retry_count;
673 674 675 676 677
	req->param.rnr_retry_count 	      = 7;
	req->param.max_cm_retries 	      = 15;

	req->priv.opcode     	= SRP_LOGIN_REQ;
	req->priv.tag        	= 0;
678
	req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
679 680
	req->priv.req_buf_fmt 	= cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
					      SRP_BUF_FORMAT_INDIRECT);
681
	/*
R
Roland Dreier 已提交
682
	 * In the published SRP specification (draft rev. 16a), the
683 684 685 686 687 688 689 690 691
	 * port identifier format is 8 bytes of ID extension followed
	 * by 8 bytes of GUID.  Older drafts put the two halves in the
	 * opposite order, so that the GUID comes first.
	 *
	 * Targets conforming to these obsolete drafts can be
	 * recognized by the I/O Class they report.
	 */
	if (target->io_class == SRP_REV10_IB_IO_CLASS) {
		memcpy(req->priv.initiator_port_id,
692
		       &target->path.sgid.global.interface_id, 8);
693
		memcpy(req->priv.initiator_port_id + 8,
694
		       &target->initiator_ext, 8);
695 696 697 698
		memcpy(req->priv.target_port_id,     &target->ioc_guid, 8);
		memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
	} else {
		memcpy(req->priv.initiator_port_id,
699 700 701
		       &target->initiator_ext, 8);
		memcpy(req->priv.initiator_port_id + 8,
		       &target->path.sgid.global.interface_id, 8);
702 703 704 705
		memcpy(req->priv.target_port_id,     &target->id_ext, 8);
		memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
	}

706 707
	/*
	 * Topspin/Cisco SRP targets will reject our login unless we
708 709
	 * zero out the first 8 bytes of our initiator port ID and set
	 * the second 8 bytes to the local node GUID.
710
	 */
711
	if (srp_target_is_topspin(target)) {
712 713 714 715
		shost_printk(KERN_DEBUG, target->scsi_host,
			     PFX "Topspin/Cisco initiator port ID workaround "
			     "activated for target GUID %016llx\n",
			     (unsigned long long) be64_to_cpu(target->ioc_guid));
716
		memset(req->priv.initiator_port_id, 0, 8);
717
		memcpy(req->priv.initiator_port_id + 8,
718
		       &target->srp_host->srp_dev->dev->node_guid, 8);
719 720 721 722 723 724 725 726 727
	}

	status = ib_send_cm_req(target->cm_id, &req->param);

	kfree(req);

	return status;
}

728 729 730 731 732 733 734 735 736 737 738 739
static bool srp_queue_remove_work(struct srp_target_port *target)
{
	bool changed = false;

	spin_lock_irq(&target->lock);
	if (target->state != SRP_TARGET_REMOVED) {
		target->state = SRP_TARGET_REMOVED;
		changed = true;
	}
	spin_unlock_irq(&target->lock);

	if (changed)
740
		queue_work(srp_remove_wq, &target->remove_work);
741 742 743 744

	return changed;
}

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
static bool srp_change_conn_state(struct srp_target_port *target,
				  bool connected)
{
	bool changed = false;

	spin_lock_irq(&target->lock);
	if (target->connected != connected) {
		target->connected = connected;
		changed = true;
	}
	spin_unlock_irq(&target->lock);

	return changed;
}

760 761
static void srp_disconnect_target(struct srp_target_port *target)
{
762 763
	if (srp_change_conn_state(target, false)) {
		/* XXX should send SRP_I_LOGOUT request */
764

765 766 767 768
		if (ib_send_cm_dreq(target->cm_id, NULL, 0)) {
			shost_printk(KERN_DEBUG, target->scsi_host,
				     PFX "Sending CM DREQ failed\n");
		}
769
	}
770 771
}

772 773
static void srp_free_req_data(struct srp_target_port *target)
{
774 775
	struct srp_device *dev = target->srp_host->srp_dev;
	struct ib_device *ibdev = dev->dev;
776 777 778
	struct srp_request *req;
	int i;

779 780 781 782 783
	if (!target->req_ring)
		return;

	for (i = 0; i < target->req_ring_size; ++i) {
		req = &target->req_ring[i];
784 785 786 787
		if (dev->use_fast_reg)
			kfree(req->fr_list);
		else
			kfree(req->fmr_list);
788
		kfree(req->map_page);
789 790 791 792 793 794
		if (req->indirect_dma_addr) {
			ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
					    target->indirect_size,
					    DMA_TO_DEVICE);
		}
		kfree(req->indirect_desc);
795
	}
796 797 798

	kfree(target->req_ring);
	target->req_ring = NULL;
799 800
}

801 802 803 804 805
static int srp_alloc_req_data(struct srp_target_port *target)
{
	struct srp_device *srp_dev = target->srp_host->srp_dev;
	struct ib_device *ibdev = srp_dev->dev;
	struct srp_request *req;
806
	void *mr_list;
807 808 809 810 811
	dma_addr_t dma_addr;
	int i, ret = -ENOMEM;

	INIT_LIST_HEAD(&target->free_reqs);

812 813 814 815 816 817
	target->req_ring = kzalloc(target->req_ring_size *
				   sizeof(*target->req_ring), GFP_KERNEL);
	if (!target->req_ring)
		goto out;

	for (i = 0; i < target->req_ring_size; ++i) {
818
		req = &target->req_ring[i];
819 820 821 822 823 824 825 826
		mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *),
				  GFP_KERNEL);
		if (!mr_list)
			goto out;
		if (srp_dev->use_fast_reg)
			req->fr_list = mr_list;
		else
			req->fmr_list = mr_list;
827
		req->map_page = kmalloc(srp_dev->max_pages_per_mr *
828
					sizeof(void *), GFP_KERNEL);
829 830
		if (!req->map_page)
			goto out;
831
		req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
832
		if (!req->indirect_desc)
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
			goto out;

		dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
					     target->indirect_size,
					     DMA_TO_DEVICE);
		if (ib_dma_mapping_error(ibdev, dma_addr))
			goto out;

		req->indirect_dma_addr = dma_addr;
		req->index = i;
		list_add_tail(&req->list, &target->free_reqs);
	}
	ret = 0;

out:
	return ret;
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
/**
 * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
 * @shost: SCSI host whose attributes to remove from sysfs.
 *
 * Note: Any attributes defined in the host template and that did not exist
 * before invocation of this function will be ignored.
 */
static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
{
	struct device_attribute **attr;

	for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
		device_remove_file(&shost->shost_dev, *attr);
}

866 867
static void srp_remove_target(struct srp_target_port *target)
{
868 869
	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);

870
	srp_del_scsi_host_attr(target->scsi_host);
871
	srp_rport_get(target->rport);
872 873
	srp_remove_host(target->scsi_host);
	scsi_remove_host(target->scsi_host);
874
	srp_stop_rport_timers(target->rport);
875
	srp_disconnect_target(target);
876
	srp_free_target_ib(target);
877
	cancel_work_sync(&target->tl_err_work);
878
	srp_rport_put(target->rport);
879
	srp_free_req_data(target);
880 881 882 883 884

	spin_lock(&target->srp_host->target_lock);
	list_del(&target->list);
	spin_unlock(&target->srp_host->target_lock);

885 886 887
	scsi_host_put(target->scsi_host);
}

D
David Howells 已提交
888
static void srp_remove_work(struct work_struct *work)
889
{
D
David Howells 已提交
890
	struct srp_target_port *target =
891
		container_of(work, struct srp_target_port, remove_work);
892

893
	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
894

895
	srp_remove_target(target);
896 897
}

898 899 900 901 902 903 904
static void srp_rport_delete(struct srp_rport *rport)
{
	struct srp_target_port *target = rport->lld_data;

	srp_queue_remove_work(target);
}

905 906
static int srp_connect_target(struct srp_target_port *target)
{
D
David Dillow 已提交
907
	int retries = 3;
908 909
	int ret;

910 911
	WARN_ON_ONCE(target->connected);

912 913
	target->qp_in_error = false;

914 915 916 917 918 919 920 921 922
	ret = srp_lookup_path(target);
	if (ret)
		return ret;

	while (1) {
		init_completion(&target->done);
		ret = srp_send_req(target);
		if (ret)
			return ret;
923 924 925
		ret = wait_for_completion_interruptible(&target->done);
		if (ret < 0)
			return ret;
926 927 928 929 930 931 932 933 934

		/*
		 * The CM event handling code will set status to
		 * SRP_PORT_REDIRECT if we get a port redirect REJ
		 * back, or SRP_DLID_REDIRECT if we get a lid/qp
		 * redirect REJ back.
		 */
		switch (target->status) {
		case 0:
935
			srp_change_conn_state(target, true);
936 937 938 939 940 941 942 943 944 945 946
			return 0;

		case SRP_PORT_REDIRECT:
			ret = srp_lookup_path(target);
			if (ret)
				return ret;
			break;

		case SRP_DLID_REDIRECT:
			break;

D
David Dillow 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
		case SRP_STALE_CONN:
			/* Our current CM id was stale, and is now in timewait.
			 * Try to reconnect with a new one.
			 */
			if (!retries-- || srp_new_cm_id(target)) {
				shost_printk(KERN_ERR, target->scsi_host, PFX
					     "giving up on stale connection\n");
				target->status = -ECONNRESET;
				return target->status;
			}

			shost_printk(KERN_ERR, target->scsi_host, PFX
				     "retrying stale connection\n");
			break;

962 963 964 965 966 967
		default:
			return target->status;
		}
	}
}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
static int srp_inv_rkey(struct srp_target_port *target, u32 rkey)
{
	struct ib_send_wr *bad_wr;
	struct ib_send_wr wr = {
		.opcode		    = IB_WR_LOCAL_INV,
		.wr_id		    = LOCAL_INV_WR_ID_MASK,
		.next		    = NULL,
		.num_sge	    = 0,
		.send_flags	    = 0,
		.ex.invalidate_rkey = rkey,
	};

	return ib_post_send(target->qp, &wr, &bad_wr);
}

983 984 985 986
static void srp_unmap_data(struct scsi_cmnd *scmnd,
			   struct srp_target_port *target,
			   struct srp_request *req)
{
987 988 989
	struct srp_device *dev = target->srp_host->srp_dev;
	struct ib_device *ibdev = dev->dev;
	int i, res;
990

991
	if (!scsi_sglist(scmnd) ||
992 993 994 995
	    (scmnd->sc_data_direction != DMA_TO_DEVICE &&
	     scmnd->sc_data_direction != DMA_FROM_DEVICE))
		return;

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	if (dev->use_fast_reg) {
		struct srp_fr_desc **pfr;

		for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
			res = srp_inv_rkey(target, (*pfr)->mr->rkey);
			if (res < 0) {
				shost_printk(KERN_ERR, target->scsi_host, PFX
				  "Queueing INV WR for rkey %#x failed (%d)\n",
				  (*pfr)->mr->rkey, res);
				queue_work(system_long_wq,
					   &target->tl_err_work);
			}
		}
		if (req->nmdesc)
			srp_fr_pool_put(target->fr_pool, req->fr_list,
					req->nmdesc);
	} else {
		struct ib_pool_fmr **pfmr;

		for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
			ib_fmr_pool_unmap(*pfmr);
	}
1018

1019 1020
	ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
			scmnd->sc_data_direction);
1021 1022
}

B
Bart Van Assche 已提交
1023 1024 1025 1026
/**
 * srp_claim_req - Take ownership of the scmnd associated with a request.
 * @target: SRP target port.
 * @req: SRP request.
1027
 * @sdev: If not NULL, only take ownership for this SCSI device.
B
Bart Van Assche 已提交
1028 1029 1030 1031 1032 1033 1034 1035
 * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
 *         ownership of @req->scmnd if it equals @scmnd.
 *
 * Return value:
 * Either NULL or a pointer to the SCSI command the caller became owner of.
 */
static struct scsi_cmnd *srp_claim_req(struct srp_target_port *target,
				       struct srp_request *req,
1036
				       struct scsi_device *sdev,
B
Bart Van Assche 已提交
1037 1038 1039 1040 1041
				       struct scsi_cmnd *scmnd)
{
	unsigned long flags;

	spin_lock_irqsave(&target->lock, flags);
1042 1043 1044
	if (req->scmnd &&
	    (!sdev || req->scmnd->device == sdev) &&
	    (!scmnd || req->scmnd == scmnd)) {
B
Bart Van Assche 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
		scmnd = req->scmnd;
		req->scmnd = NULL;
	} else {
		scmnd = NULL;
	}
	spin_unlock_irqrestore(&target->lock, flags);

	return scmnd;
}

/**
 * srp_free_req() - Unmap data and add request to the free request list.
1057 1058 1059 1060
 * @target: SRP target port.
 * @req:    Request to be freed.
 * @scmnd:  SCSI command associated with @req.
 * @req_lim_delta: Amount to be added to @target->req_lim.
B
Bart Van Assche 已提交
1061 1062 1063 1064
 */
static void srp_free_req(struct srp_target_port *target,
			 struct srp_request *req, struct scsi_cmnd *scmnd,
			 s32 req_lim_delta)
1065
{
1066 1067
	unsigned long flags;

B
Bart Van Assche 已提交
1068 1069
	srp_unmap_data(scmnd, target, req);

1070
	spin_lock_irqsave(&target->lock, flags);
1071
	target->req_lim += req_lim_delta;
1072
	list_add_tail(&req->list, &target->free_reqs);
1073
	spin_unlock_irqrestore(&target->lock, flags);
1074 1075
}

1076
static void srp_finish_req(struct srp_target_port *target,
1077 1078
			   struct srp_request *req, struct scsi_device *sdev,
			   int result)
1079
{
1080
	struct scsi_cmnd *scmnd = srp_claim_req(target, req, sdev, NULL);
B
Bart Van Assche 已提交
1081 1082

	if (scmnd) {
1083
		srp_free_req(target, req, scmnd, 0);
1084
		scmnd->result = result;
B
Bart Van Assche 已提交
1085 1086
		scmnd->scsi_done(scmnd);
	}
1087 1088
}

1089
static void srp_terminate_io(struct srp_rport *rport)
1090
{
1091
	struct srp_target_port *target = rport->lld_data;
1092 1093
	struct Scsi_Host *shost = target->scsi_host;
	struct scsi_device *sdev;
1094 1095
	int i;

1096 1097 1098 1099 1100 1101 1102
	/*
	 * Invoking srp_terminate_io() while srp_queuecommand() is running
	 * is not safe. Hence the warning statement below.
	 */
	shost_for_each_device(sdev, shost)
		WARN_ON_ONCE(sdev->request_queue->request_fn_active);

1103
	for (i = 0; i < target->req_ring_size; ++i) {
1104
		struct srp_request *req = &target->req_ring[i];
1105
		srp_finish_req(target, req, NULL, DID_TRANSPORT_FAILFAST << 16);
1106 1107
	}
}
1108

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
/*
 * It is up to the caller to ensure that srp_rport_reconnect() calls are
 * serialized and that no concurrent srp_queuecommand(), srp_abort(),
 * srp_reset_device() or srp_reset_host() calls will occur while this function
 * is in progress. One way to realize that is not to call this function
 * directly but to call srp_reconnect_rport() instead since that last function
 * serializes calls of this function via rport->mutex and also blocks
 * srp_queuecommand() calls before invoking this function.
 */
static int srp_rport_reconnect(struct srp_rport *rport)
{
	struct srp_target_port *target = rport->lld_data;
	int i, ret;
1122

1123 1124
	srp_disconnect_target(target);
	/*
1125 1126 1127
	 * Now get a new local CM ID so that we avoid confusing the target in
	 * case things are really fouled up. Doing so also ensures that all CM
	 * callbacks will have finished before a new QP is allocated.
1128
	 */
D
David Dillow 已提交
1129
	ret = srp_new_cm_id(target);
1130

1131
	for (i = 0; i < target->req_ring_size; ++i) {
1132
		struct srp_request *req = &target->req_ring[i];
1133
		srp_finish_req(target, req, NULL, DID_RESET << 16);
1134
	}
1135

1136 1137 1138 1139 1140 1141 1142
	/*
	 * Whether or not creating a new CM ID succeeded, create a new
	 * QP. This guarantees that all callback functions for the old QP have
	 * finished before any send requests are posted on the new QP.
	 */
	ret += srp_create_target_ib(target);

1143
	INIT_LIST_HEAD(&target->free_tx);
1144
	for (i = 0; i < target->queue_size; ++i)
1145
		list_add(&target->tx_ring[i]->list, &target->free_tx);
1146

1147 1148
	if (ret == 0)
		ret = srp_connect_target(target);
1149

1150 1151 1152
	if (ret == 0)
		shost_printk(KERN_INFO, target->scsi_host,
			     PFX "reconnect succeeded\n");
1153 1154 1155 1156

	return ret;
}

1157 1158
static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
			 unsigned int dma_len, u32 rkey)
1159
{
1160
	struct srp_direct_buf *desc = state->desc;
1161

1162 1163 1164
	desc->va = cpu_to_be64(dma_addr);
	desc->key = cpu_to_be32(rkey);
	desc->len = cpu_to_be32(dma_len);
1165

1166 1167 1168 1169
	state->total_len += dma_len;
	state->desc++;
	state->ndesc++;
}
1170

1171 1172 1173 1174 1175
static int srp_map_finish_fmr(struct srp_map_state *state,
			      struct srp_target_port *target)
{
	struct ib_pool_fmr *fmr;
	u64 io_addr = 0;
1176

1177
	fmr = ib_fmr_pool_map_phys(target->fmr_pool, state->pages,
1178 1179 1180
				   state->npages, io_addr);
	if (IS_ERR(fmr))
		return PTR_ERR(fmr);
1181

1182
	*state->next_fmr++ = fmr;
1183
	state->nmdesc++;
1184

1185
	srp_map_desc(state, 0, state->dma_len, fmr->fmr->rkey);
1186

1187 1188 1189
	return 0;
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
static int srp_map_finish_fr(struct srp_map_state *state,
			     struct srp_target_port *target)
{
	struct srp_device *dev = target->srp_host->srp_dev;
	struct ib_send_wr *bad_wr;
	struct ib_send_wr wr;
	struct srp_fr_desc *desc;
	u32 rkey;

	desc = srp_fr_pool_get(target->fr_pool);
	if (!desc)
		return -ENOMEM;

	rkey = ib_inc_rkey(desc->mr->rkey);
	ib_update_fast_reg_key(desc->mr, rkey);

	memcpy(desc->frpl->page_list, state->pages,
	       sizeof(state->pages[0]) * state->npages);

	memset(&wr, 0, sizeof(wr));
	wr.opcode = IB_WR_FAST_REG_MR;
	wr.wr_id = FAST_REG_WR_ID_MASK;
	wr.wr.fast_reg.iova_start = state->base_dma_addr;
	wr.wr.fast_reg.page_list = desc->frpl;
	wr.wr.fast_reg.page_list_len = state->npages;
	wr.wr.fast_reg.page_shift = ilog2(dev->mr_page_size);
	wr.wr.fast_reg.length = state->dma_len;
	wr.wr.fast_reg.access_flags = (IB_ACCESS_LOCAL_WRITE |
				       IB_ACCESS_REMOTE_READ |
				       IB_ACCESS_REMOTE_WRITE);
	wr.wr.fast_reg.rkey = desc->mr->lkey;

	*state->next_fr++ = desc;
	state->nmdesc++;

	srp_map_desc(state, state->base_dma_addr, state->dma_len,
		     desc->mr->rkey);

	return ib_post_send(target->qp, &wr, &bad_wr);
}

1231 1232 1233 1234 1235 1236 1237 1238
static int srp_finish_mapping(struct srp_map_state *state,
			      struct srp_target_port *target)
{
	int ret = 0;

	if (state->npages == 0)
		return 0;

1239
	if (state->npages == 1 && !register_always)
1240
		srp_map_desc(state, state->base_dma_addr, state->dma_len,
1241 1242
			     target->rkey);
	else
1243 1244 1245
		ret = target->srp_host->srp_dev->use_fast_reg ?
			srp_map_finish_fr(state, target) :
			srp_map_finish_fmr(state, target);
1246 1247 1248

	if (ret == 0) {
		state->npages = 0;
1249
		state->dma_len = 0;
1250 1251 1252 1253 1254
	}

	return ret;
}

1255 1256 1257 1258 1259 1260 1261 1262
static void srp_map_update_start(struct srp_map_state *state,
				 struct scatterlist *sg, int sg_index,
				 dma_addr_t dma_addr)
{
	state->unmapped_sg = sg;
	state->unmapped_index = sg_index;
	state->unmapped_addr = dma_addr;
}
1263

1264 1265 1266
static int srp_map_sg_entry(struct srp_map_state *state,
			    struct srp_target_port *target,
			    struct scatterlist *sg, int sg_index,
1267
			    bool use_mr)
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
{
	struct srp_device *dev = target->srp_host->srp_dev;
	struct ib_device *ibdev = dev->dev;
	dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
	unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
	unsigned int len;
	int ret;

	if (!dma_len)
		return 0;

1279 1280 1281 1282
	if (!use_mr) {
		/*
		 * Once we're in direct map mode for a request, we don't
		 * go back to FMR or FR mode, so no need to update anything
1283 1284 1285 1286
		 * other than the descriptor.
		 */
		srp_map_desc(state, dma_addr, dma_len, target->rkey);
		return 0;
1287
	}
1288

1289 1290 1291 1292 1293
	/*
	 * Since not all RDMA HW drivers support non-zero page offsets for
	 * FMR, if we start at an offset into a page, don't merge into the
	 * current FMR mapping. Finish it out, and use the kernel's MR for
	 * this sg entry.
1294
	 */
1295 1296
	if ((!dev->use_fast_reg && dma_addr & ~dev->mr_page_mask) ||
	    dma_len > dev->mr_max_size) {
1297
		ret = srp_finish_mapping(state, target);
1298 1299 1300 1301 1302 1303
		if (ret)
			return ret;

		srp_map_desc(state, dma_addr, dma_len, target->rkey);
		srp_map_update_start(state, NULL, 0, 0);
		return 0;
1304 1305
	}

1306 1307 1308 1309 1310
	/*
	 * If this is the first sg that will be mapped via FMR or via FR, save
	 * our position. We need to know the first unmapped entry, its index,
	 * and the first unmapped address within that entry to be able to
	 * restart mapping after an error.
1311 1312 1313
	 */
	if (!state->unmapped_sg)
		srp_map_update_start(state, sg, sg_index, dma_addr);
1314

1315
	while (dma_len) {
1316 1317
		unsigned offset = dma_addr & ~dev->mr_page_mask;
		if (state->npages == dev->max_pages_per_mr || offset != 0) {
1318
			ret = srp_finish_mapping(state, target);
1319 1320
			if (ret)
				return ret;
1321

1322 1323 1324
			srp_map_update_start(state, sg, sg_index, dma_addr);
		}

1325
		len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1326

1327 1328
		if (!state->npages)
			state->base_dma_addr = dma_addr;
1329
		state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1330
		state->dma_len += len;
1331 1332 1333 1334
		dma_addr += len;
		dma_len -= len;
	}

1335 1336
	/*
	 * If the last entry of the MR wasn't a full page, then we need to
1337 1338 1339 1340
	 * close it out and start a new one -- we can only merge at page
	 * boundries.
	 */
	ret = 0;
1341
	if (len != dev->mr_page_size) {
1342
		ret = srp_finish_mapping(state, target);
1343 1344 1345
		if (!ret)
			srp_map_update_start(state, NULL, 0, 0);
	}
1346 1347 1348
	return ret;
}

1349 1350 1351
static int srp_map_sg(struct srp_map_state *state,
		      struct srp_target_port *target, struct srp_request *req,
		      struct scatterlist *scat, int count)
1352 1353 1354 1355
{
	struct srp_device *dev = target->srp_host->srp_dev;
	struct ib_device *ibdev = dev->dev;
	struct scatterlist *sg;
1356 1357
	int i;
	bool use_mr;
1358 1359 1360

	state->desc	= req->indirect_desc;
	state->pages	= req->map_page;
1361 1362 1363 1364 1365 1366 1367
	if (dev->use_fast_reg) {
		state->next_fr = req->fr_list;
		use_mr = !!target->fr_pool;
	} else {
		state->next_fmr = req->fmr_list;
		use_mr = !!target->fmr_pool;
	}
1368 1369

	for_each_sg(scat, sg, count, i) {
1370 1371 1372 1373 1374
		if (srp_map_sg_entry(state, target, sg, i, use_mr)) {
			/*
			 * Memory registration failed, so backtrack to the
			 * first unmapped entry and continue on without using
			 * memory registration.
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
			 */
			dma_addr_t dma_addr;
			unsigned int dma_len;

backtrack:
			sg = state->unmapped_sg;
			i = state->unmapped_index;

			dma_addr = ib_sg_dma_address(ibdev, sg);
			dma_len = ib_sg_dma_len(ibdev, sg);
			dma_len -= (state->unmapped_addr - dma_addr);
			dma_addr = state->unmapped_addr;
1387
			use_mr = false;
1388 1389 1390 1391
			srp_map_desc(state, dma_addr, dma_len, target->rkey);
		}
	}

1392
	if (use_mr && srp_finish_mapping(state, target))
1393 1394
		goto backtrack;

1395
	req->nmdesc = state->nmdesc;
1396 1397

	return 0;
1398 1399
}

1400 1401 1402
static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_target_port *target,
			struct srp_request *req)
{
1403
	struct scatterlist *scat;
1404
	struct srp_cmd *cmd = req->cmd->buf;
1405
	int len, nents, count;
1406 1407
	struct srp_device *dev;
	struct ib_device *ibdev;
1408 1409 1410 1411
	struct srp_map_state state;
	struct srp_indirect_buf *indirect_hdr;
	u32 table_len;
	u8 fmt;
1412

1413
	if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1414 1415 1416 1417
		return sizeof (struct srp_cmd);

	if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
	    scmnd->sc_data_direction != DMA_TO_DEVICE) {
1418 1419 1420
		shost_printk(KERN_WARNING, target->scsi_host,
			     PFX "Unhandled data direction %d\n",
			     scmnd->sc_data_direction);
1421 1422 1423
		return -EINVAL;
	}

1424 1425
	nents = scsi_sg_count(scmnd);
	scat  = scsi_sglist(scmnd);
1426

1427
	dev = target->srp_host->srp_dev;
1428 1429 1430
	ibdev = dev->dev;

	count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1431 1432
	if (unlikely(count == 0))
		return -EIO;
1433 1434 1435

	fmt = SRP_DATA_DESC_DIRECT;
	len = sizeof (struct srp_cmd) +	sizeof (struct srp_direct_buf);
1436

1437
	if (count == 1 && !register_always) {
1438 1439 1440 1441 1442 1443
		/*
		 * The midlayer only generated a single gather/scatter
		 * entry, or DMA mapping coalesced everything to a
		 * single entry.  So a direct descriptor along with
		 * the DMA MR suffices.
		 */
1444
		struct srp_direct_buf *buf = (void *) cmd->add_data;
1445

1446
		buf->va  = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1447
		buf->key = cpu_to_be32(target->rkey);
1448
		buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1449

1450
		req->nmdesc = 0;
1451 1452 1453
		goto map_complete;
	}

1454 1455 1456
	/*
	 * We have more than one scatter/gather entry, so build our indirect
	 * descriptor table, trying to merge as many entries as we can.
1457 1458 1459
	 */
	indirect_hdr = (void *) cmd->add_data;

1460 1461 1462
	ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
				   target->indirect_size, DMA_TO_DEVICE);

1463
	memset(&state, 0, sizeof(state));
1464
	srp_map_sg(&state, target, req, scat, count);
1465

1466 1467 1468 1469 1470
	/* We've mapped the request, now pull as much of the indirect
	 * descriptor table as we can into the command buffer. If this
	 * target is not using an external indirect table, we are
	 * guaranteed to fit into the command, as the SCSI layer won't
	 * give us more S/G entries than we allow.
1471 1472
	 */
	if (state.ndesc == 1) {
1473 1474
		/*
		 * Memory registration collapsed the sg-list into one entry,
1475 1476 1477
		 * so use a direct descriptor.
		 */
		struct srp_direct_buf *buf = (void *) cmd->add_data;
1478

1479
		*buf = req->indirect_desc[0];
1480
		goto map_complete;
1481 1482
	}

1483 1484 1485 1486 1487 1488 1489 1490
	if (unlikely(target->cmd_sg_cnt < state.ndesc &&
						!target->allow_ext_sg)) {
		shost_printk(KERN_ERR, target->scsi_host,
			     "Could not fit S/G list into SRP_CMD\n");
		return -EIO;
	}

	count = min(state.ndesc, target->cmd_sg_cnt);
1491 1492 1493 1494
	table_len = state.ndesc * sizeof (struct srp_direct_buf);

	fmt = SRP_DATA_DESC_INDIRECT;
	len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1495
	len += count * sizeof (struct srp_direct_buf);
1496

1497 1498
	memcpy(indirect_hdr->desc_list, req->indirect_desc,
	       count * sizeof (struct srp_direct_buf));
1499

1500
	indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1501 1502 1503 1504 1505
	indirect_hdr->table_desc.key = cpu_to_be32(target->rkey);
	indirect_hdr->table_desc.len = cpu_to_be32(table_len);
	indirect_hdr->len = cpu_to_be32(state.total_len);

	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1506
		cmd->data_out_desc_cnt = count;
1507
	else
1508 1509 1510 1511
		cmd->data_in_desc_cnt = count;

	ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
				      DMA_TO_DEVICE);
1512 1513

map_complete:
1514 1515 1516 1517 1518 1519 1520 1521
	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
		cmd->buf_fmt = fmt << 4;
	else
		cmd->buf_fmt = fmt;

	return len;
}

1522 1523 1524 1525 1526 1527 1528 1529
/*
 * Return an IU and possible credit to the free pool
 */
static void srp_put_tx_iu(struct srp_target_port *target, struct srp_iu *iu,
			  enum srp_iu_type iu_type)
{
	unsigned long flags;

1530
	spin_lock_irqsave(&target->lock, flags);
1531 1532 1533
	list_add(&iu->list, &target->free_tx);
	if (iu_type != SRP_IU_RSP)
		++target->req_lim;
1534
	spin_unlock_irqrestore(&target->lock, flags);
1535 1536
}

1537
/*
1538 1539
 * Must be called with target->lock held to protect req_lim and free_tx.
 * If IU is not sent, it must be returned using srp_put_tx_iu().
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
 *
 * Note:
 * An upper limit for the number of allocated information units for each
 * request type is:
 * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
 *   more than Scsi_Host.can_queue requests.
 * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
 * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
 *   one unanswered SRP request to an initiator.
 */
static struct srp_iu *__srp_get_tx_iu(struct srp_target_port *target,
				      enum srp_iu_type iu_type)
{
	s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
	struct srp_iu *iu;

	srp_send_completion(target->send_cq, target);

1558
	if (list_empty(&target->free_tx))
1559 1560 1561
		return NULL;

	/* Initiator responses to target requests do not consume credits */
1562 1563 1564 1565 1566 1567 1568
	if (iu_type != SRP_IU_RSP) {
		if (target->req_lim <= rsv) {
			++target->zero_req_lim;
			return NULL;
		}

		--target->req_lim;
1569 1570
	}

1571
	iu = list_first_entry(&target->free_tx, struct srp_iu, list);
1572
	list_del(&iu->list);
1573 1574 1575
	return iu;
}

1576 1577
static int srp_post_send(struct srp_target_port *target,
			 struct srp_iu *iu, int len)
1578 1579 1580 1581 1582 1583
{
	struct ib_sge list;
	struct ib_send_wr wr, *bad_wr;

	list.addr   = iu->dma;
	list.length = len;
1584
	list.lkey   = target->lkey;
1585 1586

	wr.next       = NULL;
1587
	wr.wr_id      = (uintptr_t) iu;
1588 1589 1590 1591 1592
	wr.sg_list    = &list;
	wr.num_sge    = 1;
	wr.opcode     = IB_WR_SEND;
	wr.send_flags = IB_SEND_SIGNALED;

1593
	return ib_post_send(target->qp, &wr, &bad_wr);
1594 1595
}

1596
static int srp_post_recv(struct srp_target_port *target, struct srp_iu *iu)
1597 1598
{
	struct ib_recv_wr wr, *bad_wr;
1599
	struct ib_sge list;
1600 1601 1602

	list.addr   = iu->dma;
	list.length = iu->size;
1603
	list.lkey   = target->lkey;
1604 1605

	wr.next     = NULL;
1606
	wr.wr_id    = (uintptr_t) iu;
1607 1608 1609
	wr.sg_list  = &list;
	wr.num_sge  = 1;

1610
	return ib_post_recv(target->qp, &wr, &bad_wr);
1611 1612
}

1613 1614 1615 1616 1617 1618 1619
static void srp_process_rsp(struct srp_target_port *target, struct srp_rsp *rsp)
{
	struct srp_request *req;
	struct scsi_cmnd *scmnd;
	unsigned long flags;

	if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1620
		spin_lock_irqsave(&target->lock, flags);
1621
		target->req_lim += be32_to_cpu(rsp->req_lim_delta);
1622
		spin_unlock_irqrestore(&target->lock, flags);
1623

1624 1625 1626 1627
		target->tsk_mgmt_status = -1;
		if (be32_to_cpu(rsp->resp_data_len) >= 4)
			target->tsk_mgmt_status = rsp->data[3];
		complete(&target->tsk_mgmt_done);
1628
	} else {
1629
		req = &target->req_ring[rsp->tag];
1630
		scmnd = srp_claim_req(target, req, NULL, NULL);
B
Bart Van Assche 已提交
1631
		if (!scmnd) {
1632 1633 1634
			shost_printk(KERN_ERR, target->scsi_host,
				     "Null scmnd for RSP w/tag %016llx\n",
				     (unsigned long long) rsp->tag);
B
Bart Van Assche 已提交
1635 1636 1637 1638 1639 1640 1641

			spin_lock_irqsave(&target->lock, flags);
			target->req_lim += be32_to_cpu(rsp->req_lim_delta);
			spin_unlock_irqrestore(&target->lock, flags);

			return;
		}
1642 1643 1644 1645 1646 1647 1648 1649 1650
		scmnd->result = rsp->status;

		if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
			memcpy(scmnd->sense_buffer, rsp->data +
			       be32_to_cpu(rsp->resp_data_len),
			       min_t(int, be32_to_cpu(rsp->sense_data_len),
				     SCSI_SENSE_BUFFERSIZE));
		}

B
Bart Van Assche 已提交
1651
		if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1652
			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
B
Bart Van Assche 已提交
1653 1654 1655 1656 1657 1658
		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
			scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
			scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1659

B
Bart Van Assche 已提交
1660 1661 1662
		srp_free_req(target, req, scmnd,
			     be32_to_cpu(rsp->req_lim_delta));

1663 1664
		scmnd->host_scribble = NULL;
		scmnd->scsi_done(scmnd);
1665 1666 1667
	}
}

1668 1669 1670
static int srp_response_common(struct srp_target_port *target, s32 req_delta,
			       void *rsp, int len)
{
1671
	struct ib_device *dev = target->srp_host->srp_dev->dev;
1672 1673
	unsigned long flags;
	struct srp_iu *iu;
1674
	int err;
1675

1676
	spin_lock_irqsave(&target->lock, flags);
1677 1678
	target->req_lim += req_delta;
	iu = __srp_get_tx_iu(target, SRP_IU_RSP);
1679
	spin_unlock_irqrestore(&target->lock, flags);
1680

1681 1682 1683
	if (!iu) {
		shost_printk(KERN_ERR, target->scsi_host, PFX
			     "no IU available to send response\n");
1684
		return 1;
1685 1686 1687 1688 1689 1690
	}

	ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
	memcpy(iu->buf, rsp, len);
	ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);

1691 1692
	err = srp_post_send(target, iu, len);
	if (err) {
1693 1694
		shost_printk(KERN_ERR, target->scsi_host, PFX
			     "unable to post response: %d\n", err);
1695 1696
		srp_put_tx_iu(target, iu, SRP_IU_RSP);
	}
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

	return err;
}

static void srp_process_cred_req(struct srp_target_port *target,
				 struct srp_cred_req *req)
{
	struct srp_cred_rsp rsp = {
		.opcode = SRP_CRED_RSP,
		.tag = req->tag,
	};
	s32 delta = be32_to_cpu(req->req_lim_delta);

	if (srp_response_common(target, delta, &rsp, sizeof rsp))
		shost_printk(KERN_ERR, target->scsi_host, PFX
			     "problems processing SRP_CRED_REQ\n");
}

static void srp_process_aer_req(struct srp_target_port *target,
				struct srp_aer_req *req)
{
	struct srp_aer_rsp rsp = {
		.opcode = SRP_AER_RSP,
		.tag = req->tag,
	};
	s32 delta = be32_to_cpu(req->req_lim_delta);

	shost_printk(KERN_ERR, target->scsi_host, PFX
		     "ignoring AER for LUN %llu\n", be64_to_cpu(req->lun));

	if (srp_response_common(target, delta, &rsp, sizeof rsp))
		shost_printk(KERN_ERR, target->scsi_host, PFX
			     "problems processing SRP_AER_REQ\n");
}

1732 1733
static void srp_handle_recv(struct srp_target_port *target, struct ib_wc *wc)
{
1734
	struct ib_device *dev = target->srp_host->srp_dev->dev;
1735
	struct srp_iu *iu = (struct srp_iu *) (uintptr_t) wc->wr_id;
1736
	int res;
1737 1738
	u8 opcode;

1739 1740
	ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_ti_iu_len,
				   DMA_FROM_DEVICE);
1741 1742 1743 1744

	opcode = *(u8 *) iu->buf;

	if (0) {
1745 1746
		shost_printk(KERN_ERR, target->scsi_host,
			     PFX "recv completion, opcode 0x%02x\n", opcode);
B
Bart Van Assche 已提交
1747 1748
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
			       iu->buf, wc->byte_len, true);
1749 1750 1751 1752 1753 1754 1755
	}

	switch (opcode) {
	case SRP_RSP:
		srp_process_rsp(target, iu->buf);
		break;

1756 1757 1758 1759 1760 1761 1762 1763
	case SRP_CRED_REQ:
		srp_process_cred_req(target, iu->buf);
		break;

	case SRP_AER_REQ:
		srp_process_aer_req(target, iu->buf);
		break;

1764 1765
	case SRP_T_LOGOUT:
		/* XXX Handle target logout */
1766 1767
		shost_printk(KERN_WARNING, target->scsi_host,
			     PFX "Got target logout request\n");
1768 1769 1770
		break;

	default:
1771 1772
		shost_printk(KERN_WARNING, target->scsi_host,
			     PFX "Unhandled SRP opcode 0x%02x\n", opcode);
1773 1774 1775
		break;
	}

1776 1777
	ib_dma_sync_single_for_device(dev, iu->dma, target->max_ti_iu_len,
				      DMA_FROM_DEVICE);
1778

1779
	res = srp_post_recv(target, iu);
1780 1781 1782
	if (res != 0)
		shost_printk(KERN_ERR, target->scsi_host,
			     PFX "Recv failed with error code %d\n", res);
1783 1784
}

1785 1786
/**
 * srp_tl_err_work() - handle a transport layer error
1787
 * @work: Work structure embedded in an SRP target port.
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
 *
 * Note: This function may get invoked before the rport has been created,
 * hence the target->rport test.
 */
static void srp_tl_err_work(struct work_struct *work)
{
	struct srp_target_port *target;

	target = container_of(work, struct srp_target_port, tl_err_work);
	if (target->rport)
		srp_start_tl_fail_timers(target->rport);
}

1801 1802
static void srp_handle_qp_err(u64 wr_id, enum ib_wc_status wc_status,
			      bool send_err, struct srp_target_port *target)
1803
{
1804
	if (target->connected && !target->qp_in_error) {
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
		if (wr_id & LOCAL_INV_WR_ID_MASK) {
			shost_printk(KERN_ERR, target->scsi_host, PFX
				     "LOCAL_INV failed with status %d\n",
				     wc_status);
		} else if (wr_id & FAST_REG_WR_ID_MASK) {
			shost_printk(KERN_ERR, target->scsi_host, PFX
				     "FAST_REG_MR failed status %d\n",
				     wc_status);
		} else {
			shost_printk(KERN_ERR, target->scsi_host,
				     PFX "failed %s status %d for iu %p\n",
				     send_err ? "send" : "receive",
				     wc_status, (void *)(uintptr_t)wr_id);
		}
1819
		queue_work(system_long_wq, &target->tl_err_work);
1820
	}
1821 1822 1823
	target->qp_in_error = true;
}

1824
static void srp_recv_completion(struct ib_cq *cq, void *target_ptr)
1825 1826 1827 1828 1829 1830
{
	struct srp_target_port *target = target_ptr;
	struct ib_wc wc;

	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
	while (ib_poll_cq(cq, 1, &wc) > 0) {
1831 1832 1833
		if (likely(wc.status == IB_WC_SUCCESS)) {
			srp_handle_recv(target, &wc);
		} else {
1834
			srp_handle_qp_err(wc.wr_id, wc.status, false, target);
1835
		}
1836 1837 1838 1839 1840 1841 1842
	}
}

static void srp_send_completion(struct ib_cq *cq, void *target_ptr)
{
	struct srp_target_port *target = target_ptr;
	struct ib_wc wc;
1843
	struct srp_iu *iu;
1844 1845

	while (ib_poll_cq(cq, 1, &wc) > 0) {
1846 1847 1848 1849
		if (likely(wc.status == IB_WC_SUCCESS)) {
			iu = (struct srp_iu *) (uintptr_t) wc.wr_id;
			list_add(&iu->list, &target->free_tx);
		} else {
1850
			srp_handle_qp_err(wc.wr_id, wc.status, true, target);
1851
		}
1852 1853 1854
	}
}

1855
static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
1856
{
1857
	struct srp_target_port *target = host_to_target(shost);
1858
	struct srp_rport *rport = target->rport;
1859 1860 1861
	struct srp_request *req;
	struct srp_iu *iu;
	struct srp_cmd *cmd;
1862
	struct ib_device *dev;
1863
	unsigned long flags;
1864
	int len, ret;
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;

	/*
	 * The SCSI EH thread is the only context from which srp_queuecommand()
	 * can get invoked for blocked devices (SDEV_BLOCK /
	 * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
	 * locking the rport mutex if invoked from inside the SCSI EH.
	 */
	if (in_scsi_eh)
		mutex_lock(&rport->mutex);
1875

1876 1877 1878
	scmnd->result = srp_chkready(target->rport);
	if (unlikely(scmnd->result))
		goto err;
1879

1880
	spin_lock_irqsave(&target->lock, flags);
1881
	iu = __srp_get_tx_iu(target, SRP_IU_CMD);
1882
	if (!iu)
1883 1884 1885 1886 1887
		goto err_unlock;

	req = list_first_entry(&target->free_reqs, struct srp_request, list);
	list_del(&req->list);
	spin_unlock_irqrestore(&target->lock, flags);
1888

1889
	dev = target->srp_host->srp_dev->dev;
1890
	ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
1891
				   DMA_TO_DEVICE);
1892

1893
	scmnd->host_scribble = (void *) req;
1894 1895 1896 1897 1898 1899

	cmd = iu->buf;
	memset(cmd, 0, sizeof *cmd);

	cmd->opcode = SRP_CMD;
	cmd->lun    = cpu_to_be64((u64) scmnd->device->lun << 48);
1900
	cmd->tag    = req->index;
1901 1902 1903 1904 1905 1906 1907
	memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);

	req->scmnd    = scmnd;
	req->cmd      = iu;

	len = srp_map_data(scmnd, target, req);
	if (len < 0) {
1908
		shost_printk(KERN_ERR, target->scsi_host,
1909 1910 1911 1912
			     PFX "Failed to map data (%d)\n", len);
		/*
		 * If we ran out of memory descriptors (-ENOMEM) because an
		 * application is queuing many requests with more than
1913
		 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
1914 1915 1916 1917
		 * to reduce queue depth temporarily.
		 */
		scmnd->result = len == -ENOMEM ?
			DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
1918
		goto err_iu;
1919 1920
	}

1921
	ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
1922
				      DMA_TO_DEVICE);
1923

1924
	if (srp_post_send(target, iu, len)) {
1925
		shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
1926 1927 1928
		goto err_unmap;
	}

1929 1930
	ret = 0;

1931 1932 1933 1934
unlock_rport:
	if (in_scsi_eh)
		mutex_unlock(&rport->mutex);

1935
	return ret;
1936 1937 1938 1939

err_unmap:
	srp_unmap_data(scmnd, target, req);

1940 1941 1942
err_iu:
	srp_put_tx_iu(target, iu, SRP_IU_CMD);

1943 1944 1945 1946 1947 1948
	/*
	 * Avoid that the loops that iterate over the request ring can
	 * encounter a dangling SCSI command pointer.
	 */
	req->scmnd = NULL;

1949
	spin_lock_irqsave(&target->lock, flags);
1950
	list_add(&req->list, &target->free_reqs);
1951 1952

err_unlock:
1953
	spin_unlock_irqrestore(&target->lock, flags);
1954

1955 1956 1957 1958 1959 1960 1961
err:
	if (scmnd->result) {
		scmnd->scsi_done(scmnd);
		ret = 0;
	} else {
		ret = SCSI_MLQUEUE_HOST_BUSY;
	}
1962

1963
	goto unlock_rport;
1964 1965
}

1966 1967 1968 1969
/*
 * Note: the resources allocated in this function are freed in
 * srp_free_target_ib().
 */
1970 1971 1972 1973
static int srp_alloc_iu_bufs(struct srp_target_port *target)
{
	int i;

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	target->rx_ring = kzalloc(target->queue_size * sizeof(*target->rx_ring),
				  GFP_KERNEL);
	if (!target->rx_ring)
		goto err_no_ring;
	target->tx_ring = kzalloc(target->queue_size * sizeof(*target->tx_ring),
				  GFP_KERNEL);
	if (!target->tx_ring)
		goto err_no_ring;

	for (i = 0; i < target->queue_size; ++i) {
1984 1985 1986 1987 1988 1989 1990
		target->rx_ring[i] = srp_alloc_iu(target->srp_host,
						  target->max_ti_iu_len,
						  GFP_KERNEL, DMA_FROM_DEVICE);
		if (!target->rx_ring[i])
			goto err;
	}

1991
	for (i = 0; i < target->queue_size; ++i) {
1992
		target->tx_ring[i] = srp_alloc_iu(target->srp_host,
1993
						  target->max_iu_len,
1994 1995 1996
						  GFP_KERNEL, DMA_TO_DEVICE);
		if (!target->tx_ring[i])
			goto err;
1997 1998

		list_add(&target->tx_ring[i]->list, &target->free_tx);
1999 2000 2001 2002 2003
	}

	return 0;

err:
2004
	for (i = 0; i < target->queue_size; ++i) {
2005 2006 2007 2008
		srp_free_iu(target->srp_host, target->rx_ring[i]);
		srp_free_iu(target->srp_host, target->tx_ring[i]);
	}

2009 2010 2011 2012 2013 2014 2015

err_no_ring:
	kfree(target->tx_ring);
	target->tx_ring = NULL;
	kfree(target->rx_ring);
	target->rx_ring = NULL;

2016 2017 2018
	return -ENOMEM;
}

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
{
	uint64_t T_tr_ns, max_compl_time_ms;
	uint32_t rq_tmo_jiffies;

	/*
	 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
	 * table 91), both the QP timeout and the retry count have to be set
	 * for RC QP's during the RTR to RTS transition.
	 */
	WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
		     (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));

	/*
	 * Set target->rq_tmo_jiffies to one second more than the largest time
	 * it can take before an error completion is generated. See also
	 * C9-140..142 in the IBTA spec for more information about how to
	 * convert the QP Local ACK Timeout value to nanoseconds.
	 */
	T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
	max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
	do_div(max_compl_time_ms, NSEC_PER_MSEC);
	rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);

	return rq_tmo_jiffies;
}

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
			       struct srp_login_rsp *lrsp,
			       struct srp_target_port *target)
{
	struct ib_qp_attr *qp_attr = NULL;
	int attr_mask = 0;
	int ret;
	int i;

	if (lrsp->opcode == SRP_LOGIN_RSP) {
		target->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
		target->req_lim       = be32_to_cpu(lrsp->req_lim_delta);

		/*
		 * Reserve credits for task management so we don't
		 * bounce requests back to the SCSI mid-layer.
		 */
		target->scsi_host->can_queue
			= min(target->req_lim - SRP_TSK_MGMT_SQ_SIZE,
			      target->scsi_host->can_queue);
2066 2067 2068
		target->scsi_host->cmd_per_lun
			= min_t(int, target->scsi_host->can_queue,
				target->scsi_host->cmd_per_lun);
2069 2070 2071 2072 2073 2074 2075
	} else {
		shost_printk(KERN_WARNING, target->scsi_host,
			     PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
		ret = -ECONNRESET;
		goto error;
	}

2076
	if (!target->rx_ring) {
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
		ret = srp_alloc_iu_bufs(target);
		if (ret)
			goto error;
	}

	ret = -ENOMEM;
	qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
	if (!qp_attr)
		goto error;

	qp_attr->qp_state = IB_QPS_RTR;
	ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
	if (ret)
		goto error_free;

	ret = ib_modify_qp(target->qp, qp_attr, attr_mask);
	if (ret)
		goto error_free;

2096
	for (i = 0; i < target->queue_size; i++) {
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
		struct srp_iu *iu = target->rx_ring[i];
		ret = srp_post_recv(target, iu);
		if (ret)
			goto error_free;
	}

	qp_attr->qp_state = IB_QPS_RTS;
	ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
	if (ret)
		goto error_free;

2108 2109
	target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
	ret = ib_modify_qp(target->qp, qp_attr, attr_mask);
	if (ret)
		goto error_free;

	ret = ib_send_cm_rtu(cm_id, NULL, 0);

error_free:
	kfree(qp_attr);

error:
	target->status = ret;
}

2123 2124 2125 2126
static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
			       struct ib_cm_event *event,
			       struct srp_target_port *target)
{
2127
	struct Scsi_Host *shost = target->scsi_host;
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	struct ib_class_port_info *cpi;
	int opcode;

	switch (event->param.rej_rcvd.reason) {
	case IB_CM_REJ_PORT_CM_REDIRECT:
		cpi = event->param.rej_rcvd.ari;
		target->path.dlid = cpi->redirect_lid;
		target->path.pkey = cpi->redirect_pkey;
		cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
		memcpy(target->path.dgid.raw, cpi->redirect_gid, 16);

		target->status = target->path.dlid ?
			SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
		break;

	case IB_CM_REJ_PORT_REDIRECT:
2144
		if (srp_target_is_topspin(target)) {
2145 2146 2147 2148 2149 2150 2151 2152
			/*
			 * Topspin/Cisco SRP gateways incorrectly send
			 * reject reason code 25 when they mean 24
			 * (port redirect).
			 */
			memcpy(target->path.dgid.raw,
			       event->param.rej_rcvd.ari, 16);

2153 2154 2155 2156
			shost_printk(KERN_DEBUG, shost,
				     PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
				     (unsigned long long) be64_to_cpu(target->path.dgid.global.subnet_prefix),
				     (unsigned long long) be64_to_cpu(target->path.dgid.global.interface_id));
2157 2158 2159

			target->status = SRP_PORT_REDIRECT;
		} else {
2160 2161
			shost_printk(KERN_WARNING, shost,
				     "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2162 2163 2164 2165 2166
			target->status = -ECONNRESET;
		}
		break;

	case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2167 2168
		shost_printk(KERN_WARNING, shost,
			    "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
		target->status = -ECONNRESET;
		break;

	case IB_CM_REJ_CONSUMER_DEFINED:
		opcode = *(u8 *) event->private_data;
		if (opcode == SRP_LOGIN_REJ) {
			struct srp_login_rej *rej = event->private_data;
			u32 reason = be32_to_cpu(rej->reason);

			if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2179 2180
				shost_printk(KERN_WARNING, shost,
					     PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2181
			else
B
Bart Van Assche 已提交
2182 2183 2184 2185
				shost_printk(KERN_WARNING, shost, PFX
					     "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
					     target->path.sgid.raw,
					     target->orig_dgid, reason);
2186
		} else
2187 2188 2189
			shost_printk(KERN_WARNING, shost,
				     "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
				     " opcode 0x%02x\n", opcode);
2190 2191 2192
		target->status = -ECONNRESET;
		break;

D
David Dillow 已提交
2193 2194 2195 2196 2197
	case IB_CM_REJ_STALE_CONN:
		shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
		target->status = SRP_STALE_CONN;
		break;

2198
	default:
2199 2200
		shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
			     event->param.rej_rcvd.reason);
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
		target->status = -ECONNRESET;
	}
}

static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
{
	struct srp_target_port *target = cm_id->context;
	int comp = 0;

	switch (event->event) {
	case IB_CM_REQ_ERROR:
2212 2213
		shost_printk(KERN_DEBUG, target->scsi_host,
			     PFX "Sending CM REQ failed\n");
2214 2215 2216 2217 2218 2219
		comp = 1;
		target->status = -ECONNRESET;
		break;

	case IB_CM_REP_RECEIVED:
		comp = 1;
2220
		srp_cm_rep_handler(cm_id, event->private_data, target);
2221 2222 2223
		break;

	case IB_CM_REJ_RECEIVED:
2224
		shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2225 2226 2227 2228 2229
		comp = 1;

		srp_cm_rej_handler(cm_id, event, target);
		break;

2230
	case IB_CM_DREQ_RECEIVED:
2231 2232
		shost_printk(KERN_WARNING, target->scsi_host,
			     PFX "DREQ received - connection closed\n");
2233
		srp_change_conn_state(target, false);
2234
		if (ib_send_cm_drep(cm_id, NULL, 0))
2235 2236
			shost_printk(KERN_ERR, target->scsi_host,
				     PFX "Sending CM DREP failed\n");
2237
		queue_work(system_long_wq, &target->tl_err_work);
2238 2239 2240
		break;

	case IB_CM_TIMEWAIT_EXIT:
2241 2242
		shost_printk(KERN_ERR, target->scsi_host,
			     PFX "connection closed\n");
2243
		comp = 1;
2244 2245 2246 2247

		target->status = 0;
		break;

2248 2249 2250 2251 2252
	case IB_CM_MRA_RECEIVED:
	case IB_CM_DREQ_ERROR:
	case IB_CM_DREP_RECEIVED:
		break;

2253
	default:
2254 2255
		shost_printk(KERN_WARNING, target->scsi_host,
			     PFX "Unhandled CM event %d\n", event->event);
2256 2257 2258 2259 2260 2261 2262 2263 2264
		break;
	}

	if (comp)
		complete(&target->done);

	return 0;
}

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
/**
 * srp_change_queue_depth - setting device queue depth
 * @sdev: scsi device struct
 * @qdepth: requested queue depth
 * @reason: SCSI_QDEPTH_DEFAULT/SCSI_QDEPTH_QFULL/SCSI_QDEPTH_RAMP_UP
 * (see include/scsi/scsi_host.h for definition)
 *
 * Returns queue depth.
 */
static int
srp_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason)
{
	struct Scsi_Host *shost = sdev->host;
	int max_depth;
	if (reason == SCSI_QDEPTH_DEFAULT || reason == SCSI_QDEPTH_RAMP_UP) {
		max_depth = shost->can_queue;
		if (!sdev->tagged_supported)
			max_depth = 1;
		if (qdepth > max_depth)
			qdepth = max_depth;
2285
		scsi_adjust_queue_depth(sdev, qdepth);
2286 2287 2288 2289 2290 2291 2292 2293
	} else if (reason == SCSI_QDEPTH_QFULL)
		scsi_track_queue_full(sdev, qdepth);
	else
		return -EOPNOTSUPP;

	return sdev->queue_depth;
}

2294
static int srp_send_tsk_mgmt(struct srp_target_port *target,
2295
			     u64 req_tag, unsigned int lun, u8 func)
2296
{
2297
	struct srp_rport *rport = target->rport;
2298
	struct ib_device *dev = target->srp_host->srp_dev->dev;
2299 2300 2301
	struct srp_iu *iu;
	struct srp_tsk_mgmt *tsk_mgmt;

2302 2303 2304
	if (!target->connected || target->qp_in_error)
		return -1;

2305
	init_completion(&target->tsk_mgmt_done);
2306

2307 2308 2309 2310 2311
	/*
	 * Lock the rport mutex to avoid that srp_create_target_ib() is
	 * invoked while a task management function is being sent.
	 */
	mutex_lock(&rport->mutex);
2312
	spin_lock_irq(&target->lock);
2313
	iu = __srp_get_tx_iu(target, SRP_IU_TSK_MGMT);
2314
	spin_unlock_irq(&target->lock);
2315

2316 2317 2318
	if (!iu) {
		mutex_unlock(&rport->mutex);

2319
		return -1;
2320
	}
2321

2322 2323
	ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
				   DMA_TO_DEVICE);
2324 2325 2326 2327
	tsk_mgmt = iu->buf;
	memset(tsk_mgmt, 0, sizeof *tsk_mgmt);

	tsk_mgmt->opcode 	= SRP_TSK_MGMT;
2328 2329
	tsk_mgmt->lun		= cpu_to_be64((u64) lun << 48);
	tsk_mgmt->tag		= req_tag | SRP_TAG_TSK_MGMT;
2330
	tsk_mgmt->tsk_mgmt_func = func;
2331
	tsk_mgmt->task_tag	= req_tag;
2332

2333 2334
	ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
				      DMA_TO_DEVICE);
2335 2336
	if (srp_post_send(target, iu, sizeof *tsk_mgmt)) {
		srp_put_tx_iu(target, iu, SRP_IU_TSK_MGMT);
2337 2338
		mutex_unlock(&rport->mutex);

2339 2340
		return -1;
	}
2341
	mutex_unlock(&rport->mutex);
2342

2343
	if (!wait_for_completion_timeout(&target->tsk_mgmt_done,
2344
					 msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
2345
		return -1;
2346

2347 2348 2349
	return 0;
}

2350 2351
static int srp_abort(struct scsi_cmnd *scmnd)
{
2352
	struct srp_target_port *target = host_to_target(scmnd->device->host);
2353
	struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2354
	int ret;
2355

2356
	shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2357

2358
	if (!req || !srp_claim_req(target, req, NULL, scmnd))
2359
		return SUCCESS;
2360
	if (srp_send_tsk_mgmt(target, req->index, scmnd->device->lun,
2361
			      SRP_TSK_ABORT_TASK) == 0)
2362
		ret = SUCCESS;
2363
	else if (target->rport->state == SRP_RPORT_LOST)
2364
		ret = FAST_IO_FAIL;
2365 2366
	else
		ret = FAILED;
B
Bart Van Assche 已提交
2367 2368
	srp_free_req(target, req, scmnd, 0);
	scmnd->result = DID_ABORT << 16;
2369
	scmnd->scsi_done(scmnd);
2370

2371
	return ret;
2372 2373 2374 2375
}

static int srp_reset_device(struct scsi_cmnd *scmnd)
{
2376
	struct srp_target_port *target = host_to_target(scmnd->device->host);
2377
	int i;
2378

2379
	shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2380

2381 2382
	if (srp_send_tsk_mgmt(target, SRP_TAG_NO_REQ, scmnd->device->lun,
			      SRP_TSK_LUN_RESET))
2383
		return FAILED;
2384
	if (target->tsk_mgmt_status)
2385 2386
		return FAILED;

2387
	for (i = 0; i < target->req_ring_size; ++i) {
2388
		struct srp_request *req = &target->req_ring[i];
2389
		srp_finish_req(target, req, scmnd->device, DID_RESET << 16);
2390
	}
2391 2392

	return SUCCESS;
2393 2394 2395 2396 2397 2398
}

static int srp_reset_host(struct scsi_cmnd *scmnd)
{
	struct srp_target_port *target = host_to_target(scmnd->device->host);

2399
	shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2400

2401
	return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2402 2403
}

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
static int srp_slave_configure(struct scsi_device *sdev)
{
	struct Scsi_Host *shost = sdev->host;
	struct srp_target_port *target = host_to_target(shost);
	struct request_queue *q = sdev->request_queue;
	unsigned long timeout;

	if (sdev->type == TYPE_DISK) {
		timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
		blk_queue_rq_timeout(q, timeout);
	}

	return 0;
}

2419 2420
static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
			   char *buf)
2421
{
2422
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2423 2424 2425 2426 2427

	return sprintf(buf, "0x%016llx\n",
		       (unsigned long long) be64_to_cpu(target->id_ext));
}

2428 2429
static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
			     char *buf)
2430
{
2431
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2432 2433 2434 2435 2436

	return sprintf(buf, "0x%016llx\n",
		       (unsigned long long) be64_to_cpu(target->ioc_guid));
}

2437 2438
static ssize_t show_service_id(struct device *dev,
			       struct device_attribute *attr, char *buf)
2439
{
2440
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2441 2442 2443 2444 2445

	return sprintf(buf, "0x%016llx\n",
		       (unsigned long long) be64_to_cpu(target->service_id));
}

2446 2447
static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
			 char *buf)
2448
{
2449
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2450 2451 2452 2453

	return sprintf(buf, "0x%04x\n", be16_to_cpu(target->path.pkey));
}

B
Bart Van Assche 已提交
2454 2455 2456 2457 2458 2459 2460 2461
static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
			 char *buf)
{
	struct srp_target_port *target = host_to_target(class_to_shost(dev));

	return sprintf(buf, "%pI6\n", target->path.sgid.raw);
}

2462 2463
static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
			 char *buf)
2464
{
2465
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2466

H
Harvey Harrison 已提交
2467
	return sprintf(buf, "%pI6\n", target->path.dgid.raw);
2468 2469
}

2470 2471
static ssize_t show_orig_dgid(struct device *dev,
			      struct device_attribute *attr, char *buf)
2472
{
2473
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2474

H
Harvey Harrison 已提交
2475
	return sprintf(buf, "%pI6\n", target->orig_dgid);
2476 2477
}

2478 2479 2480 2481 2482 2483 2484 2485
static ssize_t show_req_lim(struct device *dev,
			    struct device_attribute *attr, char *buf)
{
	struct srp_target_port *target = host_to_target(class_to_shost(dev));

	return sprintf(buf, "%d\n", target->req_lim);
}

2486 2487
static ssize_t show_zero_req_lim(struct device *dev,
				 struct device_attribute *attr, char *buf)
2488
{
2489
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2490 2491 2492 2493

	return sprintf(buf, "%d\n", target->zero_req_lim);
}

2494 2495
static ssize_t show_local_ib_port(struct device *dev,
				  struct device_attribute *attr, char *buf)
2496
{
2497
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2498 2499 2500 2501

	return sprintf(buf, "%d\n", target->srp_host->port);
}

2502 2503
static ssize_t show_local_ib_device(struct device *dev,
				    struct device_attribute *attr, char *buf)
2504
{
2505
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2506

2507
	return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2508 2509
}

2510 2511 2512 2513 2514 2515 2516 2517
static ssize_t show_comp_vector(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct srp_target_port *target = host_to_target(class_to_shost(dev));

	return sprintf(buf, "%d\n", target->comp_vector);
}

2518 2519 2520 2521 2522 2523 2524 2525
static ssize_t show_tl_retry_count(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct srp_target_port *target = host_to_target(class_to_shost(dev));

	return sprintf(buf, "%d\n", target->tl_retry_count);
}

2526 2527 2528 2529 2530 2531 2532 2533
static ssize_t show_cmd_sg_entries(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct srp_target_port *target = host_to_target(class_to_shost(dev));

	return sprintf(buf, "%u\n", target->cmd_sg_cnt);
}

2534 2535 2536 2537 2538 2539 2540 2541
static ssize_t show_allow_ext_sg(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	struct srp_target_port *target = host_to_target(class_to_shost(dev));

	return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
}

2542 2543 2544 2545
static DEVICE_ATTR(id_ext,	    S_IRUGO, show_id_ext,	   NULL);
static DEVICE_ATTR(ioc_guid,	    S_IRUGO, show_ioc_guid,	   NULL);
static DEVICE_ATTR(service_id,	    S_IRUGO, show_service_id,	   NULL);
static DEVICE_ATTR(pkey,	    S_IRUGO, show_pkey,		   NULL);
B
Bart Van Assche 已提交
2546
static DEVICE_ATTR(sgid,	    S_IRUGO, show_sgid,		   NULL);
2547 2548
static DEVICE_ATTR(dgid,	    S_IRUGO, show_dgid,		   NULL);
static DEVICE_ATTR(orig_dgid,	    S_IRUGO, show_orig_dgid,	   NULL);
2549
static DEVICE_ATTR(req_lim,         S_IRUGO, show_req_lim,         NULL);
2550 2551 2552
static DEVICE_ATTR(zero_req_lim,    S_IRUGO, show_zero_req_lim,	   NULL);
static DEVICE_ATTR(local_ib_port,   S_IRUGO, show_local_ib_port,   NULL);
static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2553
static DEVICE_ATTR(comp_vector,     S_IRUGO, show_comp_vector,     NULL);
2554
static DEVICE_ATTR(tl_retry_count,  S_IRUGO, show_tl_retry_count,  NULL);
2555
static DEVICE_ATTR(cmd_sg_entries,  S_IRUGO, show_cmd_sg_entries,  NULL);
2556
static DEVICE_ATTR(allow_ext_sg,    S_IRUGO, show_allow_ext_sg,    NULL);
2557 2558 2559 2560 2561 2562

static struct device_attribute *srp_host_attrs[] = {
	&dev_attr_id_ext,
	&dev_attr_ioc_guid,
	&dev_attr_service_id,
	&dev_attr_pkey,
B
Bart Van Assche 已提交
2563
	&dev_attr_sgid,
2564 2565
	&dev_attr_dgid,
	&dev_attr_orig_dgid,
2566
	&dev_attr_req_lim,
2567 2568 2569
	&dev_attr_zero_req_lim,
	&dev_attr_local_ib_port,
	&dev_attr_local_ib_device,
2570
	&dev_attr_comp_vector,
2571
	&dev_attr_tl_retry_count,
2572
	&dev_attr_cmd_sg_entries,
2573
	&dev_attr_allow_ext_sg,
2574 2575 2576
	NULL
};

2577 2578
static struct scsi_host_template srp_template = {
	.module				= THIS_MODULE,
R
Roland Dreier 已提交
2579 2580
	.name				= "InfiniBand SRP initiator",
	.proc_name			= DRV_NAME,
2581
	.slave_configure		= srp_slave_configure,
2582 2583
	.info				= srp_target_info,
	.queuecommand			= srp_queuecommand,
2584
	.change_queue_depth             = srp_change_queue_depth,
2585
	.change_queue_type              = scsi_change_queue_type,
2586 2587 2588
	.eh_abort_handler		= srp_abort,
	.eh_device_reset_handler	= srp_reset_device,
	.eh_host_reset_handler		= srp_reset_host,
B
Bart Van Assche 已提交
2589
	.skip_settle_delay		= true,
2590
	.sg_tablesize			= SRP_DEF_SG_TABLESIZE,
2591
	.can_queue			= SRP_DEFAULT_CMD_SQ_SIZE,
2592
	.this_id			= -1,
2593
	.cmd_per_lun			= SRP_DEFAULT_CMD_SQ_SIZE,
2594 2595
	.use_clustering			= ENABLE_CLUSTERING,
	.shost_attrs			= srp_host_attrs
2596 2597 2598 2599
};

static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
{
2600 2601 2602
	struct srp_rport_identifiers ids;
	struct srp_rport *rport;

2603 2604 2605
	sprintf(target->target_name, "SRP.T10:%016llX",
		 (unsigned long long) be64_to_cpu(target->id_ext));

2606
	if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2607 2608
		return -ENODEV;

2609 2610
	memcpy(ids.port_id, &target->id_ext, 8);
	memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2611
	ids.roles = SRP_RPORT_ROLE_TARGET;
2612 2613 2614 2615 2616 2617
	rport = srp_rport_add(target->scsi_host, &ids);
	if (IS_ERR(rport)) {
		scsi_remove_host(target->scsi_host);
		return PTR_ERR(rport);
	}

2618
	rport->lld_data = target;
2619
	target->rport = rport;
2620

2621
	spin_lock(&host->target_lock);
2622
	list_add_tail(&target->list, &host->target_list);
2623
	spin_unlock(&host->target_lock);
2624 2625 2626 2627

	target->state = SRP_TARGET_LIVE;

	scsi_scan_target(&target->scsi_host->shost_gendev,
2628
			 0, target->scsi_id, SCAN_WILD_CARD, 0);
2629 2630 2631 2632

	return 0;
}

2633
static void srp_release_dev(struct device *dev)
2634 2635
{
	struct srp_host *host =
2636
		container_of(dev, struct srp_host, dev);
2637 2638 2639 2640 2641 2642

	complete(&host->released);
}

static struct class srp_class = {
	.name    = "infiniband_srp",
2643
	.dev_release = srp_release_dev
2644 2645
};

2646 2647
/**
 * srp_conn_unique() - check whether the connection to a target is unique
2648 2649
 * @host:   SRP host.
 * @target: SRP target port.
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
 */
static bool srp_conn_unique(struct srp_host *host,
			    struct srp_target_port *target)
{
	struct srp_target_port *t;
	bool ret = false;

	if (target->state == SRP_TARGET_REMOVED)
		goto out;

	ret = true;

	spin_lock(&host->target_lock);
	list_for_each_entry(t, &host->target_list, list) {
		if (t != target &&
		    target->id_ext == t->id_ext &&
		    target->ioc_guid == t->ioc_guid &&
		    target->initiator_ext == t->initiator_ext) {
			ret = false;
			break;
		}
	}
	spin_unlock(&host->target_lock);

out:
	return ret;
}

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
/*
 * Target ports are added by writing
 *
 *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
 *     pkey=<P_Key>,service_id=<service ID>
 *
 * to the add_target sysfs attribute.
 */
enum {
	SRP_OPT_ERR		= 0,
	SRP_OPT_ID_EXT		= 1 << 0,
	SRP_OPT_IOC_GUID	= 1 << 1,
	SRP_OPT_DGID		= 1 << 2,
	SRP_OPT_PKEY		= 1 << 3,
	SRP_OPT_SERVICE_ID	= 1 << 4,
	SRP_OPT_MAX_SECT	= 1 << 5,
2694
	SRP_OPT_MAX_CMD_PER_LUN	= 1 << 6,
2695
	SRP_OPT_IO_CLASS	= 1 << 7,
2696
	SRP_OPT_INITIATOR_EXT	= 1 << 8,
2697
	SRP_OPT_CMD_SG_ENTRIES	= 1 << 9,
2698 2699
	SRP_OPT_ALLOW_EXT_SG	= 1 << 10,
	SRP_OPT_SG_TABLESIZE	= 1 << 11,
2700
	SRP_OPT_COMP_VECTOR	= 1 << 12,
2701
	SRP_OPT_TL_RETRY_COUNT	= 1 << 13,
2702
	SRP_OPT_QUEUE_SIZE	= 1 << 14,
2703 2704 2705 2706 2707 2708 2709
	SRP_OPT_ALL		= (SRP_OPT_ID_EXT	|
				   SRP_OPT_IOC_GUID	|
				   SRP_OPT_DGID		|
				   SRP_OPT_PKEY		|
				   SRP_OPT_SERVICE_ID),
};

2710
static const match_table_t srp_opt_tokens = {
2711 2712 2713 2714 2715 2716 2717
	{ SRP_OPT_ID_EXT,		"id_ext=%s" 		},
	{ SRP_OPT_IOC_GUID,		"ioc_guid=%s" 		},
	{ SRP_OPT_DGID,			"dgid=%s" 		},
	{ SRP_OPT_PKEY,			"pkey=%x" 		},
	{ SRP_OPT_SERVICE_ID,		"service_id=%s"		},
	{ SRP_OPT_MAX_SECT,		"max_sect=%d" 		},
	{ SRP_OPT_MAX_CMD_PER_LUN,	"max_cmd_per_lun=%d" 	},
2718
	{ SRP_OPT_IO_CLASS,		"io_class=%x"		},
2719
	{ SRP_OPT_INITIATOR_EXT,	"initiator_ext=%s"	},
2720
	{ SRP_OPT_CMD_SG_ENTRIES,	"cmd_sg_entries=%u"	},
2721 2722
	{ SRP_OPT_ALLOW_EXT_SG,		"allow_ext_sg=%u"	},
	{ SRP_OPT_SG_TABLESIZE,		"sg_tablesize=%u"	},
2723
	{ SRP_OPT_COMP_VECTOR,		"comp_vector=%u"	},
2724
	{ SRP_OPT_TL_RETRY_COUNT,	"tl_retry_count=%u"	},
2725
	{ SRP_OPT_QUEUE_SIZE,		"queue_size=%d"		},
2726
	{ SRP_OPT_ERR,			NULL 			}
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
};

static int srp_parse_options(const char *buf, struct srp_target_port *target)
{
	char *options, *sep_opt;
	char *p;
	char dgid[3];
	substring_t args[MAX_OPT_ARGS];
	int opt_mask = 0;
	int token;
	int ret = -EINVAL;
	int i;

	options = kstrdup(buf, GFP_KERNEL);
	if (!options)
		return -ENOMEM;

	sep_opt = options;
	while ((p = strsep(&sep_opt, ",")) != NULL) {
		if (!*p)
			continue;

		token = match_token(p, srp_opt_tokens, args);
		opt_mask |= token;

		switch (token) {
		case SRP_OPT_ID_EXT:
			p = match_strdup(args);
2755 2756 2757 2758
			if (!p) {
				ret = -ENOMEM;
				goto out;
			}
2759 2760 2761 2762 2763 2764
			target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
			kfree(p);
			break;

		case SRP_OPT_IOC_GUID:
			p = match_strdup(args);
2765 2766 2767 2768
			if (!p) {
				ret = -ENOMEM;
				goto out;
			}
2769 2770 2771 2772 2773 2774
			target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
			kfree(p);
			break;

		case SRP_OPT_DGID:
			p = match_strdup(args);
2775 2776 2777 2778
			if (!p) {
				ret = -ENOMEM;
				goto out;
			}
2779
			if (strlen(p) != 32) {
2780
				pr_warn("bad dest GID parameter '%s'\n", p);
2781
				kfree(p);
2782 2783 2784 2785 2786 2787 2788
				goto out;
			}

			for (i = 0; i < 16; ++i) {
				strlcpy(dgid, p + i * 2, 3);
				target->path.dgid.raw[i] = simple_strtoul(dgid, NULL, 16);
			}
2789
			kfree(p);
2790
			memcpy(target->orig_dgid, target->path.dgid.raw, 16);
2791 2792 2793 2794
			break;

		case SRP_OPT_PKEY:
			if (match_hex(args, &token)) {
2795
				pr_warn("bad P_Key parameter '%s'\n", p);
2796 2797 2798 2799 2800 2801 2802
				goto out;
			}
			target->path.pkey = cpu_to_be16(token);
			break;

		case SRP_OPT_SERVICE_ID:
			p = match_strdup(args);
2803 2804 2805 2806
			if (!p) {
				ret = -ENOMEM;
				goto out;
			}
2807
			target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
2808
			target->path.service_id = target->service_id;
2809 2810 2811 2812 2813
			kfree(p);
			break;

		case SRP_OPT_MAX_SECT:
			if (match_int(args, &token)) {
2814
				pr_warn("bad max sect parameter '%s'\n", p);
2815 2816 2817 2818 2819
				goto out;
			}
			target->scsi_host->max_sectors = token;
			break;

2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
		case SRP_OPT_QUEUE_SIZE:
			if (match_int(args, &token) || token < 1) {
				pr_warn("bad queue_size parameter '%s'\n", p);
				goto out;
			}
			target->scsi_host->can_queue = token;
			target->queue_size = token + SRP_RSP_SQ_SIZE +
					     SRP_TSK_MGMT_SQ_SIZE;
			if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
				target->scsi_host->cmd_per_lun = token;
			break;

2832
		case SRP_OPT_MAX_CMD_PER_LUN:
2833
			if (match_int(args, &token) || token < 1) {
2834 2835
				pr_warn("bad max cmd_per_lun parameter '%s'\n",
					p);
2836 2837
				goto out;
			}
2838
			target->scsi_host->cmd_per_lun = token;
2839 2840
			break;

2841 2842
		case SRP_OPT_IO_CLASS:
			if (match_hex(args, &token)) {
2843
				pr_warn("bad IO class parameter '%s'\n", p);
2844 2845 2846 2847
				goto out;
			}
			if (token != SRP_REV10_IB_IO_CLASS &&
			    token != SRP_REV16A_IB_IO_CLASS) {
2848 2849 2850
				pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
					token, SRP_REV10_IB_IO_CLASS,
					SRP_REV16A_IB_IO_CLASS);
2851 2852 2853 2854 2855
				goto out;
			}
			target->io_class = token;
			break;

2856 2857
		case SRP_OPT_INITIATOR_EXT:
			p = match_strdup(args);
2858 2859 2860 2861
			if (!p) {
				ret = -ENOMEM;
				goto out;
			}
2862 2863 2864 2865
			target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
			kfree(p);
			break;

2866 2867
		case SRP_OPT_CMD_SG_ENTRIES:
			if (match_int(args, &token) || token < 1 || token > 255) {
2868 2869
				pr_warn("bad max cmd_sg_entries parameter '%s'\n",
					p);
2870 2871 2872 2873 2874
				goto out;
			}
			target->cmd_sg_cnt = token;
			break;

2875 2876
		case SRP_OPT_ALLOW_EXT_SG:
			if (match_int(args, &token)) {
2877
				pr_warn("bad allow_ext_sg parameter '%s'\n", p);
2878 2879 2880 2881 2882 2883 2884 2885
				goto out;
			}
			target->allow_ext_sg = !!token;
			break;

		case SRP_OPT_SG_TABLESIZE:
			if (match_int(args, &token) || token < 1 ||
					token > SCSI_MAX_SG_CHAIN_SEGMENTS) {
2886 2887
				pr_warn("bad max sg_tablesize parameter '%s'\n",
					p);
2888 2889 2890 2891 2892
				goto out;
			}
			target->sg_tablesize = token;
			break;

2893 2894 2895 2896 2897 2898 2899 2900
		case SRP_OPT_COMP_VECTOR:
			if (match_int(args, &token) || token < 0) {
				pr_warn("bad comp_vector parameter '%s'\n", p);
				goto out;
			}
			target->comp_vector = token;
			break;

2901 2902 2903 2904 2905 2906 2907 2908 2909
		case SRP_OPT_TL_RETRY_COUNT:
			if (match_int(args, &token) || token < 2 || token > 7) {
				pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
					p);
				goto out;
			}
			target->tl_retry_count = token;
			break;

2910
		default:
2911 2912
			pr_warn("unknown parameter or missing value '%s' in target creation request\n",
				p);
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
			goto out;
		}
	}

	if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
		ret = 0;
	else
		for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
			if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
			    !(srp_opt_tokens[i].token & opt_mask))
2923 2924
				pr_warn("target creation request is missing parameter '%s'\n",
					srp_opt_tokens[i].pattern);
2925

2926 2927 2928 2929 2930 2931
	if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
	    && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
		pr_warn("cmd_per_lun = %d > queue_size = %d\n",
			target->scsi_host->cmd_per_lun,
			target->scsi_host->can_queue);

2932 2933 2934 2935 2936
out:
	kfree(options);
	return ret;
}

2937 2938
static ssize_t srp_create_target(struct device *dev,
				 struct device_attribute *attr,
2939 2940 2941
				 const char *buf, size_t count)
{
	struct srp_host *host =
2942
		container_of(dev, struct srp_host, dev);
2943 2944
	struct Scsi_Host *target_host;
	struct srp_target_port *target;
2945 2946
	struct srp_device *srp_dev = host->srp_dev;
	struct ib_device *ibdev = srp_dev->dev;
2947
	int ret;
2948 2949 2950 2951 2952 2953

	target_host = scsi_host_alloc(&srp_template,
				      sizeof (struct srp_target_port));
	if (!target_host)
		return -ENOMEM;

2954
	target_host->transportt  = ib_srp_transport_template;
2955 2956
	target_host->max_channel = 0;
	target_host->max_id      = 1;
A
Arne Redlich 已提交
2957 2958
	target_host->max_lun     = SRP_MAX_LUN;
	target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
R
Roland Dreier 已提交
2959

2960 2961
	target = host_to_target(target_host);

2962 2963 2964 2965 2966 2967
	target->io_class	= SRP_REV16A_IB_IO_CLASS;
	target->scsi_host	= target_host;
	target->srp_host	= host;
	target->lkey		= host->srp_dev->mr->lkey;
	target->rkey		= host->srp_dev->mr->rkey;
	target->cmd_sg_cnt	= cmd_sg_entries;
2968 2969
	target->sg_tablesize	= indirect_sg_entries ? : cmd_sg_entries;
	target->allow_ext_sg	= allow_ext_sg;
2970
	target->tl_retry_count	= 7;
2971
	target->queue_size	= SRP_DEFAULT_QUEUE_SIZE;
2972

2973 2974
	mutex_lock(&host->add_target_mutex);

2975 2976 2977 2978
	ret = srp_parse_options(buf, target);
	if (ret)
		goto err;

2979 2980
	target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
	if (!srp_conn_unique(target->srp_host, target)) {
		shost_printk(KERN_INFO, target->scsi_host,
			     PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
			     be64_to_cpu(target->id_ext),
			     be64_to_cpu(target->ioc_guid),
			     be64_to_cpu(target->initiator_ext));
		ret = -EEXIST;
		goto err;
	}

2991
	if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
2992
	    target->cmd_sg_cnt < target->sg_tablesize) {
2993
		pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
2994 2995 2996 2997 2998 2999
		target->sg_tablesize = target->cmd_sg_cnt;
	}

	target_host->sg_tablesize = target->sg_tablesize;
	target->indirect_size = target->sg_tablesize *
				sizeof (struct srp_direct_buf);
3000 3001 3002 3003
	target->max_iu_len = sizeof (struct srp_cmd) +
			     sizeof (struct srp_indirect_buf) +
			     target->cmd_sg_cnt * sizeof (struct srp_direct_buf);

3004
	INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3005
	INIT_WORK(&target->remove_work, srp_remove_work);
3006 3007
	spin_lock_init(&target->lock);
	INIT_LIST_HEAD(&target->free_tx);
3008 3009 3010
	ret = srp_alloc_req_data(target);
	if (ret)
		goto err_free_mem;
3011

3012 3013 3014
	ret = ib_query_gid(ibdev, host->port, 0, &target->path.sgid);
	if (ret)
		goto err_free_mem;
3015 3016 3017

	ret = srp_create_target_ib(target);
	if (ret)
3018
		goto err_free_mem;
3019

D
David Dillow 已提交
3020 3021
	ret = srp_new_cm_id(target);
	if (ret)
3022
		goto err_free_ib;
3023 3024 3025

	ret = srp_connect_target(target);
	if (ret) {
3026 3027
		shost_printk(KERN_ERR, target->scsi_host,
			     PFX "Connection failed\n");
3028
		goto err_free_ib;
3029 3030 3031 3032 3033 3034
	}

	ret = srp_add_target(host, target);
	if (ret)
		goto err_disconnect;

B
Bart Van Assche 已提交
3035 3036 3037 3038 3039 3040 3041 3042
	shost_printk(KERN_DEBUG, target->scsi_host, PFX
		     "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
		     be64_to_cpu(target->id_ext),
		     be64_to_cpu(target->ioc_guid),
		     be16_to_cpu(target->path.pkey),
		     be64_to_cpu(target->service_id),
		     target->path.sgid.raw, target->path.dgid.raw);

3043 3044 3045 3046 3047
	ret = count;

out:
	mutex_unlock(&host->add_target_mutex);
	return ret;
3048 3049 3050 3051

err_disconnect:
	srp_disconnect_target(target);

3052
err_free_ib:
3053 3054
	srp_free_target_ib(target);

3055 3056 3057
err_free_mem:
	srp_free_req_data(target);

3058 3059
err:
	scsi_host_put(target_host);
3060
	goto out;
3061 3062
}

3063
static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3064

3065 3066
static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
			  char *buf)
3067
{
3068
	struct srp_host *host = container_of(dev, struct srp_host, dev);
3069

3070
	return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3071 3072
}

3073
static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3074

3075 3076
static ssize_t show_port(struct device *dev, struct device_attribute *attr,
			 char *buf)
3077
{
3078
	struct srp_host *host = container_of(dev, struct srp_host, dev);
3079 3080 3081 3082

	return sprintf(buf, "%d\n", host->port);
}

3083
static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3084

3085
static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3086 3087 3088 3089 3090 3091 3092 3093
{
	struct srp_host *host;

	host = kzalloc(sizeof *host, GFP_KERNEL);
	if (!host)
		return NULL;

	INIT_LIST_HEAD(&host->target_list);
3094
	spin_lock_init(&host->target_lock);
3095
	init_completion(&host->released);
3096
	mutex_init(&host->add_target_mutex);
3097
	host->srp_dev = device;
3098 3099
	host->port = port;

3100 3101
	host->dev.class = &srp_class;
	host->dev.parent = device->dev->dma_device;
3102
	dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3103

3104
	if (device_register(&host->dev))
3105
		goto free_host;
3106
	if (device_create_file(&host->dev, &dev_attr_add_target))
3107
		goto err_class;
3108
	if (device_create_file(&host->dev, &dev_attr_ibdev))
3109
		goto err_class;
3110
	if (device_create_file(&host->dev, &dev_attr_port))
3111 3112 3113 3114 3115
		goto err_class;

	return host;

err_class:
3116
	device_unregister(&host->dev);
3117

3118
free_host:
3119 3120 3121 3122 3123 3124 3125
	kfree(host);

	return NULL;
}

static void srp_add_one(struct ib_device *device)
{
3126 3127
	struct srp_device *srp_dev;
	struct ib_device_attr *dev_attr;
3128
	struct srp_host *host;
3129 3130
	int mr_page_shift, s, e, p;
	u64 max_pages_per_mr;
3131

3132 3133
	dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL);
	if (!dev_attr)
3134
		return;
3135

3136
	if (ib_query_device(device, dev_attr)) {
3137
		pr_warn("Query device failed for %s\n", device->name);
3138 3139 3140 3141 3142 3143 3144
		goto free_attr;
	}

	srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL);
	if (!srp_dev)
		goto free_attr;

3145 3146
	srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
			    device->map_phys_fmr && device->unmap_fmr);
3147 3148 3149 3150 3151 3152 3153
	srp_dev->has_fr = (dev_attr->device_cap_flags &
			   IB_DEVICE_MEM_MGT_EXTENSIONS);
	if (!srp_dev->has_fmr && !srp_dev->has_fr)
		dev_warn(&device->dev, "neither FMR nor FR is supported\n");

	srp_dev->use_fast_reg = (srp_dev->has_fr &&
				 (!srp_dev->has_fmr || prefer_fr));
3154

3155 3156
	/*
	 * Use the smallest page size supported by the HCA, down to a
3157 3158
	 * minimum of 4096 bytes. We're unlikely to build large sglists
	 * out of smaller entries.
3159
	 */
3160 3161 3162 3163 3164 3165 3166
	mr_page_shift		= max(12, ffs(dev_attr->page_size_cap) - 1);
	srp_dev->mr_page_size	= 1 << mr_page_shift;
	srp_dev->mr_page_mask	= ~((u64) srp_dev->mr_page_size - 1);
	max_pages_per_mr	= dev_attr->max_mr_size;
	do_div(max_pages_per_mr, srp_dev->mr_page_size);
	srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
					  max_pages_per_mr);
3167 3168 3169 3170 3171
	if (srp_dev->use_fast_reg) {
		srp_dev->max_pages_per_mr =
			min_t(u32, srp_dev->max_pages_per_mr,
			      dev_attr->max_fast_reg_page_list_len);
	}
3172 3173
	srp_dev->mr_max_size	= srp_dev->mr_page_size *
				   srp_dev->max_pages_per_mr;
3174
	pr_debug("%s: mr_page_shift = %d, dev_attr->max_mr_size = %#llx, dev_attr->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3175
		 device->name, mr_page_shift, dev_attr->max_mr_size,
3176
		 dev_attr->max_fast_reg_page_list_len,
3177
		 srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192

	INIT_LIST_HEAD(&srp_dev->dev_list);

	srp_dev->dev = device;
	srp_dev->pd  = ib_alloc_pd(device);
	if (IS_ERR(srp_dev->pd))
		goto free_dev;

	srp_dev->mr = ib_get_dma_mr(srp_dev->pd,
				    IB_ACCESS_LOCAL_WRITE |
				    IB_ACCESS_REMOTE_READ |
				    IB_ACCESS_REMOTE_WRITE);
	if (IS_ERR(srp_dev->mr))
		goto err_pd;

T
Tom Tucker 已提交
3193
	if (device->node_type == RDMA_NODE_IB_SWITCH) {
3194 3195 3196 3197 3198 3199 3200 3201
		s = 0;
		e = 0;
	} else {
		s = 1;
		e = device->phys_port_cnt;
	}

	for (p = s; p <= e; ++p) {
3202
		host = srp_add_port(srp_dev, p);
3203
		if (host)
3204
			list_add_tail(&host->list, &srp_dev->dev_list);
3205 3206
	}

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
	ib_set_client_data(device, &srp_client, srp_dev);

	goto free_attr;

err_pd:
	ib_dealloc_pd(srp_dev->pd);

free_dev:
	kfree(srp_dev);

free_attr:
	kfree(dev_attr);
3219 3220 3221 3222
}

static void srp_remove_one(struct ib_device *device)
{
3223
	struct srp_device *srp_dev;
3224
	struct srp_host *host, *tmp_host;
3225
	struct srp_target_port *target;
3226

3227
	srp_dev = ib_get_client_data(device, &srp_client);
3228 3229
	if (!srp_dev)
		return;
3230

3231
	list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3232
		device_unregister(&host->dev);
3233 3234 3235 3236 3237 3238 3239
		/*
		 * Wait for the sysfs entry to go away, so that no new
		 * target ports can be created.
		 */
		wait_for_completion(&host->released);

		/*
3240
		 * Remove all target ports.
3241
		 */
3242
		spin_lock(&host->target_lock);
3243 3244
		list_for_each_entry(target, &host->target_list, list)
			srp_queue_remove_work(target);
3245
		spin_unlock(&host->target_lock);
3246 3247

		/*
3248
		 * Wait for tl_err and target port removal tasks.
3249
		 */
3250
		flush_workqueue(system_long_wq);
3251
		flush_workqueue(srp_remove_wq);
3252 3253 3254 3255

		kfree(host);
	}

3256 3257 3258 3259
	ib_dereg_mr(srp_dev->mr);
	ib_dealloc_pd(srp_dev->pd);

	kfree(srp_dev);
3260 3261
}

3262
static struct srp_function_template ib_srp_transport_functions = {
3263 3264
	.has_rport_state	 = true,
	.reset_timer_if_blocked	 = true,
3265
	.reconnect_delay	 = &srp_reconnect_delay,
3266 3267 3268
	.fast_io_fail_tmo	 = &srp_fast_io_fail_tmo,
	.dev_loss_tmo		 = &srp_dev_loss_tmo,
	.reconnect		 = srp_rport_reconnect,
3269
	.rport_delete		 = srp_rport_delete,
3270
	.terminate_rport_io	 = srp_terminate_io,
3271 3272
};

3273 3274 3275 3276
static int __init srp_init_module(void)
{
	int ret;

3277
	BUILD_BUG_ON(FIELD_SIZEOF(struct ib_wc, wr_id) < sizeof(void *));
3278

3279
	if (srp_sg_tablesize) {
3280
		pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3281 3282 3283 3284 3285 3286 3287 3288
		if (!cmd_sg_entries)
			cmd_sg_entries = srp_sg_tablesize;
	}

	if (!cmd_sg_entries)
		cmd_sg_entries = SRP_DEF_SG_TABLESIZE;

	if (cmd_sg_entries > 255) {
3289
		pr_warn("Clamping cmd_sg_entries to 255\n");
3290
		cmd_sg_entries = 255;
3291 3292
	}

3293 3294 3295
	if (!indirect_sg_entries)
		indirect_sg_entries = cmd_sg_entries;
	else if (indirect_sg_entries < cmd_sg_entries) {
3296 3297
		pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
			cmd_sg_entries);
3298 3299 3300
		indirect_sg_entries = cmd_sg_entries;
	}

3301
	srp_remove_wq = create_workqueue("srp_remove");
3302 3303
	if (!srp_remove_wq) {
		ret = -ENOMEM;
3304 3305 3306 3307
		goto out;
	}

	ret = -ENOMEM;
3308 3309 3310
	ib_srp_transport_template =
		srp_attach_transport(&ib_srp_transport_functions);
	if (!ib_srp_transport_template)
3311
		goto destroy_wq;
3312

3313 3314
	ret = class_register(&srp_class);
	if (ret) {
3315
		pr_err("couldn't register class infiniband_srp\n");
3316
		goto release_tr;
3317 3318
	}

3319 3320
	ib_sa_register_client(&srp_sa_client);

3321 3322
	ret = ib_register_client(&srp_client);
	if (ret) {
3323
		pr_err("couldn't register IB client\n");
3324
		goto unreg_sa;
3325 3326
	}

3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
out:
	return ret;

unreg_sa:
	ib_sa_unregister_client(&srp_sa_client);
	class_unregister(&srp_class);

release_tr:
	srp_release_transport(ib_srp_transport_template);

destroy_wq:
	destroy_workqueue(srp_remove_wq);
	goto out;
3340 3341 3342 3343 3344
}

static void __exit srp_cleanup_module(void)
{
	ib_unregister_client(&srp_client);
3345
	ib_sa_unregister_client(&srp_sa_client);
3346
	class_unregister(&srp_class);
3347
	srp_release_transport(ib_srp_transport_template);
3348
	destroy_workqueue(srp_remove_wq);
3349 3350 3351 3352
}

module_init(srp_init_module);
module_exit(srp_cleanup_module);