stm32-dcmi.c 33.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Driver for STM32 Digital Camera Memory Interface
 *
 * Copyright (C) STMicroelectronics SA 2017
 * Authors: Yannick Fertre <yannick.fertre@st.com>
 *          Hugues Fruchet <hugues.fruchet@st.com>
 *          for STMicroelectronics.
 * License terms:  GNU General Public License (GPL), version 2
 *
 * This driver is based on atmel_isi.c
 *
 */

#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
24
#include <linux/of_graph.h>
25 26 27 28 29 30 31 32
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/videodev2.h>

#include <media/v4l2-ctrls.h>
#include <media/v4l2-dev.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
33
#include <media/v4l2-fwnode.h>
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
#include <media/v4l2-image-sizes.h>
#include <media/v4l2-ioctl.h>
#include <media/videobuf2-dma-contig.h>

#define DRV_NAME "stm32-dcmi"

/* Registers offset for DCMI */
#define DCMI_CR		0x00 /* Control Register */
#define DCMI_SR		0x04 /* Status Register */
#define DCMI_RIS	0x08 /* Raw Interrupt Status register */
#define DCMI_IER	0x0C /* Interrupt Enable Register */
#define DCMI_MIS	0x10 /* Masked Interrupt Status register */
#define DCMI_ICR	0x14 /* Interrupt Clear Register */
#define DCMI_ESCR	0x18 /* Embedded Synchronization Code Register */
#define DCMI_ESUR	0x1C /* Embedded Synchronization Unmask Register */
#define DCMI_CWSTRT	0x20 /* Crop Window STaRT */
#define DCMI_CWSIZE	0x24 /* Crop Window SIZE */
#define DCMI_DR		0x28 /* Data Register */
#define DCMI_IDR	0x2C /* IDentifier Register */

/* Bits definition for control register (DCMI_CR) */
#define CR_CAPTURE	BIT(0)
#define CR_CM		BIT(1)
#define CR_CROP		BIT(2)
#define CR_JPEG		BIT(3)
#define CR_ESS		BIT(4)
#define CR_PCKPOL	BIT(5)
#define CR_HSPOL	BIT(6)
#define CR_VSPOL	BIT(7)
#define CR_FCRC_0	BIT(8)
#define CR_FCRC_1	BIT(9)
#define CR_EDM_0	BIT(10)
#define CR_EDM_1	BIT(11)
#define CR_ENABLE	BIT(14)

/* Bits definition for status register (DCMI_SR) */
#define SR_HSYNC	BIT(0)
#define SR_VSYNC	BIT(1)
#define SR_FNE		BIT(2)

/*
 * Bits definition for interrupt registers
 * (DCMI_RIS, DCMI_IER, DCMI_MIS, DCMI_ICR)
 */
#define IT_FRAME	BIT(0)
#define IT_OVR		BIT(1)
#define IT_ERR		BIT(2)
#define IT_VSYNC	BIT(3)
#define IT_LINE		BIT(4)

enum state {
	STOPPED = 0,
	RUNNING,
	STOPPING,
};

#define MIN_WIDTH	16U
#define MAX_WIDTH	2048U
#define MIN_HEIGHT	16U
#define MAX_HEIGHT	2048U

#define TIMEOUT_MS	1000

struct dcmi_graph_entity {
	struct device_node *node;

	struct v4l2_async_subdev asd;
	struct v4l2_subdev *subdev;
};

struct dcmi_format {
	u32	fourcc;
	u32	mbus_code;
	u8	bpp;
};

struct dcmi_buf {
	struct vb2_v4l2_buffer	vb;
	bool			prepared;
	dma_addr_t		paddr;
	size_t			size;
	struct list_head	list;
};

struct stm32_dcmi {
	/* Protects the access of variables shared within the interrupt */
	spinlock_t			irqlock;
	struct device			*dev;
	void __iomem			*regs;
	struct resource			*res;
	struct reset_control		*rstc;
	int				sequence;
	struct list_head		buffers;
	struct dcmi_buf			*active;

	struct v4l2_device		v4l2_dev;
	struct video_device		*vdev;
	struct v4l2_async_notifier	notifier;
	struct dcmi_graph_entity	entity;
	struct v4l2_format		fmt;

135 136 137
	const struct dcmi_format	**sd_formats;
	unsigned int			num_of_sd_formats;
	const struct dcmi_format	*sd_format;
138 139 140 141 142

	/* Protect this data structure */
	struct mutex			lock;
	struct vb2_queue		queue;

143
	struct v4l2_fwnode_bus_parallel	bus;
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
	struct completion		complete;
	struct clk			*mclk;
	enum state			state;
	struct dma_chan			*dma_chan;
	dma_cookie_t			dma_cookie;
	u32				misr;
	int				errors_count;
	int				buffers_count;
};

static inline struct stm32_dcmi *notifier_to_dcmi(struct v4l2_async_notifier *n)
{
	return container_of(n, struct stm32_dcmi, notifier);
}

static inline u32 reg_read(void __iomem *base, u32 reg)
{
	return readl_relaxed(base + reg);
}

static inline void reg_write(void __iomem *base, u32 reg, u32 val)
{
	writel_relaxed(val, base + reg);
}

static inline void reg_set(void __iomem *base, u32 reg, u32 mask)
{
	reg_write(base, reg, reg_read(base, reg) | mask);
}

static inline void reg_clear(void __iomem *base, u32 reg, u32 mask)
{
	reg_write(base, reg, reg_read(base, reg) & ~mask);
}

static int dcmi_start_capture(struct stm32_dcmi *dcmi);

static void dcmi_dma_callback(void *param)
{
	struct stm32_dcmi *dcmi = (struct stm32_dcmi *)param;
	struct dma_chan *chan = dcmi->dma_chan;
	struct dma_tx_state state;
	enum dma_status status;

	spin_lock(&dcmi->irqlock);

	/* Check DMA status */
	status = dmaengine_tx_status(chan, dcmi->dma_cookie, &state);

	switch (status) {
	case DMA_IN_PROGRESS:
		dev_dbg(dcmi->dev, "%s: Received DMA_IN_PROGRESS\n", __func__);
		break;
	case DMA_PAUSED:
		dev_err(dcmi->dev, "%s: Received DMA_PAUSED\n", __func__);
		break;
	case DMA_ERROR:
		dev_err(dcmi->dev, "%s: Received DMA_ERROR\n", __func__);
		break;
	case DMA_COMPLETE:
		dev_dbg(dcmi->dev, "%s: Received DMA_COMPLETE\n", __func__);

		if (dcmi->active) {
			struct dcmi_buf *buf = dcmi->active;
			struct vb2_v4l2_buffer *vbuf = &dcmi->active->vb;

			vbuf->sequence = dcmi->sequence++;
			vbuf->field = V4L2_FIELD_NONE;
			vbuf->vb2_buf.timestamp = ktime_get_ns();
			vb2_set_plane_payload(&vbuf->vb2_buf, 0, buf->size);
			vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE);
			dev_dbg(dcmi->dev, "buffer[%d] done seq=%d\n",
				vbuf->vb2_buf.index, vbuf->sequence);

			dcmi->buffers_count++;
			dcmi->active = NULL;
		}

		/* Restart a new DMA transfer with next buffer */
		if (dcmi->state == RUNNING) {
			if (list_empty(&dcmi->buffers)) {
				dev_err(dcmi->dev, "%s: No more buffer queued, cannot capture buffer",
					__func__);
				dcmi->errors_count++;
				dcmi->active = NULL;

				spin_unlock(&dcmi->irqlock);
				return;
			}

			dcmi->active = list_entry(dcmi->buffers.next,
						  struct dcmi_buf, list);

			list_del_init(&dcmi->active->list);

			if (dcmi_start_capture(dcmi)) {
				dev_err(dcmi->dev, "%s: Cannot restart capture on DMA complete",
					__func__);

				spin_unlock(&dcmi->irqlock);
				return;
			}

			/* Enable capture */
			reg_set(dcmi->regs, DCMI_CR, CR_CAPTURE);
		}

		break;
	default:
		dev_err(dcmi->dev, "%s: Received unknown status\n", __func__);
		break;
	}

	spin_unlock(&dcmi->irqlock);
}

static int dcmi_start_dma(struct stm32_dcmi *dcmi,
			  struct dcmi_buf *buf)
{
	struct dma_async_tx_descriptor *desc = NULL;
	struct dma_slave_config config;
	int ret;

	memset(&config, 0, sizeof(config));

	config.src_addr = (dma_addr_t)dcmi->res->start + DCMI_DR;
	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	config.dst_maxburst = 4;

	/* Configure DMA channel */
	ret = dmaengine_slave_config(dcmi->dma_chan, &config);
	if (ret < 0) {
		dev_err(dcmi->dev, "%s: DMA channel config failed (%d)\n",
			__func__, ret);
		return ret;
	}

	/* Prepare a DMA transaction */
	desc = dmaengine_prep_slave_single(dcmi->dma_chan, buf->paddr,
					   buf->size,
					   DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
	if (!desc) {
		dev_err(dcmi->dev, "%s: DMA dmaengine_prep_slave_single failed for buffer size %zu\n",
			__func__, buf->size);
		return -EINVAL;
	}

	/* Set completion callback routine for notification */
	desc->callback = dcmi_dma_callback;
	desc->callback_param = dcmi;

	/* Push current DMA transaction in the pending queue */
	dcmi->dma_cookie = dmaengine_submit(desc);
298 299 300 301
	if (dma_submit_error(dcmi->dma_cookie)) {
		dev_err(dcmi->dev, "%s: DMA submission failed\n", __func__);
		return -ENXIO;
	}
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492

	dma_async_issue_pending(dcmi->dma_chan);

	return 0;
}

static int dcmi_start_capture(struct stm32_dcmi *dcmi)
{
	int ret;
	struct dcmi_buf *buf = dcmi->active;

	if (!buf)
		return -EINVAL;

	ret = dcmi_start_dma(dcmi, buf);
	if (ret) {
		dcmi->errors_count++;
		return ret;
	}

	/* Enable capture */
	reg_set(dcmi->regs, DCMI_CR, CR_CAPTURE);

	return 0;
}

static irqreturn_t dcmi_irq_thread(int irq, void *arg)
{
	struct stm32_dcmi *dcmi = arg;

	spin_lock(&dcmi->irqlock);

	/* Stop capture is required */
	if (dcmi->state == STOPPING) {
		reg_clear(dcmi->regs, DCMI_IER, IT_FRAME | IT_OVR | IT_ERR);

		dcmi->state = STOPPED;

		complete(&dcmi->complete);

		spin_unlock(&dcmi->irqlock);
		return IRQ_HANDLED;
	}

	if ((dcmi->misr & IT_OVR) || (dcmi->misr & IT_ERR)) {
		/*
		 * An overflow or an error has been detected,
		 * stop current DMA transfert & restart it
		 */
		dev_warn(dcmi->dev, "%s: Overflow or error detected\n",
			 __func__);

		dcmi->errors_count++;
		dmaengine_terminate_all(dcmi->dma_chan);

		reg_set(dcmi->regs, DCMI_ICR, IT_FRAME | IT_OVR | IT_ERR);

		dev_dbg(dcmi->dev, "Restarting capture after DCMI error\n");

		if (dcmi_start_capture(dcmi)) {
			dev_err(dcmi->dev, "%s: Cannot restart capture on overflow or error\n",
				__func__);

			spin_unlock(&dcmi->irqlock);
			return IRQ_HANDLED;
		}
	}

	spin_unlock(&dcmi->irqlock);
	return IRQ_HANDLED;
}

static irqreturn_t dcmi_irq_callback(int irq, void *arg)
{
	struct stm32_dcmi *dcmi = arg;

	spin_lock(&dcmi->irqlock);

	dcmi->misr = reg_read(dcmi->regs, DCMI_MIS);

	/* Clear interrupt */
	reg_set(dcmi->regs, DCMI_ICR, IT_FRAME | IT_OVR | IT_ERR);

	spin_unlock(&dcmi->irqlock);

	return IRQ_WAKE_THREAD;
}

static int dcmi_queue_setup(struct vb2_queue *vq,
			    unsigned int *nbuffers,
			    unsigned int *nplanes,
			    unsigned int sizes[],
			    struct device *alloc_devs[])
{
	struct stm32_dcmi *dcmi = vb2_get_drv_priv(vq);
	unsigned int size;

	size = dcmi->fmt.fmt.pix.sizeimage;

	/* Make sure the image size is large enough */
	if (*nplanes)
		return sizes[0] < size ? -EINVAL : 0;

	*nplanes = 1;
	sizes[0] = size;

	dcmi->active = NULL;

	dev_dbg(dcmi->dev, "Setup queue, count=%d, size=%d\n",
		*nbuffers, size);

	return 0;
}

static int dcmi_buf_init(struct vb2_buffer *vb)
{
	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
	struct dcmi_buf *buf = container_of(vbuf, struct dcmi_buf, vb);

	INIT_LIST_HEAD(&buf->list);

	return 0;
}

static int dcmi_buf_prepare(struct vb2_buffer *vb)
{
	struct stm32_dcmi *dcmi =  vb2_get_drv_priv(vb->vb2_queue);
	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
	struct dcmi_buf *buf = container_of(vbuf, struct dcmi_buf, vb);
	unsigned long size;

	size = dcmi->fmt.fmt.pix.sizeimage;

	if (vb2_plane_size(vb, 0) < size) {
		dev_err(dcmi->dev, "%s data will not fit into plane (%lu < %lu)\n",
			__func__, vb2_plane_size(vb, 0), size);
		return -EINVAL;
	}

	vb2_set_plane_payload(vb, 0, size);

	if (!buf->prepared) {
		/* Get memory addresses */
		buf->paddr =
			vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0);
		buf->size = vb2_plane_size(&buf->vb.vb2_buf, 0);
		buf->prepared = true;

		vb2_set_plane_payload(&buf->vb.vb2_buf, 0, buf->size);

		dev_dbg(dcmi->dev, "buffer[%d] phy=0x%pad size=%zu\n",
			vb->index, &buf->paddr, buf->size);
	}

	return 0;
}

static void dcmi_buf_queue(struct vb2_buffer *vb)
{
	struct stm32_dcmi *dcmi =  vb2_get_drv_priv(vb->vb2_queue);
	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
	struct dcmi_buf *buf = container_of(vbuf, struct dcmi_buf, vb);
	unsigned long flags = 0;

	spin_lock_irqsave(&dcmi->irqlock, flags);

	if ((dcmi->state == RUNNING) && (!dcmi->active)) {
		dcmi->active = buf;

		dev_dbg(dcmi->dev, "Starting capture on buffer[%d] queued\n",
			buf->vb.vb2_buf.index);

		if (dcmi_start_capture(dcmi)) {
			dev_err(dcmi->dev, "%s: Cannot restart capture on overflow or error\n",
				__func__);

			spin_unlock_irqrestore(&dcmi->irqlock, flags);
			return;
		}
	} else {
		/* Enqueue to video buffers list */
		list_add_tail(&buf->list, &dcmi->buffers);
	}

	spin_unlock_irqrestore(&dcmi->irqlock, flags);
}

static int dcmi_start_streaming(struct vb2_queue *vq, unsigned int count)
{
	struct stm32_dcmi *dcmi = vb2_get_drv_priv(vq);
	struct dcmi_buf *buf, *node;
493
	u32 val = 0;
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
	int ret;

	ret = clk_enable(dcmi->mclk);
	if (ret) {
		dev_err(dcmi->dev, "%s: Failed to start streaming, cannot enable clock",
			__func__);
		goto err_release_buffers;
	}

	/* Enable stream on the sub device */
	ret = v4l2_subdev_call(dcmi->entity.subdev, video, s_stream, 1);
	if (ret && ret != -ENOIOCTLCMD) {
		dev_err(dcmi->dev, "%s: Failed to start streaming, subdev streamon error",
			__func__);
		goto err_disable_clock;
	}

	spin_lock_irq(&dcmi->irqlock);

	/* Set bus width */
	switch (dcmi->bus.bus_width) {
	case 14:
516
		val |= CR_EDM_0 | CR_EDM_1;
517 518
		break;
	case 12:
519
		val |= CR_EDM_1;
520 521
		break;
	case 10:
522
		val |= CR_EDM_0;
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
		break;
	default:
		/* Set bus width to 8 bits by default */
		break;
	}

	/* Set vertical synchronization polarity */
	if (dcmi->bus.flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
		val |= CR_VSPOL;

	/* Set horizontal synchronization polarity */
	if (dcmi->bus.flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
		val |= CR_HSPOL;

	/* Set pixel clock polarity */
	if (dcmi->bus.flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
		val |= CR_PCKPOL;

	reg_write(dcmi->regs, DCMI_CR, val);

	/* Enable dcmi */
	reg_set(dcmi->regs, DCMI_CR, CR_ENABLE);

	dcmi->state = RUNNING;

	dcmi->sequence = 0;
	dcmi->errors_count = 0;
	dcmi->buffers_count = 0;
	dcmi->active = NULL;

	/*
	 * Start transfer if at least one buffer has been queued,
	 * otherwise transfer is deferred at buffer queueing
	 */
	if (list_empty(&dcmi->buffers)) {
		dev_dbg(dcmi->dev, "Start streaming is deferred to next buffer queueing\n");
		spin_unlock_irq(&dcmi->irqlock);
		return 0;
	}

	dcmi->active = list_entry(dcmi->buffers.next, struct dcmi_buf, list);
	list_del_init(&dcmi->active->list);

	dev_dbg(dcmi->dev, "Start streaming, starting capture\n");

	ret = dcmi_start_capture(dcmi);
	if (ret) {
		dev_err(dcmi->dev, "%s: Start streaming failed, cannot start capture",
			__func__);

		spin_unlock_irq(&dcmi->irqlock);
		goto err_subdev_streamoff;
	}

	/* Enable interruptions */
	reg_set(dcmi->regs, DCMI_IER, IT_FRAME | IT_OVR | IT_ERR);

	spin_unlock_irq(&dcmi->irqlock);

	return 0;

err_subdev_streamoff:
	v4l2_subdev_call(dcmi->entity.subdev, video, s_stream, 0);

err_disable_clock:
	clk_disable(dcmi->mclk);

err_release_buffers:
	spin_lock_irq(&dcmi->irqlock);
	/*
	 * Return all buffers to vb2 in QUEUED state.
	 * This will give ownership back to userspace
	 */
	if (dcmi->active) {
		buf = dcmi->active;
		vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_QUEUED);
		dcmi->active = NULL;
	}
	list_for_each_entry_safe(buf, node, &dcmi->buffers, list) {
		list_del_init(&buf->list);
		vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_QUEUED);
	}
	spin_unlock_irq(&dcmi->irqlock);

	return ret;
}

static void dcmi_stop_streaming(struct vb2_queue *vq)
{
	struct stm32_dcmi *dcmi = vb2_get_drv_priv(vq);
	struct dcmi_buf *buf, *node;
	unsigned long time_ms = msecs_to_jiffies(TIMEOUT_MS);
	long timeout;
	int ret;

	/* Disable stream on the sub device */
	ret = v4l2_subdev_call(dcmi->entity.subdev, video, s_stream, 0);
	if (ret && ret != -ENOIOCTLCMD)
		dev_err(dcmi->dev, "stream off failed in subdev\n");

	dcmi->state = STOPPING;

	timeout = wait_for_completion_interruptible_timeout(&dcmi->complete,
							    time_ms);

	spin_lock_irq(&dcmi->irqlock);

	/* Disable interruptions */
	reg_clear(dcmi->regs, DCMI_IER, IT_FRAME | IT_OVR | IT_ERR);

	/* Disable DCMI */
	reg_clear(dcmi->regs, DCMI_CR, CR_ENABLE);

	if (!timeout) {
		dev_err(dcmi->dev, "Timeout during stop streaming\n");
		dcmi->state = STOPPED;
	}

	/* Return all queued buffers to vb2 in ERROR state */
	if (dcmi->active) {
		buf = dcmi->active;
		vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
		dcmi->active = NULL;
	}
	list_for_each_entry_safe(buf, node, &dcmi->buffers, list) {
		list_del_init(&buf->list);
		vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
	}

	spin_unlock_irq(&dcmi->irqlock);

	/* Stop all pending DMA operations */
	dmaengine_terminate_all(dcmi->dma_chan);

	clk_disable(dcmi->mclk);

	dev_dbg(dcmi->dev, "Stop streaming, errors=%d buffers=%d\n",
		dcmi->errors_count, dcmi->buffers_count);
}

663
static const struct vb2_ops dcmi_video_qops = {
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	.queue_setup		= dcmi_queue_setup,
	.buf_init		= dcmi_buf_init,
	.buf_prepare		= dcmi_buf_prepare,
	.buf_queue		= dcmi_buf_queue,
	.start_streaming	= dcmi_start_streaming,
	.stop_streaming		= dcmi_stop_streaming,
	.wait_prepare		= vb2_ops_wait_prepare,
	.wait_finish		= vb2_ops_wait_finish,
};

static int dcmi_g_fmt_vid_cap(struct file *file, void *priv,
			      struct v4l2_format *fmt)
{
	struct stm32_dcmi *dcmi = video_drvdata(file);

	*fmt = dcmi->fmt;

	return 0;
}

static const struct dcmi_format *find_format_by_fourcc(struct stm32_dcmi *dcmi,
						       unsigned int fourcc)
{
687
	unsigned int num_formats = dcmi->num_of_sd_formats;
688 689 690 691
	const struct dcmi_format *fmt;
	unsigned int i;

	for (i = 0; i < num_formats; i++) {
692
		fmt = dcmi->sd_formats[i];
693 694 695 696 697 698 699 700
		if (fmt->fourcc == fourcc)
			return fmt;
	}

	return NULL;
}

static int dcmi_try_fmt(struct stm32_dcmi *dcmi, struct v4l2_format *f,
701
			const struct dcmi_format **sd_format)
702
{
703 704
	const struct dcmi_format *sd_fmt;
	struct v4l2_pix_format *pix = &f->fmt.pix;
705 706 707 708 709 710
	struct v4l2_subdev_pad_config pad_cfg;
	struct v4l2_subdev_format format = {
		.which = V4L2_SUBDEV_FORMAT_TRY,
	};
	int ret;

711 712 713 714
	sd_fmt = find_format_by_fourcc(dcmi, pix->pixelformat);
	if (!sd_fmt) {
		sd_fmt = dcmi->sd_formats[dcmi->num_of_sd_formats - 1];
		pix->pixelformat = sd_fmt->fourcc;
715 716 717
	}

	/* Limit to hardware capabilities */
718 719
	pix->width = clamp(pix->width, MIN_WIDTH, MAX_WIDTH);
	pix->height = clamp(pix->height, MIN_HEIGHT, MAX_HEIGHT);
720

721
	v4l2_fill_mbus_format(&format.format, pix, sd_fmt->mbus_code);
722 723 724 725 726
	ret = v4l2_subdev_call(dcmi->entity.subdev, pad, set_fmt,
			       &pad_cfg, &format);
	if (ret < 0)
		return ret;

727 728
	/* Update pix regarding to what sensor can do */
	v4l2_fill_pix_format(pix, &format.format);
729 730


731 732 733 734 735 736
	pix->field = V4L2_FIELD_NONE;
	pix->bytesperline = pix->width * sd_fmt->bpp;
	pix->sizeimage = pix->bytesperline * pix->height;

	if (sd_format)
		*sd_format = sd_fmt;
737 738 739 740 741 742 743 744 745

	return 0;
}

static int dcmi_set_fmt(struct stm32_dcmi *dcmi, struct v4l2_format *f)
{
	struct v4l2_subdev_format format = {
		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
	};
746 747 748
	const struct dcmi_format *sd_format;
	struct v4l2_mbus_framefmt *mf = &format.format;
	struct v4l2_pix_format *pix = &f->fmt.pix;
749 750
	int ret;

751
	ret = dcmi_try_fmt(dcmi, f, &sd_format);
752 753 754
	if (ret)
		return ret;

755 756 757
	/* pix to mbus format */
	v4l2_fill_mbus_format(mf, pix,
			      sd_format->mbus_code);
758 759 760 761 762 763
	ret = v4l2_subdev_call(dcmi->entity.subdev, pad,
			       set_fmt, NULL, &format);
	if (ret < 0)
		return ret;

	dcmi->fmt = *f;
764
	dcmi->sd_format = sd_format;
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792

	return 0;
}

static int dcmi_s_fmt_vid_cap(struct file *file, void *priv,
			      struct v4l2_format *f)
{
	struct stm32_dcmi *dcmi = video_drvdata(file);

	if (vb2_is_streaming(&dcmi->queue))
		return -EBUSY;

	return dcmi_set_fmt(dcmi, f);
}

static int dcmi_try_fmt_vid_cap(struct file *file, void *priv,
				struct v4l2_format *f)
{
	struct stm32_dcmi *dcmi = video_drvdata(file);

	return dcmi_try_fmt(dcmi, f, NULL);
}

static int dcmi_enum_fmt_vid_cap(struct file *file, void  *priv,
				 struct v4l2_fmtdesc *f)
{
	struct stm32_dcmi *dcmi = video_drvdata(file);

793
	if (f->index >= dcmi->num_of_sd_formats)
794 795
		return -EINVAL;

796
	f->pixelformat = dcmi->sd_formats[f->index]->fourcc;
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	return 0;
}

static int dcmi_querycap(struct file *file, void *priv,
			 struct v4l2_capability *cap)
{
	strlcpy(cap->driver, DRV_NAME, sizeof(cap->driver));
	strlcpy(cap->card, "STM32 Camera Memory Interface",
		sizeof(cap->card));
	strlcpy(cap->bus_info, "platform:dcmi", sizeof(cap->bus_info));
	return 0;
}

static int dcmi_enum_input(struct file *file, void *priv,
			   struct v4l2_input *i)
{
	if (i->index != 0)
		return -EINVAL;

	i->type = V4L2_INPUT_TYPE_CAMERA;
	strlcpy(i->name, "Camera", sizeof(i->name));
	return 0;
}

static int dcmi_g_input(struct file *file, void *priv, unsigned int *i)
{
	*i = 0;
	return 0;
}

static int dcmi_s_input(struct file *file, void *priv, unsigned int i)
{
	if (i > 0)
		return -EINVAL;
	return 0;
}

static int dcmi_enum_framesizes(struct file *file, void *fh,
				struct v4l2_frmsizeenum *fsize)
{
	struct stm32_dcmi *dcmi = video_drvdata(file);
838
	const struct dcmi_format *sd_fmt;
839 840 841 842 843 844
	struct v4l2_subdev_frame_size_enum fse = {
		.index = fsize->index,
		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
	};
	int ret;

845 846
	sd_fmt = find_format_by_fourcc(dcmi, fsize->pixel_format);
	if (!sd_fmt)
847 848
		return -EINVAL;

849
	fse.code = sd_fmt->mbus_code;
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

	ret = v4l2_subdev_call(dcmi->entity.subdev, pad, enum_frame_size,
			       NULL, &fse);
	if (ret)
		return ret;

	fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
	fsize->discrete.width = fse.max_width;
	fsize->discrete.height = fse.max_height;

	return 0;
}

static int dcmi_enum_frameintervals(struct file *file, void *fh,
				    struct v4l2_frmivalenum *fival)
{
	struct stm32_dcmi *dcmi = video_drvdata(file);
867
	const struct dcmi_format *sd_fmt;
868 869 870 871 872 873 874 875
	struct v4l2_subdev_frame_interval_enum fie = {
		.index = fival->index,
		.width = fival->width,
		.height = fival->height,
		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
	};
	int ret;

876 877
	sd_fmt = find_format_by_fourcc(dcmi, fival->pixel_format);
	if (!sd_fmt)
878 879
		return -EINVAL;

880
	fie.code = sd_fmt->mbus_code;
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001

	ret = v4l2_subdev_call(dcmi->entity.subdev, pad,
			       enum_frame_interval, NULL, &fie);
	if (ret)
		return ret;

	fival->type = V4L2_FRMIVAL_TYPE_DISCRETE;
	fival->discrete = fie.interval;

	return 0;
}

static const struct of_device_id stm32_dcmi_of_match[] = {
	{ .compatible = "st,stm32-dcmi"},
	{ /* end node */ },
};
MODULE_DEVICE_TABLE(of, stm32_dcmi_of_match);

static int dcmi_open(struct file *file)
{
	struct stm32_dcmi *dcmi = video_drvdata(file);
	struct v4l2_subdev *sd = dcmi->entity.subdev;
	int ret;

	if (mutex_lock_interruptible(&dcmi->lock))
		return -ERESTARTSYS;

	ret = v4l2_fh_open(file);
	if (ret < 0)
		goto unlock;

	if (!v4l2_fh_is_singular_file(file))
		goto fh_rel;

	ret = v4l2_subdev_call(sd, core, s_power, 1);
	if (ret < 0 && ret != -ENOIOCTLCMD)
		goto fh_rel;

	ret = dcmi_set_fmt(dcmi, &dcmi->fmt);
	if (ret)
		v4l2_subdev_call(sd, core, s_power, 0);
fh_rel:
	if (ret)
		v4l2_fh_release(file);
unlock:
	mutex_unlock(&dcmi->lock);
	return ret;
}

static int dcmi_release(struct file *file)
{
	struct stm32_dcmi *dcmi = video_drvdata(file);
	struct v4l2_subdev *sd = dcmi->entity.subdev;
	bool fh_singular;
	int ret;

	mutex_lock(&dcmi->lock);

	fh_singular = v4l2_fh_is_singular_file(file);

	ret = _vb2_fop_release(file, NULL);

	if (fh_singular)
		v4l2_subdev_call(sd, core, s_power, 0);

	mutex_unlock(&dcmi->lock);

	return ret;
}

static const struct v4l2_ioctl_ops dcmi_ioctl_ops = {
	.vidioc_querycap		= dcmi_querycap,

	.vidioc_try_fmt_vid_cap		= dcmi_try_fmt_vid_cap,
	.vidioc_g_fmt_vid_cap		= dcmi_g_fmt_vid_cap,
	.vidioc_s_fmt_vid_cap		= dcmi_s_fmt_vid_cap,
	.vidioc_enum_fmt_vid_cap	= dcmi_enum_fmt_vid_cap,

	.vidioc_enum_input		= dcmi_enum_input,
	.vidioc_g_input			= dcmi_g_input,
	.vidioc_s_input			= dcmi_s_input,

	.vidioc_enum_framesizes		= dcmi_enum_framesizes,
	.vidioc_enum_frameintervals	= dcmi_enum_frameintervals,

	.vidioc_reqbufs			= vb2_ioctl_reqbufs,
	.vidioc_create_bufs		= vb2_ioctl_create_bufs,
	.vidioc_querybuf		= vb2_ioctl_querybuf,
	.vidioc_qbuf			= vb2_ioctl_qbuf,
	.vidioc_dqbuf			= vb2_ioctl_dqbuf,
	.vidioc_expbuf			= vb2_ioctl_expbuf,
	.vidioc_prepare_buf		= vb2_ioctl_prepare_buf,
	.vidioc_streamon		= vb2_ioctl_streamon,
	.vidioc_streamoff		= vb2_ioctl_streamoff,

	.vidioc_log_status		= v4l2_ctrl_log_status,
	.vidioc_subscribe_event		= v4l2_ctrl_subscribe_event,
	.vidioc_unsubscribe_event	= v4l2_event_unsubscribe,
};

static const struct v4l2_file_operations dcmi_fops = {
	.owner		= THIS_MODULE,
	.unlocked_ioctl	= video_ioctl2,
	.open		= dcmi_open,
	.release	= dcmi_release,
	.poll		= vb2_fop_poll,
	.mmap		= vb2_fop_mmap,
#ifndef CONFIG_MMU
	.get_unmapped_area = vb2_fop_get_unmapped_area,
#endif
	.read		= vb2_fop_read,
};

static int dcmi_set_default_fmt(struct stm32_dcmi *dcmi)
{
	struct v4l2_format f = {
		.type = V4L2_BUF_TYPE_VIDEO_CAPTURE,
		.fmt.pix = {
			.width		= CIF_WIDTH,
			.height		= CIF_HEIGHT,
			.field		= V4L2_FIELD_NONE,
1002
			.pixelformat	= dcmi->sd_formats[0]->fourcc,
1003 1004 1005 1006 1007 1008 1009
		},
	};
	int ret;

	ret = dcmi_try_fmt(dcmi, &f, NULL);
	if (ret)
		return ret;
1010
	dcmi->sd_format = dcmi->sd_formats[0];
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	dcmi->fmt = f;
	return 0;
}

static const struct dcmi_format dcmi_formats[] = {
	{
		.fourcc = V4L2_PIX_FMT_RGB565,
		.mbus_code = MEDIA_BUS_FMT_RGB565_2X8_LE,
		.bpp = 2,
	}, {
		.fourcc = V4L2_PIX_FMT_YUYV,
		.mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
		.bpp = 2,
	}, {
		.fourcc = V4L2_PIX_FMT_UYVY,
		.mbus_code = MEDIA_BUS_FMT_UYVY8_2X8,
		.bpp = 2,
	},
};

static int dcmi_formats_init(struct stm32_dcmi *dcmi)
{
1033
	const struct dcmi_format *sd_fmts[ARRAY_SIZE(dcmi_formats)];
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	unsigned int num_fmts = 0, i, j;
	struct v4l2_subdev *subdev = dcmi->entity.subdev;
	struct v4l2_subdev_mbus_code_enum mbus_code = {
		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
	};

	while (!v4l2_subdev_call(subdev, pad, enum_mbus_code,
				 NULL, &mbus_code)) {
		for (i = 0; i < ARRAY_SIZE(dcmi_formats); i++) {
			if (dcmi_formats[i].mbus_code != mbus_code.code)
				continue;

			/* Code supported, have we got this fourcc yet? */
			for (j = 0; j < num_fmts; j++)
1048
				if (sd_fmts[j]->fourcc ==
1049 1050 1051 1052 1053
						dcmi_formats[i].fourcc)
					/* Already available */
					break;
			if (j == num_fmts)
				/* New */
1054
				sd_fmts[num_fmts++] = dcmi_formats + i;
1055 1056 1057 1058 1059 1060 1061
		}
		mbus_code.index++;
	}

	if (!num_fmts)
		return -ENXIO;

1062 1063 1064 1065 1066 1067
	dcmi->num_of_sd_formats = num_fmts;
	dcmi->sd_formats = devm_kcalloc(dcmi->dev,
					num_fmts, sizeof(struct dcmi_format *),
					GFP_KERNEL);
	if (!dcmi->sd_formats) {
		dev_err(dcmi->dev, "Could not allocate memory\n");
1068 1069 1070
		return -ENOMEM;
	}

1071
	memcpy(dcmi->sd_formats, sd_fmts,
1072
	       num_fmts * sizeof(struct dcmi_format *));
1073
	dcmi->sd_format = dcmi->sd_formats[0];
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

	return 0;
}

static int dcmi_graph_notify_complete(struct v4l2_async_notifier *notifier)
{
	struct stm32_dcmi *dcmi = notifier_to_dcmi(notifier);
	int ret;

	dcmi->vdev->ctrl_handler = dcmi->entity.subdev->ctrl_handler;
	ret = dcmi_formats_init(dcmi);
	if (ret) {
		dev_err(dcmi->dev, "No supported mediabus format found\n");
		return ret;
	}

	ret = dcmi_set_default_fmt(dcmi);
	if (ret) {
		dev_err(dcmi->dev, "Could not set default format\n");
		return ret;
	}

	ret = video_register_device(dcmi->vdev, VFL_TYPE_GRABBER, -1);
	if (ret) {
		dev_err(dcmi->dev, "Failed to register video device\n");
		return ret;
	}

	dev_dbg(dcmi->dev, "Device registered as %s\n",
		video_device_node_name(dcmi->vdev));
	return 0;
}

static void dcmi_graph_notify_unbind(struct v4l2_async_notifier *notifier,
				     struct v4l2_subdev *sd,
				     struct v4l2_async_subdev *asd)
{
	struct stm32_dcmi *dcmi = notifier_to_dcmi(notifier);

	dev_dbg(dcmi->dev, "Removing %s\n", video_device_node_name(dcmi->vdev));

	/* Checks internaly if vdev has been init or not */
	video_unregister_device(dcmi->vdev);
}

static int dcmi_graph_notify_bound(struct v4l2_async_notifier *notifier,
				   struct v4l2_subdev *subdev,
				   struct v4l2_async_subdev *asd)
{
	struct stm32_dcmi *dcmi = notifier_to_dcmi(notifier);

	dev_dbg(dcmi->dev, "Subdev %s bound\n", subdev->name);

	dcmi->entity.subdev = subdev;

	return 0;
}

static int dcmi_graph_parse(struct stm32_dcmi *dcmi, struct device_node *node)
{
	struct device_node *ep = NULL;
	struct device_node *remote;

	while (1) {
		ep = of_graph_get_next_endpoint(node, ep);
		if (!ep)
			return -EINVAL;

		remote = of_graph_get_remote_port_parent(ep);
		if (!remote) {
			of_node_put(ep);
			return -EINVAL;
		}

		/* Remote node to connect */
		dcmi->entity.node = remote;
1150 1151
		dcmi->entity.asd.match_type = V4L2_ASYNC_MATCH_FWNODE;
		dcmi->entity.asd.match.fwnode.fwnode = of_fwnode_handle(remote);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
		return 0;
	}
}

static int dcmi_graph_init(struct stm32_dcmi *dcmi)
{
	struct v4l2_async_subdev **subdevs = NULL;
	int ret;

	/* Parse the graph to extract a list of subdevice DT nodes. */
	ret = dcmi_graph_parse(dcmi, dcmi->dev->of_node);
	if (ret < 0) {
		dev_err(dcmi->dev, "Graph parsing failed\n");
		return ret;
	}

	/* Register the subdevices notifier. */
	subdevs = devm_kzalloc(dcmi->dev, sizeof(*subdevs), GFP_KERNEL);
	if (!subdevs) {
		of_node_put(dcmi->entity.node);
		return -ENOMEM;
	}

	subdevs[0] = &dcmi->entity.asd;

	dcmi->notifier.subdevs = subdevs;
	dcmi->notifier.num_subdevs = 1;
	dcmi->notifier.bound = dcmi_graph_notify_bound;
	dcmi->notifier.unbind = dcmi_graph_notify_unbind;
	dcmi->notifier.complete = dcmi_graph_notify_complete;

	ret = v4l2_async_notifier_register(&dcmi->v4l2_dev, &dcmi->notifier);
	if (ret < 0) {
		dev_err(dcmi->dev, "Notifier registration failed\n");
		of_node_put(dcmi->entity.node);
		return ret;
	}

	return 0;
}

static int dcmi_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	const struct of_device_id *match = NULL;
1197
	struct v4l2_fwnode_endpoint ep;
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	struct stm32_dcmi *dcmi;
	struct vb2_queue *q;
	struct dma_chan *chan;
	struct clk *mclk;
	int irq;
	int ret = 0;

	match = of_match_device(of_match_ptr(stm32_dcmi_of_match), &pdev->dev);
	if (!match) {
		dev_err(&pdev->dev, "Could not find a match in devicetree\n");
		return -ENODEV;
	}

	dcmi = devm_kzalloc(&pdev->dev, sizeof(struct stm32_dcmi), GFP_KERNEL);
	if (!dcmi)
		return -ENOMEM;

1215
	dcmi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	if (IS_ERR(dcmi->rstc)) {
		dev_err(&pdev->dev, "Could not get reset control\n");
		return -ENODEV;
	}

	/* Get bus characteristics from devicetree */
	np = of_graph_get_next_endpoint(np, NULL);
	if (!np) {
		dev_err(&pdev->dev, "Could not find the endpoint\n");
		of_node_put(np);
		return -ENODEV;
	}

1229
	ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(np), &ep);
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	if (ret) {
		dev_err(&pdev->dev, "Could not parse the endpoint\n");
		of_node_put(np);
		return -ENODEV;
	}

	if (ep.bus_type == V4L2_MBUS_CSI2) {
		dev_err(&pdev->dev, "CSI bus not supported\n");
		of_node_put(np);
		return -ENODEV;
	}
	dcmi->bus.flags = ep.bus.parallel.flags;
	dcmi->bus.bus_width = ep.bus.parallel.bus_width;
	dcmi->bus.data_shift = ep.bus.parallel.data_shift;

	of_node_put(np);

	irq = platform_get_irq(pdev, 0);
	if (irq <= 0) {
		dev_err(&pdev->dev, "Could not get irq\n");
		return -ENODEV;
	}

	dcmi->res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!dcmi->res) {
		dev_err(&pdev->dev, "Could not get resource\n");
		return -ENODEV;
	}

	dcmi->regs = devm_ioremap_resource(&pdev->dev, dcmi->res);
	if (IS_ERR(dcmi->regs)) {
		dev_err(&pdev->dev, "Could not map registers\n");
		return PTR_ERR(dcmi->regs);
	}

	ret = devm_request_threaded_irq(&pdev->dev, irq, dcmi_irq_callback,
					dcmi_irq_thread, IRQF_ONESHOT,
					dev_name(&pdev->dev), dcmi);
	if (ret) {
		dev_err(&pdev->dev, "Unable to request irq %d\n", irq);
		return -ENODEV;
	}

	mclk = devm_clk_get(&pdev->dev, "mclk");
	if (IS_ERR(mclk)) {
		dev_err(&pdev->dev, "Unable to get mclk\n");
		return PTR_ERR(mclk);
	}

	chan = dma_request_slave_channel(&pdev->dev, "tx");
	if (!chan) {
		dev_info(&pdev->dev, "Unable to request DMA channel, defer probing\n");
		return -EPROBE_DEFER;
	}

	ret = clk_prepare(mclk);
	if (ret) {
		dev_err(&pdev->dev, "Unable to prepare mclk %p\n", mclk);
		goto err_dma_release;
	}

	spin_lock_init(&dcmi->irqlock);
	mutex_init(&dcmi->lock);
	init_completion(&dcmi->complete);
	INIT_LIST_HEAD(&dcmi->buffers);

	dcmi->dev = &pdev->dev;
	dcmi->mclk = mclk;
	dcmi->state = STOPPED;
	dcmi->dma_chan = chan;

	q = &dcmi->queue;

	/* Initialize the top-level structure */
	ret = v4l2_device_register(&pdev->dev, &dcmi->v4l2_dev);
	if (ret)
		goto err_clk_unprepare;

	dcmi->vdev = video_device_alloc();
	if (!dcmi->vdev) {
		ret = -ENOMEM;
		goto err_device_unregister;
	}

	/* Video node */
	dcmi->vdev->fops = &dcmi_fops;
	dcmi->vdev->v4l2_dev = &dcmi->v4l2_dev;
	dcmi->vdev->queue = &dcmi->queue;
	strlcpy(dcmi->vdev->name, KBUILD_MODNAME, sizeof(dcmi->vdev->name));
	dcmi->vdev->release = video_device_release;
	dcmi->vdev->ioctl_ops = &dcmi_ioctl_ops;
	dcmi->vdev->lock = &dcmi->lock;
	dcmi->vdev->device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING |
				  V4L2_CAP_READWRITE;
	video_set_drvdata(dcmi->vdev, dcmi);

	/* Buffer queue */
	q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
	q->io_modes = VB2_MMAP | VB2_READ | VB2_DMABUF;
	q->lock = &dcmi->lock;
	q->drv_priv = dcmi;
	q->buf_struct_size = sizeof(struct dcmi_buf);
	q->ops = &dcmi_video_qops;
	q->mem_ops = &vb2_dma_contig_memops;
	q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
	q->min_buffers_needed = 2;
	q->dev = &pdev->dev;

	ret = vb2_queue_init(q);
	if (ret < 0) {
		dev_err(&pdev->dev, "Failed to initialize vb2 queue\n");
		goto err_device_release;
	}

	ret = dcmi_graph_init(dcmi);
	if (ret < 0)
		goto err_device_release;

	/* Reset device */
	ret = reset_control_assert(dcmi->rstc);
	if (ret) {
		dev_err(&pdev->dev, "Failed to assert the reset line\n");
		goto err_device_release;
	}

	usleep_range(3000, 5000);

	ret = reset_control_deassert(dcmi->rstc);
	if (ret) {
		dev_err(&pdev->dev, "Failed to deassert the reset line\n");
		goto err_device_release;
	}

	dev_info(&pdev->dev, "Probe done\n");

	platform_set_drvdata(pdev, dcmi);
	return 0;

err_device_release:
	video_device_release(dcmi->vdev);
err_device_unregister:
	v4l2_device_unregister(&dcmi->v4l2_dev);
err_clk_unprepare:
	clk_unprepare(dcmi->mclk);
err_dma_release:
	dma_release_channel(dcmi->dma_chan);

	return ret;
}

static int dcmi_remove(struct platform_device *pdev)
{
	struct stm32_dcmi *dcmi = platform_get_drvdata(pdev);

	v4l2_async_notifier_unregister(&dcmi->notifier);
	v4l2_device_unregister(&dcmi->v4l2_dev);
	clk_unprepare(dcmi->mclk);
	dma_release_channel(dcmi->dma_chan);

	return 0;
}

static struct platform_driver stm32_dcmi_driver = {
	.probe		= dcmi_probe,
	.remove		= dcmi_remove,
	.driver		= {
		.name = DRV_NAME,
		.of_match_table = of_match_ptr(stm32_dcmi_of_match),
	},
};

module_platform_driver(stm32_dcmi_driver);

MODULE_AUTHOR("Yannick Fertre <yannick.fertre@st.com>");
MODULE_AUTHOR("Hugues Fruchet <hugues.fruchet@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 Digital Camera Memory Interface driver");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("video");