mt9v011.c 14.3 KB
Newer Older
1 2 3
/*
 * mt9v011 -Micron 1/4-Inch VGA Digital Image Sensor
 *
4
 * Copyright (c) 2009 Mauro Carvalho Chehab
5 6 7 8
 * This code is placed under the terms of the GNU General Public License v2
 */

#include <linux/i2c.h>
9
#include <linux/slab.h>
10 11
#include <linux/videodev2.h>
#include <linux/delay.h>
12
#include <linux/module.h>
13
#include <asm/div64.h>
14
#include <media/v4l2-device.h>
15
#include <media/v4l2-ctrls.h>
16
#include <media/mt9v011.h>
17 18

MODULE_DESCRIPTION("Micron mt9v011 sensor driver");
19
MODULE_AUTHOR("Mauro Carvalho Chehab");
20 21 22 23 24 25
MODULE_LICENSE("GPL");

static int debug;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0-2)");

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#define R00_MT9V011_CHIP_VERSION	0x00
#define R01_MT9V011_ROWSTART		0x01
#define R02_MT9V011_COLSTART		0x02
#define R03_MT9V011_HEIGHT		0x03
#define R04_MT9V011_WIDTH		0x04
#define R05_MT9V011_HBLANK		0x05
#define R06_MT9V011_VBLANK		0x06
#define R07_MT9V011_OUT_CTRL		0x07
#define R09_MT9V011_SHUTTER_WIDTH	0x09
#define R0A_MT9V011_CLK_SPEED		0x0a
#define R0B_MT9V011_RESTART		0x0b
#define R0C_MT9V011_SHUTTER_DELAY	0x0c
#define R0D_MT9V011_RESET		0x0d
#define R1E_MT9V011_DIGITAL_ZOOM	0x1e
#define R20_MT9V011_READ_MODE		0x20
#define R2B_MT9V011_GREEN_1_GAIN	0x2b
#define R2C_MT9V011_BLUE_GAIN		0x2c
#define R2D_MT9V011_RED_GAIN		0x2d
#define R2E_MT9V011_GREEN_2_GAIN	0x2e
#define R35_MT9V011_GLOBAL_GAIN		0x35
#define RF1_MT9V011_CHIP_ENABLE		0xf1

#define MT9V011_VERSION			0x8232
#define MT9V011_REV_B_VERSION		0x8243

51 52
struct mt9v011 {
	struct v4l2_subdev sd;
53
	struct v4l2_ctrl_handler ctrls;
54
	unsigned width, height;
55
	unsigned xtal;
56 57
	unsigned hflip:1;
	unsigned vflip:1;
58

59 60
	u16 global_gain, exposure;
	s16 red_bal, blue_bal;
61 62 63 64 65 66 67 68 69 70 71 72 73
};

static inline struct mt9v011 *to_mt9v011(struct v4l2_subdev *sd)
{
	return container_of(sd, struct mt9v011, sd);
}

static int mt9v011_read(struct v4l2_subdev *sd, unsigned char addr)
{
	struct i2c_client *c = v4l2_get_subdevdata(sd);
	__be16 buffer;
	int rc, val;

74 75
	rc = i2c_master_send(c, &addr, 1);
	if (rc != 1)
76 77 78 79 80
		v4l2_dbg(0, debug, sd,
			 "i2c i/o error: rc == %d (should be 1)\n", rc);

	msleep(10);

81 82
	rc = i2c_master_recv(c, (char *)&buffer, 2);
	if (rc != 2)
83
		v4l2_dbg(0, debug, sd,
84
			 "i2c i/o error: rc == %d (should be 2)\n", rc);
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

	val = be16_to_cpu(buffer);

	v4l2_dbg(2, debug, sd, "mt9v011: read 0x%02x = 0x%04x\n", addr, val);

	return val;
}

static void mt9v011_write(struct v4l2_subdev *sd, unsigned char addr,
				 u16 value)
{
	struct i2c_client *c = v4l2_get_subdevdata(sd);
	unsigned char buffer[3];
	int rc;

	buffer[0] = addr;
	buffer[1] = value >> 8;
	buffer[2] = value & 0xff;

	v4l2_dbg(2, debug, sd,
		 "mt9v011: writing 0x%02x 0x%04x\n", buffer[0], value);
106
	rc = i2c_master_send(c, buffer, 3);
107
	if (rc != 3)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
		v4l2_dbg(0, debug, sd,
			 "i2c i/o error: rc == %d (should be 3)\n", rc);
}


struct i2c_reg_value {
	unsigned char reg;
	u16           value;
};

/*
 * Values used at the original driver
 * Some values are marked as Reserved at the datasheet
 */
static const struct i2c_reg_value mt9v011_init_default[] = {
		{ R0D_MT9V011_RESET, 0x0001 },
		{ R0D_MT9V011_RESET, 0x0000 },
125 126

		{ R0C_MT9V011_SHUTTER_DELAY, 0x0000 },
127 128 129
		{ R09_MT9V011_SHUTTER_WIDTH, 0x1fc },

		{ R0A_MT9V011_CLK_SPEED, 0x0000 },
130 131
		{ R1E_MT9V011_DIGITAL_ZOOM,  0x0000 },

132
		{ R07_MT9V011_OUT_CTRL, 0x0002 },	/* chip enable */
133 134
};

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

static u16 calc_mt9v011_gain(s16 lineargain)
{

	u16 digitalgain = 0;
	u16 analogmult = 0;
	u16 analoginit = 0;

	if (lineargain < 0)
		lineargain = 0;

	/* recommended minimum */
	lineargain += 0x0020;

	if (lineargain > 2047)
		lineargain = 2047;

	if (lineargain > 1023) {
		digitalgain = 3;
		analogmult = 3;
		analoginit = lineargain / 16;
	} else if (lineargain > 511) {
		digitalgain = 1;
		analogmult = 3;
		analoginit = lineargain / 8;
	} else if (lineargain > 255) {
		analogmult = 3;
		analoginit = lineargain / 4;
	} else if (lineargain > 127) {
		analogmult = 1;
		analoginit = lineargain / 2;
	} else
		analoginit = lineargain;

	return analoginit + (analogmult << 7) + (digitalgain << 9);

}

173 174 175
static void set_balance(struct v4l2_subdev *sd)
{
	struct mt9v011 *core = to_mt9v011(sd);
176
	u16 green_gain, blue_gain, red_gain;
177
	u16 exposure;
178
	s16 bal;
179 180

	exposure = core->exposure;
181

182
	green_gain = calc_mt9v011_gain(core->global_gain);
183

184 185 186
	bal = core->global_gain;
	bal += (core->blue_bal * core->global_gain / (1 << 7));
	blue_gain = calc_mt9v011_gain(bal);
187

188 189 190
	bal = core->global_gain;
	bal += (core->red_bal * core->global_gain / (1 << 7));
	red_gain = calc_mt9v011_gain(bal);
191

192 193
	mt9v011_write(sd, R2B_MT9V011_GREEN_1_GAIN, green_gain);
	mt9v011_write(sd, R2E_MT9V011_GREEN_2_GAIN, green_gain);
194 195
	mt9v011_write(sd, R2C_MT9V011_BLUE_GAIN, blue_gain);
	mt9v011_write(sd, R2D_MT9V011_RED_GAIN, red_gain);
196
	mt9v011_write(sd, R09_MT9V011_SHUTTER_WIDTH, exposure);
197 198
}

199
static void calc_fps(struct v4l2_subdev *sd, u32 *numerator, u32 *denominator)
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
{
	struct mt9v011 *core = to_mt9v011(sd);
	unsigned height, width, hblank, vblank, speed;
	unsigned row_time, t_time;
	u64 frames_per_ms;
	unsigned tmp;

	height = mt9v011_read(sd, R03_MT9V011_HEIGHT);
	width = mt9v011_read(sd, R04_MT9V011_WIDTH);
	hblank = mt9v011_read(sd, R05_MT9V011_HBLANK);
	vblank = mt9v011_read(sd, R06_MT9V011_VBLANK);
	speed = mt9v011_read(sd, R0A_MT9V011_CLK_SPEED);

	row_time = (width + 113 + hblank) * (speed + 2);
	t_time = row_time * (height + vblank + 1);

	frames_per_ms = core->xtal * 1000l;
	do_div(frames_per_ms, t_time);
	tmp = frames_per_ms;

	v4l2_dbg(1, debug, sd, "Programmed to %u.%03u fps (%d pixel clcks)\n",
		tmp / 1000, tmp % 1000, t_time);
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

	if (numerator && denominator) {
		*numerator = 1000;
		*denominator = (u32)frames_per_ms;
	}
}

static u16 calc_speed(struct v4l2_subdev *sd, u32 numerator, u32 denominator)
{
	struct mt9v011 *core = to_mt9v011(sd);
	unsigned height, width, hblank, vblank;
	unsigned row_time, line_time;
	u64 t_time, speed;

	/* Avoid bogus calculus */
	if (!numerator || !denominator)
		return 0;

	height = mt9v011_read(sd, R03_MT9V011_HEIGHT);
	width = mt9v011_read(sd, R04_MT9V011_WIDTH);
	hblank = mt9v011_read(sd, R05_MT9V011_HBLANK);
	vblank = mt9v011_read(sd, R06_MT9V011_VBLANK);

	row_time = width + 113 + hblank;
	line_time = height + vblank + 1;

	t_time = core->xtal * ((u64)numerator);
	/* round to the closest value */
	t_time += denominator / 2;
	do_div(t_time, denominator);

	speed = t_time;
	do_div(speed, row_time * line_time);

	/* Avoid having a negative value for speed */
	if (speed < 2)
		speed = 0;
	else
		speed -= 2;

	/* Avoid speed overflow */
	if (speed > 15)
		return 15;

	return (u16)speed;
267 268
}

269 270 271 272 273 274 275 276 277 278 279
static void set_res(struct v4l2_subdev *sd)
{
	struct mt9v011 *core = to_mt9v011(sd);
	unsigned vstart, hstart;

	/*
	 * The mt9v011 doesn't have scaling. So, in order to select the desired
	 * resolution, we're cropping at the middle of the sensor.
	 * hblank and vblank should be adjusted, in order to warrant that
	 * we'll preserve the line timings for 30 fps, no matter what resolution
	 * is selected.
280 281 282
	 * NOTE: datasheet says that width (and height) should be filled with
	 * width-1. However, this doesn't work, since one pixel per line will
	 * be missing.
283 284
	 */

285
	hstart = 20 + (640 - core->width) / 2;
286 287 288 289
	mt9v011_write(sd, R02_MT9V011_COLSTART, hstart);
	mt9v011_write(sd, R04_MT9V011_WIDTH, core->width);
	mt9v011_write(sd, R05_MT9V011_HBLANK, 771 - core->width);

290
	vstart = 8 + (480 - core->height) / 2;
291 292 293
	mt9v011_write(sd, R01_MT9V011_ROWSTART, vstart);
	mt9v011_write(sd, R03_MT9V011_HEIGHT, core->height);
	mt9v011_write(sd, R06_MT9V011_VBLANK, 508 - core->height);
294

295
	calc_fps(sd, NULL, NULL);
296 297
};

298 299 300 301 302 303 304 305 306 307 308 309 310 311
static void set_read_mode(struct v4l2_subdev *sd)
{
	struct mt9v011 *core = to_mt9v011(sd);
	unsigned mode = 0x1000;

	if (core->hflip)
		mode |= 0x4000;

	if (core->vflip)
		mode |= 0x8000;

	mt9v011_write(sd, R20_MT9V011_READ_MODE, mode);
}

312 313 314 315 316 317 318 319 320
static int mt9v011_reset(struct v4l2_subdev *sd, u32 val)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(mt9v011_init_default); i++)
		mt9v011_write(sd, mt9v011_init_default[i].reg,
			       mt9v011_init_default[i].value);

	set_balance(sd);
321
	set_res(sd);
322
	set_read_mode(sd);
323 324 325 326

	return 0;
}

327 328
static int mt9v011_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned index,
					enum v4l2_mbus_pixelcode *code)
329
{
330
	if (index > 0)
331 332
		return -EINVAL;

333
	*code = V4L2_MBUS_FMT_SGRBG8_1X8;
334 335 336
	return 0;
}

337
static int mt9v011_try_mbus_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt)
338
{
339
	if (fmt->code != V4L2_MBUS_FMT_SGRBG8_1X8)
340 341
		return -EINVAL;

342 343 344 345
	v4l_bound_align_image(&fmt->width, 48, 639, 1,
			      &fmt->height, 32, 480, 1, 0);
	fmt->field = V4L2_FIELD_NONE;
	fmt->colorspace = V4L2_COLORSPACE_SRGB;
346 347 348 349

	return 0;
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
static int mt9v011_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
	struct v4l2_captureparm *cp = &parms->parm.capture;

	if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
		return -EINVAL;

	memset(cp, 0, sizeof(struct v4l2_captureparm));
	cp->capability = V4L2_CAP_TIMEPERFRAME;
	calc_fps(sd,
		 &cp->timeperframe.numerator,
		 &cp->timeperframe.denominator);

	return 0;
}

static int mt9v011_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
	struct v4l2_captureparm *cp = &parms->parm.capture;
	struct v4l2_fract *tpf = &cp->timeperframe;
	u16 speed;

	if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
		return -EINVAL;
	if (cp->extendedmode != 0)
		return -EINVAL;

	speed = calc_speed(sd, tpf->numerator, tpf->denominator);

	mt9v011_write(sd, R0A_MT9V011_CLK_SPEED, speed);
	v4l2_dbg(1, debug, sd, "Setting speed to %d\n", speed);

	/* Recalculate and update fps info */
	calc_fps(sd, &tpf->numerator, &tpf->denominator);

	return 0;
}

388
static int mt9v011_s_mbus_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt)
389 390 391 392
{
	struct mt9v011 *core = to_mt9v011(sd);
	int rc;

393
	rc = mt9v011_try_mbus_fmt(sd, fmt);
394 395 396
	if (rc < 0)
		return -EINVAL;

397 398
	core->width = fmt->width;
	core->height = fmt->height;
399 400 401 402 403 404

	set_res(sd);

	return 0;
}

405 406 407 408 409 410 411 412 413 414 415
#ifdef CONFIG_VIDEO_ADV_DEBUG
static int mt9v011_g_register(struct v4l2_subdev *sd,
			      struct v4l2_dbg_register *reg)
{
	reg->val = mt9v011_read(sd, reg->reg & 0xff);
	reg->size = 2;

	return 0;
}

static int mt9v011_s_register(struct v4l2_subdev *sd,
416
			      const struct v4l2_dbg_register *reg)
417 418 419 420 421 422 423
{
	mt9v011_write(sd, reg->reg & 0xff, reg->val & 0xffff);

	return 0;
}
#endif

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
static int mt9v011_s_ctrl(struct v4l2_ctrl *ctrl)
{
	struct mt9v011 *core =
		container_of(ctrl->handler, struct mt9v011, ctrls);
	struct v4l2_subdev *sd = &core->sd;

	switch (ctrl->id) {
	case V4L2_CID_GAIN:
		core->global_gain = ctrl->val;
		break;
	case V4L2_CID_EXPOSURE:
		core->exposure = ctrl->val;
		break;
	case V4L2_CID_RED_BALANCE:
		core->red_bal = ctrl->val;
		break;
	case V4L2_CID_BLUE_BALANCE:
		core->blue_bal = ctrl->val;
		break;
	case V4L2_CID_HFLIP:
		core->hflip = ctrl->val;
		set_read_mode(sd);
		return 0;
	case V4L2_CID_VFLIP:
		core->vflip = ctrl->val;
		set_read_mode(sd);
		return 0;
	default:
		return -EINVAL;
	}

	set_balance(sd);
	return 0;
}

static struct v4l2_ctrl_ops mt9v011_ctrl_ops = {
460
	.s_ctrl = mt9v011_s_ctrl,
461 462 463
};

static const struct v4l2_subdev_core_ops mt9v011_core_ops = {
464 465 466 467 468 469 470
	.reset = mt9v011_reset,
#ifdef CONFIG_VIDEO_ADV_DEBUG
	.g_register = mt9v011_g_register,
	.s_register = mt9v011_s_register,
#endif
};

471
static const struct v4l2_subdev_video_ops mt9v011_video_ops = {
472 473 474
	.enum_mbus_fmt = mt9v011_enum_mbus_fmt,
	.try_mbus_fmt = mt9v011_try_mbus_fmt,
	.s_mbus_fmt = mt9v011_s_mbus_fmt,
475 476
	.g_parm = mt9v011_g_parm,
	.s_parm = mt9v011_s_parm,
477 478
};

479
static const struct v4l2_subdev_ops mt9v011_ops = {
480 481
	.core  = &mt9v011_core_ops,
	.video = &mt9v011_video_ops,
482 483 484 485 486 487 488 489 490 491
};


/****************************************************************************
			I2C Client & Driver
 ****************************************************************************/

static int mt9v011_probe(struct i2c_client *c,
			 const struct i2c_device_id *id)
{
492
	u16 version;
493 494 495 496 497 498 499 500
	struct mt9v011 *core;
	struct v4l2_subdev *sd;

	/* Check if the adapter supports the needed features */
	if (!i2c_check_functionality(c->adapter,
	     I2C_FUNC_SMBUS_READ_BYTE | I2C_FUNC_SMBUS_WRITE_BYTE_DATA))
		return -EIO;

501
	core = devm_kzalloc(&c->dev, sizeof(struct mt9v011), GFP_KERNEL);
502 503 504 505 506
	if (!core)
		return -ENOMEM;

	sd = &core->sd;
	v4l2_i2c_subdev_init(sd, c, &mt9v011_ops);
507 508 509

	/* Check if the sensor is really a MT9V011 */
	version = mt9v011_read(sd, R00_MT9V011_CHIP_VERSION);
510 511 512
	if ((version != MT9V011_VERSION) &&
	    (version != MT9V011_REV_B_VERSION)) {
		v4l2_info(sd, "*** unknown micron chip detected (0x%04x).\n",
513 514 515 516
			  version);
		return -EINVAL;
	}

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	v4l2_ctrl_handler_init(&core->ctrls, 5);
	v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
			  V4L2_CID_GAIN, 0, (1 << 12) - 1 - 0x20, 1, 0x20);
	v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
			  V4L2_CID_EXPOSURE, 0, 2047, 1, 0x01fc);
	v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
			  V4L2_CID_RED_BALANCE, -(1 << 9), (1 << 9) - 1, 1, 0);
	v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
			  V4L2_CID_BLUE_BALANCE, -(1 << 9), (1 << 9) - 1, 1, 0);
	v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
			  V4L2_CID_HFLIP, 0, 1, 1, 0);
	v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
			  V4L2_CID_VFLIP, 0, 1, 1, 0);

	if (core->ctrls.error) {
		int ret = core->ctrls.error;

		v4l2_err(sd, "control initialization error %d\n", ret);
		v4l2_ctrl_handler_free(&core->ctrls);
		return ret;
	}
	core->sd.ctrl_handler = &core->ctrls;

540
	core->global_gain = 0x0024;
541
	core->exposure = 0x01fc;
542 543
	core->width  = 640;
	core->height = 480;
544
	core->xtal = 27000000;	/* Hz */
545

546 547 548 549 550 551 552 553
	if (c->dev.platform_data) {
		struct mt9v011_platform_data *pdata = c->dev.platform_data;

		core->xtal = pdata->xtal;
		v4l2_dbg(1, debug, sd, "xtal set to %d.%03d MHz\n",
			core->xtal / 1000000, (core->xtal / 1000) % 1000);
	}

554 555
	v4l_info(c, "chip found @ 0x%02x (%s - chip version 0x%04x)\n",
		 c->addr << 1, c->adapter->name, version);
556 557 558 559 560 561 562

	return 0;
}

static int mt9v011_remove(struct i2c_client *c)
{
	struct v4l2_subdev *sd = i2c_get_clientdata(c);
563
	struct mt9v011 *core = to_mt9v011(sd);
564 565 566 567 568 569

	v4l2_dbg(1, debug, sd,
		"mt9v011.c: removing mt9v011 adapter on address 0x%x\n",
		c->addr << 1);

	v4l2_device_unregister_subdev(sd);
570
	v4l2_ctrl_handler_free(&core->ctrls);
571

572 573 574 575 576 577 578 579 580 581 582
	return 0;
}

/* ----------------------------------------------------------------------- */

static const struct i2c_device_id mt9v011_id[] = {
	{ "mt9v011", 0 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, mt9v011_id);

583 584 585 586 587 588 589 590
static struct i2c_driver mt9v011_driver = {
	.driver = {
		.owner	= THIS_MODULE,
		.name	= "mt9v011",
	},
	.probe		= mt9v011_probe,
	.remove		= mt9v011_remove,
	.id_table	= mt9v011_id,
591
};
592

593
module_i2c_driver(mt9v011_driver);