mb86a20s.c 53.4 KB
Newer Older
1 2 3
/*
 *   Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
 *
4
 *   Copyright (C) 2010-2013 Mauro Carvalho Chehab
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *   Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License as
 *   published by the Free Software Foundation version 2.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *   General Public License for more details.
 */

#include <linux/kernel.h>
#include <asm/div64.h>

#include "dvb_frontend.h"
#include "mb86a20s.h"

23 24
#define NUM_LAYERS 3

25 26 27 28
static int debug = 1;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");

29 30 31 32 33 34 35 36 37 38 39 40
enum mb86a20s_bandwidth {
	MB86A20S_13SEG = 0,
	MB86A20S_13SEG_PARTIAL = 1,
	MB86A20S_1SEG = 2,
	MB86A20S_3SEG = 3,
};

u8 mb86a20s_subchannel[] = {
	0xb0, 0xc0, 0xd0, 0xe0,
	0xf0, 0x00, 0x10, 0x20,
};

41 42 43
struct mb86a20s_state {
	struct i2c_adapter *i2c;
	const struct mb86a20s_config *config;
44
	u32 last_frequency;
45 46

	struct dvb_frontend frontend;
47

48
	u32 if_freq;
49 50 51
	enum mb86a20s_bandwidth bw;
	bool inversion;
	u32 subchannel;
52

53
	u32 estimated_rate[NUM_LAYERS];
54
	unsigned long get_strength_time;
55

56
	bool need_init;
57 58 59 60 61 62 63
};

struct regdata {
	u8 reg;
	u8 data;
};

64 65
#define BER_SAMPLING_RATE	1	/* Seconds */

66 67 68 69
/*
 * Initialization sequence: Use whatevere default values that PV SBTVD
 * does on its initialisation, obtained via USB snoop
 */
70
static struct regdata mb86a20s_init1[] = {
71 72 73
	{ 0x70, 0x0f },
	{ 0x70, 0xff },
	{ 0x08, 0x01 },
74
	{ 0x50, 0xd1 }, { 0x51, 0x20 },
75 76 77
};

static struct regdata mb86a20s_init2[] = {
78
	{ 0x28, 0x22 }, { 0x29, 0x00 }, { 0x2a, 0x1f }, { 0x2b, 0xf0 },
79
	{ 0x3b, 0x21 },
80
	{ 0x3c, 0x38 },
81
	{ 0x01, 0x0d },
82
	{ 0x04, 0x08 }, { 0x05, 0x03 },
83
	{ 0x04, 0x0e }, { 0x05, 0x00 },
84 85
	{ 0x04, 0x0f }, { 0x05, 0x37 },
	{ 0x04, 0x0b }, { 0x05, 0x78 },
86
	{ 0x04, 0x00 }, { 0x05, 0x00 },
87 88 89
	{ 0x04, 0x01 }, { 0x05, 0x1e },
	{ 0x04, 0x02 }, { 0x05, 0x07 },
	{ 0x04, 0x03 }, { 0x05, 0xd0 },
90 91
	{ 0x04, 0x09 }, { 0x05, 0x00 },
	{ 0x04, 0x0a }, { 0x05, 0xff },
92
	{ 0x04, 0x27 }, { 0x05, 0x00 },
93
	{ 0x04, 0x28 }, { 0x05, 0x00 },
94 95 96
	{ 0x04, 0x1e }, { 0x05, 0x00 },
	{ 0x04, 0x29 }, { 0x05, 0x64 },
	{ 0x04, 0x32 }, { 0x05, 0x02 },
97 98 99 100 101 102 103
	{ 0x04, 0x14 }, { 0x05, 0x02 },
	{ 0x04, 0x04 }, { 0x05, 0x00 },
	{ 0x04, 0x05 }, { 0x05, 0x22 },
	{ 0x04, 0x06 }, { 0x05, 0x0e },
	{ 0x04, 0x07 }, { 0x05, 0xd8 },
	{ 0x04, 0x12 }, { 0x05, 0x00 },
	{ 0x04, 0x13 }, { 0x05, 0xff },
104 105
	{ 0x04, 0x15 }, { 0x05, 0x4e },
	{ 0x04, 0x16 }, { 0x05, 0x20 },
106 107 108 109 110 111

	/*
	 * On this demod, when the bit count reaches the count below,
	 * it collects the bit error count. The bit counters are initialized
	 * to 65535 here. This warrants that all of them will be quickly
	 * calculated when device gets locked. As TMCC is parsed, the values
112
	 * will be adjusted later in the driver's code.
113 114 115
	 */
	{ 0x52, 0x01 },				/* Turn on BER before Viterbi */
	{ 0x50, 0xa7 }, { 0x51, 0x00 },
116 117
	{ 0x50, 0xa8 }, { 0x51, 0xff },
	{ 0x50, 0xa9 }, { 0x51, 0xff },
118
	{ 0x50, 0xaa }, { 0x51, 0x00 },
119 120
	{ 0x50, 0xab }, { 0x51, 0xff },
	{ 0x50, 0xac }, { 0x51, 0xff },
121
	{ 0x50, 0xad }, { 0x51, 0x00 },
122 123
	{ 0x50, 0xae }, { 0x51, 0xff },
	{ 0x50, 0xaf }, { 0x51, 0xff },
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138
	/*
	 * On this demod, post BER counts blocks. When the count reaches the
	 * value below, it collects the block error count. The block counters
	 * are initialized to 127 here. This warrants that all of them will be
	 * quickly calculated when device gets locked. As TMCC is parsed, the
	 * values will be adjusted later in the driver's code.
	 */
	{ 0x5e, 0x07 },				/* Turn on BER after Viterbi */
	{ 0x50, 0xdc }, { 0x51, 0x00 },
	{ 0x50, 0xdd }, { 0x51, 0x7f },
	{ 0x50, 0xde }, { 0x51, 0x00 },
	{ 0x50, 0xdf }, { 0x51, 0x7f },
	{ 0x50, 0xe0 }, { 0x51, 0x00 },
	{ 0x50, 0xe1 }, { 0x51, 0x7f },
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

	/*
	 * On this demod, when the block count reaches the count below,
	 * it collects the block error count. The block counters are initialized
	 * to 127 here. This warrants that all of them will be quickly
	 * calculated when device gets locked. As TMCC is parsed, the values
	 * will be adjusted later in the driver's code.
	 */
	{ 0x50, 0xb0 }, { 0x51, 0x07 },		/* Enable PER */
	{ 0x50, 0xb2 }, { 0x51, 0x00 },
	{ 0x50, 0xb3 }, { 0x51, 0x7f },
	{ 0x50, 0xb4 }, { 0x51, 0x00 },
	{ 0x50, 0xb5 }, { 0x51, 0x7f },
	{ 0x50, 0xb6 }, { 0x51, 0x00 },
	{ 0x50, 0xb7 }, { 0x51, 0x7f },
154 155

	{ 0x50, 0x50 }, { 0x51, 0x02 },		/* MER manual mode */
156 157
	{ 0x50, 0x51 }, { 0x51, 0x04 },		/* MER symbol 4 */
	{ 0x45, 0x04 },				/* CN symbol 4 */
158 159
	{ 0x48, 0x04 },				/* CN manual mode */

160 161
	{ 0x50, 0xd6 }, { 0x51, 0x1f },
	{ 0x50, 0xd2 }, { 0x51, 0x03 },
162 163 164
	{ 0x50, 0xd7 }, { 0x51, 0xbf },
	{ 0x28, 0x74 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xff },
	{ 0x28, 0x46 }, { 0x29, 0x00 }, { 0x2a, 0x1a }, { 0x2b, 0x0c },
165 166

	{ 0x04, 0x40 }, { 0x05, 0x00 },
167 168
	{ 0x28, 0x00 }, { 0x2b, 0x08 },
	{ 0x28, 0x05 }, { 0x2b, 0x00 },
169
	{ 0x1c, 0x01 },
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	{ 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x1f },
	{ 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x18 },
	{ 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x12 },
	{ 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x30 },
	{ 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x37 },
	{ 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
	{ 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x09 },
	{ 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x06 },
	{ 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7b },
	{ 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x76 },
	{ 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7d },
	{ 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x08 },
	{ 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0b },
	{ 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
	{ 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf2 },
	{ 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf3 },
	{ 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x05 },
	{ 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
	{ 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
	{ 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xef },
	{ 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xd8 },
	{ 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xf1 },
	{ 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x3d },
	{ 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x94 },
	{ 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xba },
195 196 197 198 199 200 201 202
	{ 0x50, 0x1e }, { 0x51, 0x5d },
	{ 0x50, 0x22 }, { 0x51, 0x00 },
	{ 0x50, 0x23 }, { 0x51, 0xc8 },
	{ 0x50, 0x24 }, { 0x51, 0x00 },
	{ 0x50, 0x25 }, { 0x51, 0xf0 },
	{ 0x50, 0x26 }, { 0x51, 0x00 },
	{ 0x50, 0x27 }, { 0x51, 0xc3 },
	{ 0x50, 0x39 }, { 0x51, 0x02 },
203 204
	{ 0xec, 0x0f },
	{ 0xeb, 0x1f },
205
	{ 0x28, 0x6a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
206 207 208 209 210 211 212 213 214 215
	{ 0xd0, 0x00 },
};

static struct regdata mb86a20s_reset_reception[] = {
	{ 0x70, 0xf0 },
	{ 0x70, 0xff },
	{ 0x08, 0x01 },
	{ 0x08, 0x00 },
};

216 217
static struct regdata mb86a20s_per_ber_reset[] = {
	{ 0x53, 0x00 },	/* pre BER Counter reset */
218 219
	{ 0x53, 0x07 },

220 221 222
	{ 0x5f, 0x00 },	/* post BER Counter reset */
	{ 0x5f, 0x07 },

223 224 225 226 227
	{ 0x50, 0xb1 },	/* PER Counter reset */
	{ 0x51, 0x07 },
	{ 0x51, 0x00 },
};

228 229 230 231
/*
 * I2C read/write functions and macros
 */

232
static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
233
			     u8 i2c_addr, u8 reg, u8 data)
234 235 236 237 238 239 240 241 242
{
	u8 buf[] = { reg, data };
	struct i2c_msg msg = {
		.addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
	};
	int rc;

	rc = i2c_transfer(state->i2c, &msg, 1);
	if (rc != 1) {
243 244 245
		dev_err(&state->i2c->dev,
			"%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
			__func__, rc, reg, data);
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
		return rc;
	}

	return 0;
}

static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
				     u8 i2c_addr, struct regdata *rd, int size)
{
	int i, rc;

	for (i = 0; i < size; i++) {
		rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
					   rd[i].data);
		if (rc < 0)
			return rc;
	}
	return 0;
}

static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
				u8 i2c_addr, u8 reg)
{
	u8 val;
	int rc;
	struct i2c_msg msg[] = {
		{ .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
		{ .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
	};

	rc = i2c_transfer(state->i2c, msg, 2);

	if (rc != 2) {
279 280 281
		dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
			__func__, reg, rc);
		return (rc < 0) ? rc : -EIO;
282 283 284 285 286 287 288 289 290 291 292 293 294
	}

	return val;
}

#define mb86a20s_readreg(state, reg) \
	mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
#define mb86a20s_writereg(state, reg, val) \
	mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
#define mb86a20s_writeregdata(state, regdata) \
	mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
	regdata, ARRAY_SIZE(regdata))

295 296 297 298 299 300
/*
 * Ancillary internal routines (likely compiled inlined)
 *
 * The functions below assume that gateway lock has already obtained
 */

301
static int mb86a20s_read_status(struct dvb_frontend *fe, fe_status_t *status)
302 303
{
	struct mb86a20s_state *state = fe->demodulator_priv;
304
	int val;
305

306
	*status = 0;
307

308 309 310
	val = mb86a20s_readreg(state, 0x0a) & 0xf;
	if (val < 0)
		return val;
311

312 313
	if (val >= 2)
		*status |= FE_HAS_SIGNAL;
314

315 316
	if (val >= 4)
		*status |= FE_HAS_CARRIER;
317

318 319
	if (val >= 5)
		*status |= FE_HAS_VITERBI;
320

321 322
	if (val >= 7)
		*status |= FE_HAS_SYNC;
323

324 325 326
	if (val >= 8)				/* Maybe 9? */
		*status |= FE_HAS_LOCK;

327 328
	dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
		 __func__, *status, val);
329

330
	return val;
331 332
}

333
static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
334 335
{
	struct mb86a20s_state *state = fe->demodulator_priv;
336
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
337
	int rc;
338
	unsigned rf_max, rf_min, rf;
339

340 341 342 343 344 345 346
	if (state->get_strength_time &&
	   (!time_after(jiffies, state->get_strength_time)))
		return c->strength.stat[0].uvalue;

	/* Reset its value if an error happen */
	c->strength.stat[0].uvalue = 0;

347 348 349 350 351
	/* Does a binary search to get RF strength */
	rf_max = 0xfff;
	rf_min = 0;
	do {
		rf = (rf_max + rf_min) / 2;
352 353 354 355 356 357 358 359 360
		rc = mb86a20s_writereg(state, 0x04, 0x1f);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x05, rf >> 8);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x04, 0x20);
		if (rc < 0)
			return rc;
361
		rc = mb86a20s_writereg(state, 0x05, rf);
362 363
		if (rc < 0)
			return rc;
364

365 366 367 368
		rc = mb86a20s_readreg(state, 0x02);
		if (rc < 0)
			return rc;
		if (rc & 0x08)
369 370 371 372
			rf_min = (rf_max + rf_min) / 2;
		else
			rf_max = (rf_max + rf_min) / 2;
		if (rf_max - rf_min < 4) {
373 374 375
			rf = (rf_max + rf_min) / 2;

			/* Rescale it from 2^12 (4096) to 2^16 */
376 377 378 379
			rf = rf << (16 - 12);
			if (rf)
				rf |= (1 << 12) - 1;

380 381 382
			dev_dbg(&state->i2c->dev,
				"%s: signal strength = %d (%d < RF=%d < %d)\n",
				__func__, rf, rf_min, rf >> 4, rf_max);
383 384 385 386
			c->strength.stat[0].uvalue = rf;
			state->get_strength_time = jiffies +
						   msecs_to_jiffies(1000);
			return 0;
387 388 389 390
		}
	} while (1);
}

391 392 393 394 395 396 397 398 399 400
static int mb86a20s_get_modulation(struct mb86a20s_state *state,
				   unsigned layer)
{
	int rc;
	static unsigned char reg[] = {
		[0] = 0x86,	/* Layer A */
		[1] = 0x8a,	/* Layer B */
		[2] = 0x8e,	/* Layer C */
	};

401
	if (layer >= ARRAY_SIZE(reg))
402 403 404 405 406 407 408
		return -EINVAL;
	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x6e);
	if (rc < 0)
		return rc;
409
	switch ((rc >> 4) & 0x07) {
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
	case 0:
		return DQPSK;
	case 1:
		return QPSK;
	case 2:
		return QAM_16;
	case 3:
		return QAM_64;
	default:
		return QAM_AUTO;
	}
}

static int mb86a20s_get_fec(struct mb86a20s_state *state,
			    unsigned layer)
{
	int rc;

	static unsigned char reg[] = {
		[0] = 0x87,	/* Layer A */
		[1] = 0x8b,	/* Layer B */
		[2] = 0x8f,	/* Layer C */
	};

434
	if (layer >= ARRAY_SIZE(reg))
435 436 437 438 439 440 441
		return -EINVAL;
	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x6e);
	if (rc < 0)
		return rc;
442
	switch ((rc >> 4) & 0x07) {
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	case 0:
		return FEC_1_2;
	case 1:
		return FEC_2_3;
	case 2:
		return FEC_3_4;
	case 3:
		return FEC_5_6;
	case 4:
		return FEC_7_8;
	default:
		return FEC_AUTO;
	}
}

static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
				     unsigned layer)
{
	int rc;

	static unsigned char reg[] = {
		[0] = 0x88,	/* Layer A */
		[1] = 0x8c,	/* Layer B */
		[2] = 0x90,	/* Layer C */
	};

469
	if (layer >= ARRAY_SIZE(reg))
470 471 472 473 474 475 476
		return -EINVAL;
	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x6e);
	if (rc < 0)
		return rc;
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

	switch ((rc >> 4) & 0x07) {
	case 1:
		return GUARD_INTERVAL_1_4;
	case 2:
		return GUARD_INTERVAL_1_8;
	case 3:
		return GUARD_INTERVAL_1_16;
	case 4:
		return GUARD_INTERVAL_1_32;

	default:
	case 0:
		return GUARD_INTERVAL_AUTO;
	}
492 493 494 495 496 497 498 499 500 501 502 503
}

static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
				      unsigned layer)
{
	int rc, count;
	static unsigned char reg[] = {
		[0] = 0x89,	/* Layer A */
		[1] = 0x8d,	/* Layer B */
		[2] = 0x91,	/* Layer C */
	};

504 505
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

506
	if (layer >= ARRAY_SIZE(reg))
507
		return -EINVAL;
508

509 510 511 512 513 514 515 516
	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x6e);
	if (rc < 0)
		return rc;
	count = (rc >> 4) & 0x0f;

517 518
	dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);

519 520 521
	return count;
}

522 523
static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
{
524
	struct mb86a20s_state *state = fe->demodulator_priv;
525 526
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;

527 528
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

529 530 531 532 533 534 535 536 537 538 539 540
	/* Fixed parameters */
	c->delivery_system = SYS_ISDBT;
	c->bandwidth_hz = 6000000;

	/* Initialize values that will be later autodetected */
	c->isdbt_layer_enabled = 0;
	c->transmission_mode = TRANSMISSION_MODE_AUTO;
	c->guard_interval = GUARD_INTERVAL_AUTO;
	c->isdbt_sb_mode = 0;
	c->isdbt_sb_segment_count = 0;
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
 * Estimates the bit rate using the per-segment bit rate given by
 * ABNT/NBR 15601 spec (table 4).
 */
static u32 isdbt_rate[3][5][4] = {
	{	/* DQPSK/QPSK */
		{  280850,  312060,  330420,  340430 },	/* 1/2 */
		{  374470,  416080,  440560,  453910 },	/* 2/3 */
		{  421280,  468090,  495630,  510650 },	/* 3/4 */
		{  468090,  520100,  550700,  567390 },	/* 5/6 */
		{  491500,  546110,  578230,  595760 },	/* 7/8 */
	}, {	/* QAM16 */
		{  561710,  624130,  660840,  680870 },	/* 1/2 */
		{  748950,  832170,  881120,  907820 },	/* 2/3 */
		{  842570,  936190,  991260, 1021300 },	/* 3/4 */
		{  936190, 1040210, 1101400, 1134780 },	/* 5/6 */
		{  983000, 1092220, 1156470, 1191520 },	/* 7/8 */
	}, {	/* QAM64 */
		{  842570,  936190,  991260, 1021300 },	/* 1/2 */
		{ 1123430, 1248260, 1321680, 1361740 },	/* 2/3 */
		{ 1263860, 1404290, 1486900, 1531950 },	/* 3/4 */
		{ 1404290, 1560320, 1652110, 1702170 },	/* 5/6 */
		{ 1474500, 1638340, 1734710, 1787280 },	/* 7/8 */
	}
};

static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer,
568 569
				   u32 modulation, u32 forward_error_correction,
				   u32 interleaving,
570 571 572 573
				   u32 segment)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	u32 rate;
574
	int mod, fec, guard;
575 576 577 578 579 580 581 582 583 584

	/*
	 * If modulation/fec/interleaving is not detected, the default is
	 * to consider the lowest bit rate, to avoid taking too long time
	 * to get BER.
	 */
	switch (modulation) {
	case DQPSK:
	case QPSK:
	default:
585
		mod = 0;
586 587
		break;
	case QAM_16:
588
		mod = 1;
589 590
		break;
	case QAM_64:
591
		mod = 2;
592 593 594
		break;
	}

595
	switch (forward_error_correction) {
596 597 598
	default:
	case FEC_1_2:
	case FEC_AUTO:
599
		fec = 0;
600 601
		break;
	case FEC_2_3:
602
		fec = 1;
603 604
		break;
	case FEC_3_4:
605
		fec = 2;
606 607
		break;
	case FEC_5_6:
608
		fec = 3;
609 610
		break;
	case FEC_7_8:
611
		fec = 4;
612 613 614 615 616 617
		break;
	}

	switch (interleaving) {
	default:
	case GUARD_INTERVAL_1_4:
618
		guard = 0;
619 620
		break;
	case GUARD_INTERVAL_1_8:
621
		guard = 1;
622 623
		break;
	case GUARD_INTERVAL_1_16:
624
		guard = 2;
625 626
		break;
	case GUARD_INTERVAL_1_32:
627
		guard = 3;
628 629 630 631
		break;
	}

	/* Samples BER at BER_SAMPLING_RATE seconds */
632
	rate = isdbt_rate[mod][fec][guard] * segment * BER_SAMPLING_RATE;
633 634 635 636 637 638 639 640 641

	/* Avoids sampling too quickly or to overflow the register */
	if (rate < 256)
		rate = 256;
	else if (rate > (1 << 24) - 1)
		rate = (1 << 24) - 1;

	dev_dbg(&state->i2c->dev,
		"%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
642 643
		__func__, 'A' + layer,
		segment * isdbt_rate[mod][fec][guard]/1000,
644 645
		rate, rate);

646
	state->estimated_rate[layer] = rate;
647 648
}

649
static int mb86a20s_get_frontend(struct dvb_frontend *fe)
650
{
651
	struct mb86a20s_state *state = fe->demodulator_priv;
652
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
653
	int layer, rc;
654

655 656
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

657 658
	/* Reset frontend cache to default values */
	mb86a20s_reset_frontend_cache(fe);
659 660 661

	/* Check for partial reception */
	rc = mb86a20s_writereg(state, 0x6d, 0x85);
662 663 664 665 666 667
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x6e);
	if (rc < 0)
		return rc;
	c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
668 669

	/* Get per-layer data */
670

671
	for (layer = 0; layer < NUM_LAYERS; layer++) {
672
		dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
673
			__func__, 'A' + layer);
674

675
		rc = mb86a20s_get_segment_count(state, layer);
676
		if (rc < 0)
677
			goto noperlayer_error;
678
		if (rc >= 0 && rc < 14) {
679
			c->layer[layer].segment_count = rc;
680
		} else {
681 682
			c->layer[layer].segment_count = 0;
			state->estimated_rate[layer] = 0;
683
			continue;
684
		}
685 686
		c->isdbt_layer_enabled |= 1 << layer;
		rc = mb86a20s_get_modulation(state, layer);
687
		if (rc < 0)
688 689 690
			goto noperlayer_error;
		dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
			__func__, rc);
691 692
		c->layer[layer].modulation = rc;
		rc = mb86a20s_get_fec(state, layer);
693
		if (rc < 0)
694 695 696
			goto noperlayer_error;
		dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
			__func__, rc);
697 698
		c->layer[layer].fec = rc;
		rc = mb86a20s_get_interleaving(state, layer);
699
		if (rc < 0)
700 701 702
			goto noperlayer_error;
		dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
			__func__, rc);
703 704 705 706 707
		c->layer[layer].interleaving = rc;
		mb86a20s_layer_bitrate(fe, layer, c->layer[layer].modulation,
				       c->layer[layer].fec,
				       c->layer[layer].interleaving,
				       c->layer[layer].segment_count);
708 709 710
	}

	rc = mb86a20s_writereg(state, 0x6d, 0x84);
711 712 713 714
	if (rc < 0)
		return rc;
	if ((rc & 0x60) == 0x20) {
		c->isdbt_sb_mode = 1;
715
		/* At least, one segment should exist */
716 717 718
		if (!c->isdbt_sb_segment_count)
			c->isdbt_sb_segment_count = 1;
	}
719 720 721

	/* Get transmission mode and guard interval */
	rc = mb86a20s_readreg(state, 0x07);
722 723 724 725 726 727 728 729 730 731 732 733 734
	if (rc < 0)
		return rc;
	if ((rc & 0x60) == 0x20) {
		switch (rc & 0x0c >> 2) {
		case 0:
			c->transmission_mode = TRANSMISSION_MODE_2K;
			break;
		case 1:
			c->transmission_mode = TRANSMISSION_MODE_4K;
			break;
		case 2:
			c->transmission_mode = TRANSMISSION_MODE_8K;
			break;
735
		}
736 737 738 739 740 741 742 743 744 745 746 747
	}
	if (!(rc & 0x10)) {
		switch (rc & 0x3) {
		case 0:
			c->guard_interval = GUARD_INTERVAL_1_4;
			break;
		case 1:
			c->guard_interval = GUARD_INTERVAL_1_8;
			break;
		case 2:
			c->guard_interval = GUARD_INTERVAL_1_16;
			break;
748 749
		}
	}
750
	return 0;
751

752
noperlayer_error:
753

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
	/* per-layer info is incomplete; discard all per-layer */
	c->isdbt_layer_enabled = 0;

	return rc;
}

static int mb86a20s_reset_counters(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	int rc, val;

	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

	/* Reset the counters, if the channel changed */
	if (state->last_frequency != c->frequency) {
		memset(&c->cnr, 0, sizeof(c->cnr));
		memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
		memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
773 774
		memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
		memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
775 776 777 778 779 780 781 782
		memset(&c->block_error, 0, sizeof(c->block_error));
		memset(&c->block_count, 0, sizeof(c->block_count));

		state->last_frequency = c->frequency;
	}

	/* Clear status for most stats */

783 784
	/* BER/PER counter reset */
	rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
	if (rc < 0)
		goto err;

	/* CNR counter reset */
	rc = mb86a20s_readreg(state, 0x45);
	if (rc < 0)
		goto err;
	val = rc;
	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
	if (rc < 0)
		goto err;
	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
	if (rc < 0)
		goto err;

	/* MER counter reset */
	rc = mb86a20s_writereg(state, 0x50, 0x50);
	if (rc < 0)
		goto err;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		goto err;
	val = rc;
	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
	if (rc < 0)
		goto err;
	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
	if (rc < 0)
		goto err;

815
	goto ok;
816
err:
817 818 819 820
	dev_err(&state->i2c->dev,
		"%s: Can't reset FE statistics (error %d).\n",
		__func__, rc);
ok:
821
	return rc;
822 823
}

824 825 826
static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
				unsigned layer,
				u32 *error, u32 *count)
827 828
{
	struct mb86a20s_state *state = fe->demodulator_priv;
829
	int rc, val;
830 831 832

	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

833
	if (layer >= NUM_LAYERS)
834 835 836 837 838 839 840 841 842 843
		return -EINVAL;

	/* Check if the BER measures are already available */
	rc = mb86a20s_readreg(state, 0x54);
	if (rc < 0)
		return rc;

	/* Check if data is available for that layer */
	if (!(rc & (1 << layer))) {
		dev_dbg(&state->i2c->dev,
844
			"%s: preBER for layer %c is not available yet.\n",
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
			__func__, 'A' + layer);
		return -EBUSY;
	}

	/* Read Bit Error Count */
	rc = mb86a20s_readreg(state, 0x55 + layer * 3);
	if (rc < 0)
		return rc;
	*error = rc << 16;
	rc = mb86a20s_readreg(state, 0x56 + layer * 3);
	if (rc < 0)
		return rc;
	*error |= rc << 8;
	rc = mb86a20s_readreg(state, 0x57 + layer * 3);
	if (rc < 0)
		return rc;
	*error |= rc;

	dev_dbg(&state->i2c->dev,
		"%s: bit error before Viterbi for layer %c: %d.\n",
		__func__, 'A' + layer, *error);

	/* Read Bit Count */
	rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*count = rc << 16;
	rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*count |= rc << 8;
	rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*count |= rc;

	dev_dbg(&state->i2c->dev,
		"%s: bit count before Viterbi for layer %c: %d.\n",
		__func__, 'A' + layer, *count);


895 896 897 898 899 900 901 902 903 904
	/*
	 * As we get TMCC data from the frontend, we can better estimate the
	 * BER bit counters, in order to do the BER measure during a longer
	 * time. Use those data, if available, to update the bit count
	 * measure.
	 */

	if (state->estimated_rate[layer]
	    && state->estimated_rate[layer] != *count) {
		dev_dbg(&state->i2c->dev,
905
			"%s: updating layer %c preBER counter to %d.\n",
906
			__func__, 'A' + layer, state->estimated_rate[layer]);
907 908 909 910 911

		/* Turn off BER before Viterbi */
		rc = mb86a20s_writereg(state, 0x52, 0x00);

		/* Update counter for this layer */
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
		rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51,
				       state->estimated_rate[layer] >> 16);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51,
				       state->estimated_rate[layer] >> 8);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51,
				       state->estimated_rate[layer]);
		if (rc < 0)
			return rc;
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951

		/* Turn on BER before Viterbi */
		rc = mb86a20s_writereg(state, 0x52, 0x01);

		/* Reset all preBER counters */
		rc = mb86a20s_writereg(state, 0x53, 0x00);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x53, 0x07);
	} else {
		/* Reset counter to collect new data */
		rc = mb86a20s_readreg(state, 0x53);
		if (rc < 0)
			return rc;
		val = rc;
		rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
952 953
	}

954 955 956 957 958 959 960 961 962 963 964 965 966
	return rc;
}

static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
				 unsigned layer,
				  u32 *error, u32 *count)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	u32 counter, collect_rate;
	int rc, val;

	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

967
	if (layer >= NUM_LAYERS)
968 969 970 971 972 973 974 975 976 977 978 979 980 981
		return -EINVAL;

	/* Check if the BER measures are already available */
	rc = mb86a20s_readreg(state, 0x60);
	if (rc < 0)
		return rc;

	/* Check if data is available for that layer */
	if (!(rc & (1 << layer))) {
		dev_dbg(&state->i2c->dev,
			"%s: post BER for layer %c is not available yet.\n",
			__func__, 'A' + layer);
		return -EBUSY;
	}
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	/* Read Bit Error Count */
	rc = mb86a20s_readreg(state, 0x64 + layer * 3);
	if (rc < 0)
		return rc;
	*error = rc << 16;
	rc = mb86a20s_readreg(state, 0x65 + layer * 3);
	if (rc < 0)
		return rc;
	*error |= rc << 8;
	rc = mb86a20s_readreg(state, 0x66 + layer * 3);
	if (rc < 0)
		return rc;
	*error |= rc;

	dev_dbg(&state->i2c->dev,
		"%s: post bit error for layer %c: %d.\n",
		__func__, 'A' + layer, *error);

	/* Read Bit Count */
	rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	counter = rc << 8;
	rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	counter |= rc;
	*count = counter * 204 * 8;

	dev_dbg(&state->i2c->dev,
		"%s: post bit count for layer %c: %d.\n",
		__func__, 'A' + layer, *count);

	/*
	 * As we get TMCC data from the frontend, we can better estimate the
	 * BER bit counters, in order to do the BER measure during a longer
	 * time. Use those data, if available, to update the bit count
	 * measure.
	 */

	if (!state->estimated_rate[layer])
		goto reset_measurement;

	collect_rate = state->estimated_rate[layer] / 204 / 8;
	if (collect_rate < 32)
		collect_rate = 32;
	if (collect_rate > 65535)
		collect_rate = 65535;
	if (collect_rate != counter) {
		dev_dbg(&state->i2c->dev,
			"%s: updating postBER counter on layer %c to %d.\n",
			__func__, 'A' + layer, collect_rate);

		/* Turn off BER after Viterbi */
		rc = mb86a20s_writereg(state, 0x5e, 0x00);

		/* Update counter for this layer */
		rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
		if (rc < 0)
			return rc;

		/* Turn on BER after Viterbi */
		rc = mb86a20s_writereg(state, 0x5e, 0x07);

		/* Reset all preBER counters */
		rc = mb86a20s_writereg(state, 0x5f, 0x00);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x5f, 0x07);

		return rc;
	}

reset_measurement:
1072
	/* Reset counter to collect new data */
1073 1074 1075 1076 1077
	rc = mb86a20s_readreg(state, 0x5f);
	if (rc < 0)
		return rc;
	val = rc;
	rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
1078 1079
	if (rc < 0)
		return rc;
1080
	rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
1081

1082
	return rc;
1083 1084
}

1085 1086 1087 1088 1089
static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
			    unsigned layer,
			    u32 *error, u32 *count)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
1090
	int rc, val;
1091 1092 1093
	u32 collect_rate;
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

1094
	if (layer >= NUM_LAYERS)
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		return -EINVAL;

	/* Check if the PER measures are already available */
	rc = mb86a20s_writereg(state, 0x50, 0xb8);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;

	/* Check if data is available for that layer */

	if (!(rc & (1 << layer))) {
		dev_dbg(&state->i2c->dev,
			"%s: block counts for layer %c aren't available yet.\n",
			__func__, 'A' + layer);
		return -EBUSY;
	}

	/* Read Packet error Count */
	rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*error = rc << 8;
	rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*error |= rc;
1129
	dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		__func__, 'A' + layer, *error);

	/* Read Bit Count */
	rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*count = rc << 8;
	rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*count |= rc;

	dev_dbg(&state->i2c->dev,
		"%s: block count for layer %c: %d.\n",
		__func__, 'A' + layer, *count);

	/*
	 * As we get TMCC data from the frontend, we can better estimate the
	 * BER bit counters, in order to do the BER measure during a longer
	 * time. Use those data, if available, to update the bit count
	 * measure.
	 */

	if (!state->estimated_rate[layer])
		goto reset_measurement;

	collect_rate = state->estimated_rate[layer] / 204 / 8;
	if (collect_rate < 32)
		collect_rate = 32;
	if (collect_rate > 65535)
		collect_rate = 65535;

	if (collect_rate != *count) {
		dev_dbg(&state->i2c->dev,
			"%s: updating PER counter on layer %c to %d.\n",
			__func__, 'A' + layer, collect_rate);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

		/* Stop PER measurement */
		rc = mb86a20s_writereg(state, 0x50, 0xb0);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, 0x00);
		if (rc < 0)
			return rc;

		/* Update this layer's counter */
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
		rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
		if (rc < 0)
			return rc;
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

		/* start PER measurement */
		rc = mb86a20s_writereg(state, 0x50, 0xb0);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, 0x07);
		if (rc < 0)
			return rc;

		/* Reset all counters to collect new data */
		rc = mb86a20s_writereg(state, 0x50, 0xb1);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, 0x07);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, 0x00);

		return rc;
1213 1214 1215 1216 1217 1218 1219
	}

reset_measurement:
	/* Reset counter to collect new data */
	rc = mb86a20s_writereg(state, 0x50, 0xb1);
	if (rc < 0)
		return rc;
1220
	rc = mb86a20s_readreg(state, 0x51);
1221 1222
	if (rc < 0)
		return rc;
1223 1224
	val = rc;
	rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
1225 1226
	if (rc < 0)
		return rc;
1227
	rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
1228

1229
	return rc;
1230 1231
}

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
struct linear_segments {
	unsigned x, y;
};

/*
 * All tables below return a dB/1000 measurement
 */

static struct linear_segments cnr_to_db_table[] = {
	{ 19648,     0},
	{ 18187,  1000},
	{ 16534,  2000},
	{ 14823,  3000},
	{ 13161,  4000},
	{ 11622,  5000},
	{ 10279,  6000},
	{  9089,  7000},
	{  8042,  8000},
	{  7137,  9000},
	{  6342, 10000},
	{  5641, 11000},
	{  5030, 12000},
	{  4474, 13000},
	{  3988, 14000},
	{  3556, 15000},
	{  3180, 16000},
	{  2841, 17000},
	{  2541, 18000},
	{  2276, 19000},
	{  2038, 20000},
	{  1800, 21000},
	{  1625, 22000},
	{  1462, 23000},
	{  1324, 24000},
	{  1175, 25000},
	{  1063, 26000},
	{   980, 27000},
	{   907, 28000},
	{   840, 29000},
	{   788, 30000},
};

static struct linear_segments cnr_64qam_table[] = {
	{ 3922688,     0},
	{ 3920384,  1000},
	{ 3902720,  2000},
	{ 3894784,  3000},
	{ 3882496,  4000},
	{ 3872768,  5000},
	{ 3858944,  6000},
	{ 3851520,  7000},
	{ 3838976,  8000},
	{ 3829248,  9000},
	{ 3818240, 10000},
	{ 3806976, 11000},
	{ 3791872, 12000},
	{ 3767040, 13000},
	{ 3720960, 14000},
	{ 3637504, 15000},
	{ 3498496, 16000},
	{ 3296000, 17000},
	{ 3031040, 18000},
	{ 2715392, 19000},
	{ 2362624, 20000},
	{ 1963264, 21000},
	{ 1649664, 22000},
	{ 1366784, 23000},
	{ 1120768, 24000},
	{  890880, 25000},
	{  723456, 26000},
	{  612096, 27000},
	{  518912, 28000},
	{  448256, 29000},
	{  388864, 30000},
};

static struct linear_segments cnr_16qam_table[] = {
	{ 5314816,     0},
	{ 5219072,  1000},
	{ 5118720,  2000},
	{ 4998912,  3000},
	{ 4875520,  4000},
	{ 4736000,  5000},
	{ 4604160,  6000},
	{ 4458752,  7000},
	{ 4300288,  8000},
	{ 4092928,  9000},
	{ 3836160, 10000},
	{ 3521024, 11000},
	{ 3155968, 12000},
	{ 2756864, 13000},
	{ 2347008, 14000},
	{ 1955072, 15000},
	{ 1593600, 16000},
	{ 1297920, 17000},
	{ 1043968, 18000},
	{  839680, 19000},
	{  672256, 20000},
	{  523008, 21000},
	{  424704, 22000},
	{  345088, 23000},
	{  280064, 24000},
	{  221440, 25000},
	{  179712, 26000},
	{  151040, 27000},
	{  128512, 28000},
	{  110080, 29000},
	{   95744, 30000},
};

struct linear_segments cnr_qpsk_table[] = {
	{ 2834176,     0},
	{ 2683648,  1000},
	{ 2536960,  2000},
	{ 2391808,  3000},
	{ 2133248,  4000},
	{ 1906176,  5000},
	{ 1666560,  6000},
	{ 1422080,  7000},
	{ 1189632,  8000},
	{  976384,  9000},
	{  790272, 10000},
	{  633344, 11000},
	{  505600, 12000},
	{  402944, 13000},
	{  320768, 14000},
	{  255488, 15000},
	{  204032, 16000},
	{  163072, 17000},
	{  130304, 18000},
	{  105216, 19000},
	{   83456, 20000},
	{   65024, 21000},
	{   52480, 22000},
	{   42752, 23000},
	{   34560, 24000},
	{   27136, 25000},
	{   22016, 26000},
	{   18432, 27000},
	{   15616, 28000},
	{   13312, 29000},
	{   11520, 30000},
};

static u32 interpolate_value(u32 value, struct linear_segments *segments,
			     unsigned len)
{
	u64 tmp64;
	u32 dx, dy;
	int i, ret;

	if (value >= segments[0].x)
		return segments[0].y;
	if (value < segments[len-1].x)
		return segments[len-1].y;

	for (i = 1; i < len - 1; i++) {
		/* If value is identical, no need to interpolate */
		if (value == segments[i].x)
			return segments[i].y;
		if (value > segments[i].x)
			break;
	}

	/* Linear interpolation between the two (x,y) points */
	dy = segments[i].y - segments[i - 1].y;
	dx = segments[i - 1].x - segments[i].x;
	tmp64 = value - segments[i].x;
	tmp64 *= dy;
	do_div(tmp64, dx);
	ret = segments[i].y - tmp64;

	return ret;
}

static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	u32 cnr_linear, cnr;
	int rc, val;

	/* Check if CNR is available */
	rc = mb86a20s_readreg(state, 0x45);
	if (rc < 0)
		return rc;

	if (!(rc & 0x40)) {
1420
		dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
			 __func__);
		return -EBUSY;
	}
	val = rc;

	rc = mb86a20s_readreg(state, 0x46);
	if (rc < 0)
		return rc;
	cnr_linear = rc << 8;

	rc = mb86a20s_readreg(state, 0x46);
	if (rc < 0)
		return rc;
	cnr_linear |= rc;

	cnr = interpolate_value(cnr_linear,
				cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));

	c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
	c->cnr.stat[0].svalue = cnr;

	dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
		__func__, cnr / 1000, cnr % 1000, cnr_linear);

	/* CNR counter reset */
	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
	if (rc < 0)
		return rc;
	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);

	return rc;
}

1454
static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
1455 1456 1457 1458
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	u32 mer, cnr;
1459
	int rc, val, layer;
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	struct linear_segments *segs;
	unsigned segs_len;

	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

	/* Check if the measures are already available */
	rc = mb86a20s_writereg(state, 0x50, 0x5b);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;

	/* Check if data is available */
	if (!(rc & 0x01)) {
1475
		dev_dbg(&state->i2c->dev,
1476 1477 1478 1479 1480
			"%s: MER measures aren't available yet.\n", __func__);
		return -EBUSY;
	}

	/* Read all layers */
1481 1482 1483
	for (layer = 0; layer < NUM_LAYERS; layer++) {
		if (!(c->isdbt_layer_enabled & (1 << layer))) {
			c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1484 1485 1486
			continue;
		}

1487
		rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
1488 1489 1490 1491 1492 1493
		if (rc < 0)
			return rc;
		rc = mb86a20s_readreg(state, 0x51);
		if (rc < 0)
			return rc;
		mer = rc << 16;
1494
		rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
1495 1496 1497 1498 1499 1500
		if (rc < 0)
			return rc;
		rc = mb86a20s_readreg(state, 0x51);
		if (rc < 0)
			return rc;
		mer |= rc << 8;
1501
		rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
1502 1503 1504 1505 1506 1507 1508
		if (rc < 0)
			return rc;
		rc = mb86a20s_readreg(state, 0x51);
		if (rc < 0)
			return rc;
		mer |= rc;

1509
		switch (c->layer[layer].modulation) {
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
		case DQPSK:
		case QPSK:
			segs = cnr_qpsk_table;
			segs_len = ARRAY_SIZE(cnr_qpsk_table);
			break;
		case QAM_16:
			segs = cnr_16qam_table;
			segs_len = ARRAY_SIZE(cnr_16qam_table);
			break;
		default:
		case QAM_64:
			segs = cnr_64qam_table;
			segs_len = ARRAY_SIZE(cnr_64qam_table);
			break;
		}
		cnr = interpolate_value(mer, segs, segs_len);

1527 1528
		c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
		c->cnr.stat[1 + layer].svalue = cnr;
1529 1530 1531

		dev_dbg(&state->i2c->dev,
			"%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
1532
			__func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555

	}

	/* Start a new MER measurement */
	/* MER counter reset */
	rc = mb86a20s_writereg(state, 0x50, 0x50);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	val = rc;

	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
	if (rc < 0)
		return rc;
	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
	if (rc < 0)
		return rc;

	return 0;
}

1556 1557 1558 1559
static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1560
	int layer;
1561 1562

	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1563

1564 1565 1566 1567 1568 1569
	/* Fill the length of each status counter */

	/* Only global stats */
	c->strength.len = 1;

	/* Per-layer stats - 3 layers + global */
1570 1571 1572 1573 1574 1575 1576
	c->cnr.len = NUM_LAYERS + 1;
	c->pre_bit_error.len = NUM_LAYERS + 1;
	c->pre_bit_count.len = NUM_LAYERS + 1;
	c->post_bit_error.len = NUM_LAYERS + 1;
	c->post_bit_count.len = NUM_LAYERS + 1;
	c->block_error.len = NUM_LAYERS + 1;
	c->block_count.len = NUM_LAYERS + 1;
1577 1578 1579 1580 1581 1582

	/* Signal is always available */
	c->strength.stat[0].scale = FE_SCALE_RELATIVE;
	c->strength.stat[0].uvalue = 0;

	/* Put all of them at FE_SCALE_NOT_AVAILABLE */
1583 1584 1585 1586 1587 1588 1589 1590
	for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
		c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
		c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
		c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
		c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
		c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
		c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
		c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1591
	}
1592 1593
}

1594
static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
1595 1596 1597
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1598
	int rc = 0, layer;
1599 1600
	u32 bit_error = 0, bit_count = 0;
	u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
1601
	u32 t_post_bit_error = 0, t_post_bit_count = 0;
1602 1603
	u32 block_error = 0, block_count = 0;
	u32 t_block_error = 0, t_block_count = 0;
1604 1605
	int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
	int per_layers = 0;
1606

1607 1608 1609 1610
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

	mb86a20s_get_main_CNR(fe);

1611
	/* Get per-layer stats */
1612
	mb86a20s_get_blk_error_layer_CNR(fe);
1613

1614 1615 1616 1617 1618 1619 1620 1621
	/*
	 * At state 7, only CNR is available
	 * For BER measures, state=9 is required
	 * FIXME: we may get MER measures with state=8
	 */
	if (status_nr < 9)
		return 0;

1622 1623
	for (layer = 0; layer < NUM_LAYERS; layer++) {
		if (c->isdbt_layer_enabled & (1 << layer)) {
1624 1625 1626 1627
			/* Layer is active and has rc segments */
			active_layers++;

			/* Handle BER before vterbi */
1628
			rc = mb86a20s_get_pre_ber(fe, layer,
1629
						  &bit_error, &bit_count);
1630
			if (rc >= 0) {
1631 1632 1633 1634
				c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
				c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
				c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
				c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
1635 1636 1637 1638 1639
			} else if (rc != -EBUSY) {
				/*
					* If an I/O error happened,
					* measures are now unavailable
					*/
1640 1641
				c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
				c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1642 1643
				dev_err(&state->i2c->dev,
					"%s: Can't get BER for layer %c (error %d).\n",
1644
					__func__, 'A' + layer, rc);
1645
			}
1646
			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1647 1648 1649
				pre_ber_layers++;

			/* Handle BER post vterbi */
1650
			rc = mb86a20s_get_post_ber(fe, layer,
1651 1652
						   &bit_error, &bit_count);
			if (rc >= 0) {
1653 1654 1655 1656
				c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
				c->post_bit_error.stat[1 + layer].uvalue += bit_error;
				c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
				c->post_bit_count.stat[1 + layer].uvalue += bit_count;
1657 1658 1659 1660 1661
			} else if (rc != -EBUSY) {
				/*
					* If an I/O error happened,
					* measures are now unavailable
					*/
1662 1663
				c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
				c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1664 1665
				dev_err(&state->i2c->dev,
					"%s: Can't get BER for layer %c (error %d).\n",
1666
					__func__, 'A' + layer, rc);
1667
			}
1668
			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1669
				post_ber_layers++;
1670

1671
			/* Handle Block errors for PER/UCB reports */
1672
			rc = mb86a20s_get_blk_error(fe, layer,
1673 1674 1675
						&block_error,
						&block_count);
			if (rc >= 0) {
1676 1677 1678 1679
				c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
				c->block_error.stat[1 + layer].uvalue += block_error;
				c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
				c->block_count.stat[1 + layer].uvalue += block_count;
1680 1681 1682 1683 1684
			} else if (rc != -EBUSY) {
				/*
					* If an I/O error happened,
					* measures are now unavailable
					*/
1685 1686
				c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
				c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1687 1688
				dev_err(&state->i2c->dev,
					"%s: Can't get PER for layer %c (error %d).\n",
1689
					__func__, 'A' + layer, rc);
1690 1691

			}
1692
			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1693 1694
				per_layers++;

1695
			/* Update total preBER */
1696 1697
			t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
			t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
1698

1699
			/* Update total postBER */
1700 1701
			t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
			t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
1702

1703
			/* Update total PER */
1704 1705
			t_block_error += c->block_error.stat[1 + layer].uvalue;
			t_block_count += c->block_count.stat[1 + layer].uvalue;
1706 1707 1708 1709 1710 1711 1712
		}
	}

	/*
	 * Start showing global count if at least one error count is
	 * available.
	 */
1713
	if (pre_ber_layers) {
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
		/*
		 * At least one per-layer BER measure was read. We can now
		 * calculate the total BER
		 *
		 * Total Bit Error/Count is calculated as the sum of the
		 * bit errors on all active layers.
		 */
		c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
		c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
		c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
1725 1726 1727
	} else {
		c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1728 1729
	}

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	/*
	 * Start showing global count if at least one error count is
	 * available.
	 */
	if (post_ber_layers) {
		/*
		 * At least one per-layer BER measure was read. We can now
		 * calculate the total BER
		 *
		 * Total Bit Error/Count is calculated as the sum of the
		 * bit errors on all active layers.
		 */
		c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
		c->post_bit_error.stat[0].uvalue = t_post_bit_error;
		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
		c->post_bit_count.stat[0].uvalue = t_post_bit_count;
1746 1747 1748
	} else {
		c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1749 1750
	}

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	if (per_layers) {
		/*
		 * At least one per-layer UCB measure was read. We can now
		 * calculate the total UCB
		 *
		 * Total block Error/Count is calculated as the sum of the
		 * block errors on all active layers.
		 */
		c->block_error.stat[0].scale = FE_SCALE_COUNTER;
		c->block_error.stat[0].uvalue = t_block_error;
		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
		c->block_count.stat[0].uvalue = t_block_count;
1763 1764 1765
	} else {
		c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1766 1767
	}

1768 1769
	return rc;
}
1770 1771 1772 1773 1774 1775

/*
 * The functions below are called via DVB callbacks, so they need to
 * properly use the I2C gate control
 */

1776 1777 1778
static int mb86a20s_initfe(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
1779
	u64 pll;
1780
	u32 fclk;
1781
	int rc;
1782
	u8  regD5 = 1, reg71, reg09 = 0x3a;
1783

1784
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1785 1786 1787 1788 1789

	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0);

	/* Initialize the frontend */
1790
	rc = mb86a20s_writeregdata(state, mb86a20s_init1);
1791 1792 1793
	if (rc < 0)
		goto err;

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	if (!state->inversion)
		reg09 |= 0x04;
	rc = mb86a20s_writereg(state, 0x09, reg09);
	if (rc < 0)
		goto err;
	if (!state->bw)
		reg71 = 1;
	else
		reg71 = 0;
	rc = mb86a20s_writereg(state, 0x39, reg71);
	if (rc < 0)
		goto err;
	rc = mb86a20s_writereg(state, 0x71, state->bw);
	if (rc < 0)
		goto err;
	if (state->subchannel) {
		rc = mb86a20s_writereg(state, 0x44, state->subchannel);
		if (rc < 0)
			goto err;
	}

1815 1816 1817 1818
	fclk = state->config->fclk;
	if (!fclk)
		fclk = 32571428;

1819 1820 1821 1822 1823 1824 1825
	/* Adjust IF frequency to match tuner */
	if (fe->ops.tuner_ops.get_if_frequency)
		fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);

	if (!state->if_freq)
		state->if_freq = 3300000;

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	pll = (((u64)1) << 34) * state->if_freq;
	do_div(pll, 63 * fclk);
	pll = (1 << 25) - pll;
	rc = mb86a20s_writereg(state, 0x28, 0x2a);
	if (rc < 0)
		goto err;
	rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
	if (rc < 0)
		goto err;
	rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
	if (rc < 0)
		goto err;
	rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
	if (rc < 0)
		goto err;
	dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
		__func__, fclk, state->if_freq, (long long)pll);

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
	/* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
	pll = state->if_freq * 1677721600L;
	do_div(pll, 1628571429L);
	rc = mb86a20s_writereg(state, 0x28, 0x20);
	if (rc < 0)
		goto err;
	rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
	if (rc < 0)
		goto err;
	rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
	if (rc < 0)
		goto err;
	rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
	if (rc < 0)
		goto err;
1859
	dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
1860 1861
		__func__, state->if_freq, (long long)pll);

1862
	if (!state->config->is_serial)
1863 1864
		regD5 &= ~1;

1865 1866 1867 1868 1869 1870
	rc = mb86a20s_writereg(state, 0x50, 0xd5);
	if (rc < 0)
		goto err;
	rc = mb86a20s_writereg(state, 0x51, regD5);
	if (rc < 0)
		goto err;
1871

1872 1873 1874 1875 1876
	rc = mb86a20s_writeregdata(state, mb86a20s_init2);
	if (rc < 0)
		goto err;


1877 1878 1879 1880 1881 1882
err:
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1);

	if (rc < 0) {
		state->need_init = true;
1883 1884
		dev_info(&state->i2c->dev,
			 "mb86a20s: Init failed. Will try again later\n");
1885 1886
	} else {
		state->need_init = false;
1887
		dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
1888 1889 1890 1891 1892 1893 1894 1895
	}
	return rc;
}

static int mb86a20s_set_frontend(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1896
	int rc, if_freq;
1897
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1898

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	if (!c->isdbt_layer_enabled)
		c->isdbt_layer_enabled = 7;

	if (c->isdbt_layer_enabled == 1)
		state->bw = MB86A20S_1SEG;
	else if (c->isdbt_partial_reception)
		state->bw = MB86A20S_13SEG_PARTIAL;
	else
		state->bw = MB86A20S_13SEG;

	if (c->inversion == INVERSION_ON)
		state->inversion = true;
	else
		state->inversion = false;

	if (!c->isdbt_sb_mode) {
		state->subchannel = 0;
	} else {
1917
		if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
1918 1919 1920 1921 1922
			c->isdbt_sb_subchannel = 0;

		state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
	}

1923 1924 1925 1926 1927 1928 1929 1930
	/*
	 * Gate should already be opened, but it doesn't hurt to
	 * double-check
	 */
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1);
	fe->ops.tuner_ops.set_params(fe);

1931
	if (fe->ops.tuner_ops.get_if_frequency)
1932 1933
		fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);

1934 1935 1936 1937 1938 1939 1940 1941 1942
	/*
	 * Make it more reliable: if, for some reason, the initial
	 * device initialization doesn't happen, initialize it when
	 * a SBTVD parameters are adjusted.
	 *
	 * Unfortunately, due to a hard to track bug at tda829x/tda18271,
	 * the agc callback logic is not called during DVB attach time,
	 * causing mb86a20s to not be initialized with Kworld SBTVD.
	 * So, this hack is needed, in order to make Kworld SBTVD to work.
1943 1944
	 *
	 * It is also needed to change the IF after the initial init.
1945 1946 1947 1948 1949
	 *
	 * HACK: Always init the frontend when set_frontend is called:
	 * it was noticed that, on some devices, it fails to lock on a
	 * different channel. So, it is better to reset everything, even
	 * wasting some time, than to loose channel lock.
1950
	 */
1951
	mb86a20s_initfe(fe);
1952 1953 1954

	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0);
1955

1956
	rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
1957
	mb86a20s_reset_counters(fe);
1958
	mb86a20s_stats_not_ready(fe);
1959

1960 1961 1962 1963 1964 1965
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1);

	return rc;
}

1966 1967
static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
					  fe_status_t *status)
1968
{
1969
	struct mb86a20s_state *state = fe->demodulator_priv;
1970
	int rc, status_nr;
1971

1972
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1973 1974 1975 1976

	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0);

1977
	/* Get lock */
1978 1979
	status_nr = mb86a20s_read_status(fe, status);
	if (status_nr < 7) {
1980 1981 1982
		mb86a20s_stats_not_ready(fe);
		mb86a20s_reset_frontend_cache(fe);
	}
1983
	if (status_nr < 0) {
1984 1985
		dev_err(&state->i2c->dev,
			"%s: Can't read frontend lock status\n", __func__);
1986
		goto error;
1987
	}
1988 1989 1990 1991

	/* Get signal strength */
	rc = mb86a20s_read_signal_strength(fe);
	if (rc < 0) {
1992 1993
		dev_err(&state->i2c->dev,
			"%s: Can't reset VBER registers.\n", __func__);
1994 1995
		mb86a20s_stats_not_ready(fe);
		mb86a20s_reset_frontend_cache(fe);
1996 1997

		rc = 0;		/* Status is OK */
1998 1999 2000
		goto error;
	}

2001
	if (status_nr >= 7) {
2002 2003
		/* Get TMCC info*/
		rc = mb86a20s_get_frontend(fe);
2004 2005 2006 2007 2008 2009 2010 2011
		if (rc < 0) {
			dev_err(&state->i2c->dev,
				"%s: Can't get FE TMCC data.\n", __func__);
			rc = 0;		/* Status is OK */
			goto error;
		}

		/* Get statistics */
2012
		rc = mb86a20s_get_stats(fe, status_nr);
2013 2014 2015 2016
		if (rc < 0 && rc != -EBUSY) {
			dev_err(&state->i2c->dev,
				"%s: Can't get FE statistics.\n", __func__);
			rc = 0;
2017
			goto error;
2018 2019
		}
		rc = 0;	/* Don't return EBUSY to userspace */
2020
	}
2021
	goto ok;
2022

2023
error:
2024
	mb86a20s_stats_not_ready(fe);
2025

2026
ok:
2027 2028
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1);
2029

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	return rc;
}

static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
						    u16 *strength)
{
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;


	*strength = c->strength.stat[0].uvalue;
2040

2041
	return 0;
2042 2043
}

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
static int mb86a20s_get_frontend_dummy(struct dvb_frontend *fe)
{
	/*
	 * get_frontend is now handled together with other stats
	 * retrival, when read_status() is called, as some statistics
	 * will depend on the layers detection.
	 */
	return 0;
};

2054
static int mb86a20s_tune(struct dvb_frontend *fe,
2055
			bool re_tune,
2056 2057 2058 2059
			unsigned int mode_flags,
			unsigned int *delay,
			fe_status_t *status)
{
2060
	struct mb86a20s_state *state = fe->demodulator_priv;
2061 2062
	int rc = 0;

2063
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2064

2065
	if (re_tune)
2066
		rc = mb86a20s_set_frontend(fe);
2067 2068

	if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
2069
		mb86a20s_read_status_and_stats(fe, status);
2070 2071 2072 2073 2074 2075 2076 2077

	return rc;
}

static void mb86a20s_release(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;

2078
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2079 2080 2081 2082 2083 2084 2085 2086 2087

	kfree(state);
}

static struct dvb_frontend_ops mb86a20s_ops;

struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
				    struct i2c_adapter *i2c)
{
2088
	struct mb86a20s_state *state;
2089 2090
	u8	rev;

2091 2092
	dev_dbg(&i2c->dev, "%s called.\n", __func__);

2093
	/* allocate memory for the internal state */
2094
	state = kzalloc(sizeof(struct mb86a20s_state), GFP_KERNEL);
2095
	if (state == NULL) {
2096
		dev_err(&i2c->dev,
2097
			"%s: unable to allocate memory for state\n", __func__);
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
		goto error;
	}

	/* setup the state */
	state->config = config;
	state->i2c = i2c;

	/* create dvb_frontend */
	memcpy(&state->frontend.ops, &mb86a20s_ops,
		sizeof(struct dvb_frontend_ops));
	state->frontend.demodulator_priv = state;

	/* Check if it is a mb86a20s frontend */
	rev = mb86a20s_readreg(state, 0);

	if (rev == 0x13) {
2114
		dev_info(&i2c->dev,
2115
			 "Detected a Fujitsu mb86a20s frontend\n");
2116
	} else {
2117
		dev_dbg(&i2c->dev,
2118
			"Frontend revision %d is unknown - aborting.\n",
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
		       rev);
		goto error;
	}

	return &state->frontend;

error:
	kfree(state);
	return NULL;
}
EXPORT_SYMBOL(mb86a20s_attach);

static struct dvb_frontend_ops mb86a20s_ops = {
2132
	.delsys = { SYS_ISDBT },
2133 2134 2135
	/* Use dib8000 values per default */
	.info = {
		.name = "Fujitsu mb86A20s",
2136
		.caps = FE_CAN_RECOVER  |
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
			FE_CAN_FEC_1_2  | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
			FE_CAN_FEC_5_6  | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
			FE_CAN_QPSK     | FE_CAN_QAM_16  | FE_CAN_QAM_64 |
			FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
			FE_CAN_GUARD_INTERVAL_AUTO    | FE_CAN_HIERARCHY_AUTO,
		/* Actually, those values depend on the used tuner */
		.frequency_min = 45000000,
		.frequency_max = 864000000,
		.frequency_stepsize = 62500,
	},

	.release = mb86a20s_release,

	.init = mb86a20s_initfe,
2151
	.set_frontend = mb86a20s_set_frontend,
2152 2153 2154
	.get_frontend = mb86a20s_get_frontend_dummy,
	.read_status = mb86a20s_read_status_and_stats,
	.read_signal_strength = mb86a20s_read_signal_strength_from_cache,
2155 2156 2157 2158
	.tune = mb86a20s_tune,
};

MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
2159
MODULE_AUTHOR("Mauro Carvalho Chehab");
2160
MODULE_LICENSE("GPL");