mvpp2.c 194.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
 *
 * Copyright (C) 2014 Marvell
 *
 * Marcin Wojtas <mw@semihalf.com>
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/skbuff.h>
#include <linux/inetdevice.h>
#include <linux/mbus.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/cpumask.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_address.h>
28
#include <linux/of_device.h>
29 30
#include <linux/phy.h>
#include <linux/clk.h>
31 32
#include <linux/hrtimer.h>
#include <linux/ktime.h>
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#include <uapi/linux/ppp_defs.h>
#include <net/ip.h>
#include <net/ipv6.h>

/* RX Fifo Registers */
#define MVPP2_RX_DATA_FIFO_SIZE_REG(port)	(0x00 + 4 * (port))
#define MVPP2_RX_ATTR_FIFO_SIZE_REG(port)	(0x20 + 4 * (port))
#define MVPP2_RX_MIN_PKT_SIZE_REG		0x60
#define MVPP2_RX_FIFO_INIT_REG			0x64

/* RX DMA Top Registers */
#define MVPP2_RX_CTRL_REG(port)			(0x140 + 4 * (port))
#define     MVPP2_RX_LOW_LATENCY_PKT_SIZE(s)	(((s) & 0xfff) << 16)
#define     MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK	BIT(31)
#define MVPP2_POOL_BUF_SIZE_REG(pool)		(0x180 + 4 * (pool))
#define     MVPP2_POOL_BUF_SIZE_OFFSET		5
#define MVPP2_RXQ_CONFIG_REG(rxq)		(0x800 + 4 * (rxq))
#define     MVPP2_SNOOP_PKT_SIZE_MASK		0x1ff
#define     MVPP2_SNOOP_BUF_HDR_MASK		BIT(9)
#define     MVPP2_RXQ_POOL_SHORT_OFFS		20
53 54
#define     MVPP21_RXQ_POOL_SHORT_MASK		0x700000
#define     MVPP22_RXQ_POOL_SHORT_MASK		0xf00000
55
#define     MVPP2_RXQ_POOL_LONG_OFFS		24
56 57
#define     MVPP21_RXQ_POOL_LONG_MASK		0x7000000
#define     MVPP22_RXQ_POOL_LONG_MASK		0xf000000
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
#define     MVPP2_RXQ_PACKET_OFFSET_OFFS	28
#define     MVPP2_RXQ_PACKET_OFFSET_MASK	0x70000000
#define     MVPP2_RXQ_DISABLE_MASK		BIT(31)

/* Parser Registers */
#define MVPP2_PRS_INIT_LOOKUP_REG		0x1000
#define     MVPP2_PRS_PORT_LU_MAX		0xf
#define     MVPP2_PRS_PORT_LU_MASK(port)	(0xff << ((port) * 4))
#define     MVPP2_PRS_PORT_LU_VAL(port, val)	((val) << ((port) * 4))
#define MVPP2_PRS_INIT_OFFS_REG(port)		(0x1004 + ((port) & 4))
#define     MVPP2_PRS_INIT_OFF_MASK(port)	(0x3f << (((port) % 4) * 8))
#define     MVPP2_PRS_INIT_OFF_VAL(port, val)	((val) << (((port) % 4) * 8))
#define MVPP2_PRS_MAX_LOOP_REG(port)		(0x100c + ((port) & 4))
#define     MVPP2_PRS_MAX_LOOP_MASK(port)	(0xff << (((port) % 4) * 8))
#define     MVPP2_PRS_MAX_LOOP_VAL(port, val)	((val) << (((port) % 4) * 8))
#define MVPP2_PRS_TCAM_IDX_REG			0x1100
#define MVPP2_PRS_TCAM_DATA_REG(idx)		(0x1104 + (idx) * 4)
#define     MVPP2_PRS_TCAM_INV_MASK		BIT(31)
#define MVPP2_PRS_SRAM_IDX_REG			0x1200
#define MVPP2_PRS_SRAM_DATA_REG(idx)		(0x1204 + (idx) * 4)
#define MVPP2_PRS_TCAM_CTRL_REG			0x1230
#define     MVPP2_PRS_TCAM_EN_MASK		BIT(0)

/* Classifier Registers */
#define MVPP2_CLS_MODE_REG			0x1800
#define     MVPP2_CLS_MODE_ACTIVE_MASK		BIT(0)
#define MVPP2_CLS_PORT_WAY_REG			0x1810
#define     MVPP2_CLS_PORT_WAY_MASK(port)	(1 << (port))
#define MVPP2_CLS_LKP_INDEX_REG			0x1814
#define     MVPP2_CLS_LKP_INDEX_WAY_OFFS	6
#define MVPP2_CLS_LKP_TBL_REG			0x1818
#define     MVPP2_CLS_LKP_TBL_RXQ_MASK		0xff
#define     MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK	BIT(25)
#define MVPP2_CLS_FLOW_INDEX_REG		0x1820
#define MVPP2_CLS_FLOW_TBL0_REG			0x1824
#define MVPP2_CLS_FLOW_TBL1_REG			0x1828
#define MVPP2_CLS_FLOW_TBL2_REG			0x182c
#define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port)	(0x1980 + ((port) * 4))
#define     MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS	3
#define     MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK	0x7
#define MVPP2_CLS_SWFWD_P2HQ_REG(port)		(0x19b0 + ((port) * 4))
#define MVPP2_CLS_SWFWD_PCTRL_REG		0x19d0
#define     MVPP2_CLS_SWFWD_PCTRL_MASK(port)	(1 << (port))

/* Descriptor Manager Top Registers */
#define MVPP2_RXQ_NUM_REG			0x2040
#define MVPP2_RXQ_DESC_ADDR_REG			0x2044
105
#define     MVPP22_DESC_ADDR_OFFS		8
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
#define MVPP2_RXQ_DESC_SIZE_REG			0x2048
#define     MVPP2_RXQ_DESC_SIZE_MASK		0x3ff0
#define MVPP2_RXQ_STATUS_UPDATE_REG(rxq)	(0x3000 + 4 * (rxq))
#define     MVPP2_RXQ_NUM_PROCESSED_OFFSET	0
#define     MVPP2_RXQ_NUM_NEW_OFFSET		16
#define MVPP2_RXQ_STATUS_REG(rxq)		(0x3400 + 4 * (rxq))
#define     MVPP2_RXQ_OCCUPIED_MASK		0x3fff
#define     MVPP2_RXQ_NON_OCCUPIED_OFFSET	16
#define     MVPP2_RXQ_NON_OCCUPIED_MASK		0x3fff0000
#define MVPP2_RXQ_THRESH_REG			0x204c
#define     MVPP2_OCCUPIED_THRESH_OFFSET	0
#define     MVPP2_OCCUPIED_THRESH_MASK		0x3fff
#define MVPP2_RXQ_INDEX_REG			0x2050
#define MVPP2_TXQ_NUM_REG			0x2080
#define MVPP2_TXQ_DESC_ADDR_REG			0x2084
#define MVPP2_TXQ_DESC_SIZE_REG			0x2088
#define     MVPP2_TXQ_DESC_SIZE_MASK		0x3ff0
#define MVPP2_AGGR_TXQ_UPDATE_REG		0x2090
#define MVPP2_TXQ_INDEX_REG			0x2098
#define MVPP2_TXQ_PREF_BUF_REG			0x209c
#define     MVPP2_PREF_BUF_PTR(desc)		((desc) & 0xfff)
#define     MVPP2_PREF_BUF_SIZE_4		(BIT(12) | BIT(13))
#define     MVPP2_PREF_BUF_SIZE_16		(BIT(12) | BIT(14))
#define     MVPP2_PREF_BUF_THRESH(val)		((val) << 17)
#define     MVPP2_TXQ_DRAIN_EN_MASK		BIT(31)
#define MVPP2_TXQ_PENDING_REG			0x20a0
#define     MVPP2_TXQ_PENDING_MASK		0x3fff
#define MVPP2_TXQ_INT_STATUS_REG		0x20a4
#define MVPP2_TXQ_SENT_REG(txq)			(0x3c00 + 4 * (txq))
#define     MVPP2_TRANSMITTED_COUNT_OFFSET	16
#define     MVPP2_TRANSMITTED_COUNT_MASK	0x3fff0000
#define MVPP2_TXQ_RSVD_REQ_REG			0x20b0
#define     MVPP2_TXQ_RSVD_REQ_Q_OFFSET		16
#define MVPP2_TXQ_RSVD_RSLT_REG			0x20b4
#define     MVPP2_TXQ_RSVD_RSLT_MASK		0x3fff
#define MVPP2_TXQ_RSVD_CLR_REG			0x20b8
#define     MVPP2_TXQ_RSVD_CLR_OFFSET		16
#define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu)	(0x2100 + 4 * (cpu))
144
#define     MVPP22_AGGR_TXQ_DESC_ADDR_OFFS	8
145 146 147 148 149 150 151 152 153 154 155 156
#define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu)	(0x2140 + 4 * (cpu))
#define     MVPP2_AGGR_TXQ_DESC_SIZE_MASK	0x3ff0
#define MVPP2_AGGR_TXQ_STATUS_REG(cpu)		(0x2180 + 4 * (cpu))
#define     MVPP2_AGGR_TXQ_PENDING_MASK		0x3fff
#define MVPP2_AGGR_TXQ_INDEX_REG(cpu)		(0x21c0 + 4 * (cpu))

/* MBUS bridge registers */
#define MVPP2_WIN_BASE(w)			(0x4000 + ((w) << 2))
#define MVPP2_WIN_SIZE(w)			(0x4020 + ((w) << 2))
#define MVPP2_WIN_REMAP(w)			(0x4040 + ((w) << 2))
#define MVPP2_BASE_ADDR_ENABLE			0x4060

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/* AXI Bridge Registers */
#define MVPP22_AXI_BM_WR_ATTR_REG		0x4100
#define MVPP22_AXI_BM_RD_ATTR_REG		0x4104
#define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG	0x4110
#define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG	0x4114
#define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG	0x4118
#define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG	0x411c
#define MVPP22_AXI_RX_DATA_WR_ATTR_REG		0x4120
#define MVPP22_AXI_TX_DATA_RD_ATTR_REG		0x4130
#define MVPP22_AXI_RD_NORMAL_CODE_REG		0x4150
#define MVPP22_AXI_RD_SNOOP_CODE_REG		0x4154
#define MVPP22_AXI_WR_NORMAL_CODE_REG		0x4160
#define MVPP22_AXI_WR_SNOOP_CODE_REG		0x4164

/* Values for AXI Bridge registers */
#define MVPP22_AXI_ATTR_CACHE_OFFS		0
#define MVPP22_AXI_ATTR_DOMAIN_OFFS		12

#define MVPP22_AXI_CODE_CACHE_OFFS		0
#define MVPP22_AXI_CODE_DOMAIN_OFFS		4

#define MVPP22_AXI_CODE_CACHE_NON_CACHE		0x3
#define MVPP22_AXI_CODE_CACHE_WR_CACHE		0x7
#define MVPP22_AXI_CODE_CACHE_RD_CACHE		0xb

#define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM	2
#define MVPP22_AXI_CODE_DOMAIN_SYSTEM		3

185 186
/* Interrupt Cause and Mask registers */
#define MVPP2_ISR_RX_THRESHOLD_REG(rxq)		(0x5200 + 4 * (rxq))
187
#define     MVPP2_MAX_ISR_RX_THRESHOLD		0xfffff0
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
#define MVPP21_ISR_RXQ_GROUP_REG(rxq)		(0x5400 + 4 * (rxq))

#define MVPP22_ISR_RXQ_GROUP_INDEX_REG          0x5400
#define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
#define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK   0x380
#define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7

#define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
#define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK   0x380

#define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG     0x5404
#define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK    0x1f
#define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK      0xf00
#define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET    8

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
#define MVPP2_ISR_ENABLE_REG(port)		(0x5420 + 4 * (port))
#define     MVPP2_ISR_ENABLE_INTERRUPT(mask)	((mask) & 0xffff)
#define     MVPP2_ISR_DISABLE_INTERRUPT(mask)	(((mask) << 16) & 0xffff0000)
#define MVPP2_ISR_RX_TX_CAUSE_REG(port)		(0x5480 + 4 * (port))
#define     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
#define     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK	0xff0000
#define     MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK	BIT(24)
#define     MVPP2_CAUSE_FCS_ERR_MASK		BIT(25)
#define     MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK	BIT(26)
#define     MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK	BIT(29)
#define     MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK	BIT(30)
#define     MVPP2_CAUSE_MISC_SUM_MASK		BIT(31)
#define MVPP2_ISR_RX_TX_MASK_REG(port)		(0x54a0 + 4 * (port))
#define MVPP2_ISR_PON_RX_TX_MASK_REG		0x54bc
#define     MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
#define     MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK	0x3fc00000
#define     MVPP2_PON_CAUSE_MISC_SUM_MASK		BIT(31)
#define MVPP2_ISR_MISC_CAUSE_REG		0x55b0

/* Buffer Manager registers */
#define MVPP2_BM_POOL_BASE_REG(pool)		(0x6000 + ((pool) * 4))
#define     MVPP2_BM_POOL_BASE_ADDR_MASK	0xfffff80
#define MVPP2_BM_POOL_SIZE_REG(pool)		(0x6040 + ((pool) * 4))
#define     MVPP2_BM_POOL_SIZE_MASK		0xfff0
#define MVPP2_BM_POOL_READ_PTR_REG(pool)	(0x6080 + ((pool) * 4))
#define     MVPP2_BM_POOL_GET_READ_PTR_MASK	0xfff0
#define MVPP2_BM_POOL_PTRS_NUM_REG(pool)	(0x60c0 + ((pool) * 4))
#define     MVPP2_BM_POOL_PTRS_NUM_MASK		0xfff0
#define MVPP2_BM_BPPI_READ_PTR_REG(pool)	(0x6100 + ((pool) * 4))
#define MVPP2_BM_BPPI_PTRS_NUM_REG(pool)	(0x6140 + ((pool) * 4))
#define     MVPP2_BM_BPPI_PTR_NUM_MASK		0x7ff
#define     MVPP2_BM_BPPI_PREFETCH_FULL_MASK	BIT(16)
#define MVPP2_BM_POOL_CTRL_REG(pool)		(0x6200 + ((pool) * 4))
#define     MVPP2_BM_START_MASK			BIT(0)
#define     MVPP2_BM_STOP_MASK			BIT(1)
#define     MVPP2_BM_STATE_MASK			BIT(4)
#define     MVPP2_BM_LOW_THRESH_OFFS		8
#define     MVPP2_BM_LOW_THRESH_MASK		0x7f00
#define     MVPP2_BM_LOW_THRESH_VALUE(val)	((val) << \
						MVPP2_BM_LOW_THRESH_OFFS)
#define     MVPP2_BM_HIGH_THRESH_OFFS		16
#define     MVPP2_BM_HIGH_THRESH_MASK		0x7f0000
#define     MVPP2_BM_HIGH_THRESH_VALUE(val)	((val) << \
						MVPP2_BM_HIGH_THRESH_OFFS)
#define MVPP2_BM_INTR_CAUSE_REG(pool)		(0x6240 + ((pool) * 4))
#define     MVPP2_BM_RELEASED_DELAY_MASK	BIT(0)
#define     MVPP2_BM_ALLOC_FAILED_MASK		BIT(1)
#define     MVPP2_BM_BPPE_EMPTY_MASK		BIT(2)
#define     MVPP2_BM_BPPE_FULL_MASK		BIT(3)
#define     MVPP2_BM_AVAILABLE_BP_LOW_MASK	BIT(4)
#define MVPP2_BM_INTR_MASK_REG(pool)		(0x6280 + ((pool) * 4))
#define MVPP2_BM_PHY_ALLOC_REG(pool)		(0x6400 + ((pool) * 4))
#define     MVPP2_BM_PHY_ALLOC_GRNTD_MASK	BIT(0)
#define MVPP2_BM_VIRT_ALLOC_REG			0x6440
257 258 259 260
#define MVPP22_BM_ADDR_HIGH_ALLOC		0x6444
#define     MVPP22_BM_ADDR_HIGH_PHYS_MASK	0xff
#define     MVPP22_BM_ADDR_HIGH_VIRT_MASK	0xff00
#define     MVPP22_BM_ADDR_HIGH_VIRT_SHIFT	8
261 262 263 264 265
#define MVPP2_BM_PHY_RLS_REG(pool)		(0x6480 + ((pool) * 4))
#define     MVPP2_BM_PHY_RLS_MC_BUFF_MASK	BIT(0)
#define     MVPP2_BM_PHY_RLS_PRIO_EN_MASK	BIT(1)
#define     MVPP2_BM_PHY_RLS_GRNTD_MASK		BIT(2)
#define MVPP2_BM_VIRT_RLS_REG			0x64c0
266 267 268 269
#define MVPP22_BM_ADDR_HIGH_RLS_REG		0x64c4
#define     MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK	0xff
#define	    MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK	0xff00
#define     MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT	8
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

/* TX Scheduler registers */
#define MVPP2_TXP_SCHED_PORT_INDEX_REG		0x8000
#define MVPP2_TXP_SCHED_Q_CMD_REG		0x8004
#define     MVPP2_TXP_SCHED_ENQ_MASK		0xff
#define     MVPP2_TXP_SCHED_DISQ_OFFSET		8
#define MVPP2_TXP_SCHED_CMD_1_REG		0x8010
#define MVPP2_TXP_SCHED_PERIOD_REG		0x8018
#define MVPP2_TXP_SCHED_MTU_REG			0x801c
#define     MVPP2_TXP_MTU_MAX			0x7FFFF
#define MVPP2_TXP_SCHED_REFILL_REG		0x8020
#define     MVPP2_TXP_REFILL_TOKENS_ALL_MASK	0x7ffff
#define     MVPP2_TXP_REFILL_PERIOD_ALL_MASK	0x3ff00000
#define     MVPP2_TXP_REFILL_PERIOD_MASK(v)	((v) << 20)
#define MVPP2_TXP_SCHED_TOKEN_SIZE_REG		0x8024
#define     MVPP2_TXP_TOKEN_SIZE_MAX		0xffffffff
#define MVPP2_TXQ_SCHED_REFILL_REG(q)		(0x8040 + ((q) << 2))
#define     MVPP2_TXQ_REFILL_TOKENS_ALL_MASK	0x7ffff
#define     MVPP2_TXQ_REFILL_PERIOD_ALL_MASK	0x3ff00000
#define     MVPP2_TXQ_REFILL_PERIOD_MASK(v)	((v) << 20)
#define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q)	(0x8060 + ((q) << 2))
#define     MVPP2_TXQ_TOKEN_SIZE_MAX		0x7fffffff
#define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q)	(0x8080 + ((q) << 2))
#define     MVPP2_TXQ_TOKEN_CNTR_MAX		0xffffffff

/* TX general registers */
#define MVPP2_TX_SNOOP_REG			0x8800
#define MVPP2_TX_PORT_FLUSH_REG			0x8810
#define     MVPP2_TX_PORT_FLUSH_MASK(port)	(1 << (port))

/* LMS registers */
#define MVPP2_SRC_ADDR_MIDDLE			0x24
#define MVPP2_SRC_ADDR_HIGH			0x28
303 304
#define MVPP2_PHY_AN_CFG0_REG			0x34
#define     MVPP2_PHY_AN_STOP_SMI0_MASK		BIT(7)
305
#define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG	0x305c
306
#define     MVPP2_EXT_GLOBAL_CTRL_DEFAULT	0x27
307 308 309 310 311 312 313 314

/* Per-port registers */
#define MVPP2_GMAC_CTRL_0_REG			0x0
#define      MVPP2_GMAC_PORT_EN_MASK		BIT(0)
#define      MVPP2_GMAC_MAX_RX_SIZE_OFFS	2
#define      MVPP2_GMAC_MAX_RX_SIZE_MASK	0x7ffc
#define      MVPP2_GMAC_MIB_CNTR_EN_MASK	BIT(15)
#define MVPP2_GMAC_CTRL_1_REG			0x4
315
#define      MVPP2_GMAC_PERIODIC_XON_EN_MASK	BIT(1)
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
#define      MVPP2_GMAC_GMII_LB_EN_MASK		BIT(5)
#define      MVPP2_GMAC_PCS_LB_EN_BIT		6
#define      MVPP2_GMAC_PCS_LB_EN_MASK		BIT(6)
#define      MVPP2_GMAC_SA_LOW_OFFS		7
#define MVPP2_GMAC_CTRL_2_REG			0x8
#define      MVPP2_GMAC_INBAND_AN_MASK		BIT(0)
#define      MVPP2_GMAC_PCS_ENABLE_MASK		BIT(3)
#define      MVPP2_GMAC_PORT_RGMII_MASK		BIT(4)
#define      MVPP2_GMAC_PORT_RESET_MASK		BIT(6)
#define MVPP2_GMAC_AUTONEG_CONFIG		0xc
#define      MVPP2_GMAC_FORCE_LINK_DOWN		BIT(0)
#define      MVPP2_GMAC_FORCE_LINK_PASS		BIT(1)
#define      MVPP2_GMAC_CONFIG_MII_SPEED	BIT(5)
#define      MVPP2_GMAC_CONFIG_GMII_SPEED	BIT(6)
#define      MVPP2_GMAC_AN_SPEED_EN		BIT(7)
331
#define      MVPP2_GMAC_FC_ADV_EN		BIT(9)
332 333 334 335 336 337 338
#define      MVPP2_GMAC_CONFIG_FULL_DUPLEX	BIT(12)
#define      MVPP2_GMAC_AN_DUPLEX_EN		BIT(13)
#define MVPP2_GMAC_PORT_FIFO_CFG_1_REG		0x1c
#define      MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS	6
#define      MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK	0x1fc0
#define      MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v)	(((v) << 6) & \
					MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
#define MVPP22_GMAC_CTRL_4_REG			0x90
#define      MVPP22_CTRL4_EXT_PIN_GMII_SEL	BIT(0)
#define      MVPP22_CTRL4_DP_CLK_SEL		BIT(5)
#define      MVPP22_CTRL4_SYNC_BYPASS		BIT(6)
#define      MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE	BIT(7)

/* Per-port XGMAC registers. PPv2.2 only, only for GOP port 0,
 * relative to port->base.
 */
#define MVPP22_XLG_CTRL3_REG			0x11c
#define      MVPP22_XLG_CTRL3_MACMODESELECT_MASK	(7 << 13)
#define      MVPP22_XLG_CTRL3_MACMODESELECT_GMAC	(0 << 13)

/* SMI registers. PPv2.2 only, relative to priv->iface_base. */
#define MVPP22_SMI_MISC_CFG_REG			0x1204
#define      MVPP22_SMI_POLLING_EN		BIT(10)
355

356 357
#define MVPP22_GMAC_BASE(port)		(0x7000 + (port) * 0x1000 + 0xe00)

358 359 360 361 362 363 364 365 366 367
#define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK	0xff

/* Descriptor ring Macros */
#define MVPP2_QUEUE_NEXT_DESC(q, index) \
	(((index) < (q)->last_desc) ? ((index) + 1) : 0)

/* Various constants */

/* Coalescing */
#define MVPP2_TXDONE_COAL_PKTS_THRESH	15
368
#define MVPP2_TXDONE_HRTIMER_PERIOD_NS	1000000UL
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
#define MVPP2_RX_COAL_PKTS		32
#define MVPP2_RX_COAL_USEC		100

/* The two bytes Marvell header. Either contains a special value used
 * by Marvell switches when a specific hardware mode is enabled (not
 * supported by this driver) or is filled automatically by zeroes on
 * the RX side. Those two bytes being at the front of the Ethernet
 * header, they allow to have the IP header aligned on a 4 bytes
 * boundary automatically: the hardware skips those two bytes on its
 * own.
 */
#define MVPP2_MH_SIZE			2
#define MVPP2_ETH_TYPE_LEN		2
#define MVPP2_PPPOE_HDR_SIZE		8
#define MVPP2_VLAN_TAG_LEN		4

/* Lbtd 802.3 type */
#define MVPP2_IP_LBDT_TYPE		0xfffa

#define MVPP2_TX_CSUM_MAX_SIZE		9800

/* Timeout constants */
#define MVPP2_TX_DISABLE_TIMEOUT_MSEC	1000
#define MVPP2_TX_PENDING_TIMEOUT_MSEC	1000

#define MVPP2_TX_MTU_MAX		0x7ffff

/* Maximum number of T-CONTs of PON port */
#define MVPP2_MAX_TCONT			16

/* Maximum number of supported ports */
#define MVPP2_MAX_PORTS			4

/* Maximum number of TXQs used by single port */
#define MVPP2_MAX_TXQ			8

/* Dfault number of RXQs in use */
#define MVPP2_DEFAULT_RXQ		4

/* Max number of Rx descriptors */
#define MVPP2_MAX_RXD			128

/* Max number of Tx descriptors */
#define MVPP2_MAX_TXD			1024

/* Amount of Tx descriptors that can be reserved at once by CPU */
#define MVPP2_CPU_DESC_CHUNK		64

/* Max number of Tx descriptors in each aggregated queue */
#define MVPP2_AGGR_TXQ_SIZE		256

/* Descriptor aligned size */
#define MVPP2_DESC_ALIGNED_SIZE		32

/* Descriptor alignment mask */
#define MVPP2_TX_DESC_ALIGN		(MVPP2_DESC_ALIGNED_SIZE - 1)

/* RX FIFO constants */
#define MVPP2_RX_FIFO_PORT_DATA_SIZE	0x2000
#define MVPP2_RX_FIFO_PORT_ATTR_SIZE	0x80
#define MVPP2_RX_FIFO_PORT_MIN_PKT	0x80

/* RX buffer constants */
#define MVPP2_SKB_SHINFO_SIZE \
	SKB_DATA_ALIGN(sizeof(struct skb_shared_info))

#define MVPP2_RX_PKT_SIZE(mtu) \
	ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
437
	      ETH_HLEN + ETH_FCS_LEN, cache_line_size())
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

#define MVPP2_RX_BUF_SIZE(pkt_size)	((pkt_size) + NET_SKB_PAD)
#define MVPP2_RX_TOTAL_SIZE(buf_size)	((buf_size) + MVPP2_SKB_SHINFO_SIZE)
#define MVPP2_RX_MAX_PKT_SIZE(total_size) \
	((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)

#define MVPP2_BIT_TO_BYTE(bit)		((bit) / 8)

/* IPv6 max L3 address size */
#define MVPP2_MAX_L3_ADDR_SIZE		16

/* Port flags */
#define MVPP2_F_LOOPBACK		BIT(0)

/* Marvell tag types */
enum mvpp2_tag_type {
	MVPP2_TAG_TYPE_NONE = 0,
	MVPP2_TAG_TYPE_MH   = 1,
	MVPP2_TAG_TYPE_DSA  = 2,
	MVPP2_TAG_TYPE_EDSA = 3,
	MVPP2_TAG_TYPE_VLAN = 4,
	MVPP2_TAG_TYPE_LAST = 5
};

/* Parser constants */
#define MVPP2_PRS_TCAM_SRAM_SIZE	256
#define MVPP2_PRS_TCAM_WORDS		6
#define MVPP2_PRS_SRAM_WORDS		4
#define MVPP2_PRS_FLOW_ID_SIZE		64
#define MVPP2_PRS_FLOW_ID_MASK		0x3f
#define MVPP2_PRS_TCAM_ENTRY_INVALID	1
#define MVPP2_PRS_TCAM_DSA_TAGGED_BIT	BIT(5)
#define MVPP2_PRS_IPV4_HEAD		0x40
#define MVPP2_PRS_IPV4_HEAD_MASK	0xf0
#define MVPP2_PRS_IPV4_MC		0xe0
#define MVPP2_PRS_IPV4_MC_MASK		0xf0
#define MVPP2_PRS_IPV4_BC_MASK		0xff
#define MVPP2_PRS_IPV4_IHL		0x5
#define MVPP2_PRS_IPV4_IHL_MASK		0xf
#define MVPP2_PRS_IPV6_MC		0xff
#define MVPP2_PRS_IPV6_MC_MASK		0xff
#define MVPP2_PRS_IPV6_HOP_MASK		0xff
#define MVPP2_PRS_TCAM_PROTO_MASK	0xff
#define MVPP2_PRS_TCAM_PROTO_MASK_L	0x3f
#define MVPP2_PRS_DBL_VLANS_MAX		100

/* Tcam structure:
 * - lookup ID - 4 bits
 * - port ID - 1 byte
 * - additional information - 1 byte
 * - header data - 8 bytes
 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
 */
#define MVPP2_PRS_AI_BITS			8
#define MVPP2_PRS_PORT_MASK			0xff
#define MVPP2_PRS_LU_MASK			0xf
#define MVPP2_PRS_TCAM_DATA_BYTE(offs)		\
				    (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
#define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)	\
					      (((offs) * 2) - ((offs) % 2)  + 2)
#define MVPP2_PRS_TCAM_AI_BYTE			16
#define MVPP2_PRS_TCAM_PORT_BYTE		17
#define MVPP2_PRS_TCAM_LU_BYTE			20
#define MVPP2_PRS_TCAM_EN_OFFS(offs)		((offs) + 2)
#define MVPP2_PRS_TCAM_INV_WORD			5
/* Tcam entries ID */
#define MVPP2_PE_DROP_ALL		0
#define MVPP2_PE_FIRST_FREE_TID		1
#define MVPP2_PE_LAST_FREE_TID		(MVPP2_PRS_TCAM_SRAM_SIZE - 31)
#define MVPP2_PE_IP6_EXT_PROTO_UN	(MVPP2_PRS_TCAM_SRAM_SIZE - 30)
#define MVPP2_PE_MAC_MC_IP6		(MVPP2_PRS_TCAM_SRAM_SIZE - 29)
#define MVPP2_PE_IP6_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 28)
#define MVPP2_PE_IP4_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 27)
#define MVPP2_PE_LAST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 26)
#define MVPP2_PE_FIRST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 19)
#define MVPP2_PE_EDSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 18)
#define MVPP2_PE_EDSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 17)
#define MVPP2_PE_DSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 16)
#define MVPP2_PE_DSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 15)
#define MVPP2_PE_ETYPE_EDSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 14)
#define MVPP2_PE_ETYPE_EDSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 13)
#define MVPP2_PE_ETYPE_DSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 12)
#define MVPP2_PE_ETYPE_DSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 11)
#define MVPP2_PE_MH_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 10)
#define MVPP2_PE_DSA_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 9)
#define MVPP2_PE_IP6_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 8)
#define MVPP2_PE_IP4_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 7)
#define MVPP2_PE_ETH_TYPE_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 6)
#define MVPP2_PE_VLAN_DBL		(MVPP2_PRS_TCAM_SRAM_SIZE - 5)
#define MVPP2_PE_VLAN_NONE		(MVPP2_PRS_TCAM_SRAM_SIZE - 4)
#define MVPP2_PE_MAC_MC_ALL		(MVPP2_PRS_TCAM_SRAM_SIZE - 3)
#define MVPP2_PE_MAC_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 2)
#define MVPP2_PE_MAC_NON_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 1)

/* Sram structure
 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
 */
#define MVPP2_PRS_SRAM_RI_OFFS			0
#define MVPP2_PRS_SRAM_RI_WORD			0
#define MVPP2_PRS_SRAM_RI_CTRL_OFFS		32
#define MVPP2_PRS_SRAM_RI_CTRL_WORD		1
#define MVPP2_PRS_SRAM_RI_CTRL_BITS		32
#define MVPP2_PRS_SRAM_SHIFT_OFFS		64
#define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT		72
#define MVPP2_PRS_SRAM_UDF_OFFS			73
#define MVPP2_PRS_SRAM_UDF_BITS			8
#define MVPP2_PRS_SRAM_UDF_MASK			0xff
#define MVPP2_PRS_SRAM_UDF_SIGN_BIT		81
#define MVPP2_PRS_SRAM_UDF_TYPE_OFFS		82
#define MVPP2_PRS_SRAM_UDF_TYPE_MASK		0x7
#define MVPP2_PRS_SRAM_UDF_TYPE_L3		1
#define MVPP2_PRS_SRAM_UDF_TYPE_L4		4
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS	85
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK	0x3
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD		1
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD	2
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD	3
#define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS		87
#define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS		2
#define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK		0x3
#define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD		0
#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD	2
#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD	3
#define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS		89
#define MVPP2_PRS_SRAM_AI_OFFS			90
#define MVPP2_PRS_SRAM_AI_CTRL_OFFS		98
#define MVPP2_PRS_SRAM_AI_CTRL_BITS		8
#define MVPP2_PRS_SRAM_AI_MASK			0xff
#define MVPP2_PRS_SRAM_NEXT_LU_OFFS		106
#define MVPP2_PRS_SRAM_NEXT_LU_MASK		0xf
#define MVPP2_PRS_SRAM_LU_DONE_BIT		110
#define MVPP2_PRS_SRAM_LU_GEN_BIT		111

/* Sram result info bits assignment */
#define MVPP2_PRS_RI_MAC_ME_MASK		0x1
#define MVPP2_PRS_RI_DSA_MASK			0x2
574 575
#define MVPP2_PRS_RI_VLAN_MASK			(BIT(2) | BIT(3))
#define MVPP2_PRS_RI_VLAN_NONE			0x0
576 577 578 579 580
#define MVPP2_PRS_RI_VLAN_SINGLE		BIT(2)
#define MVPP2_PRS_RI_VLAN_DOUBLE		BIT(3)
#define MVPP2_PRS_RI_VLAN_TRIPLE		(BIT(2) | BIT(3))
#define MVPP2_PRS_RI_CPU_CODE_MASK		0x70
#define MVPP2_PRS_RI_CPU_CODE_RX_SPEC		BIT(4)
581 582
#define MVPP2_PRS_RI_L2_CAST_MASK		(BIT(9) | BIT(10))
#define MVPP2_PRS_RI_L2_UCAST			0x0
583 584 585
#define MVPP2_PRS_RI_L2_MCAST			BIT(9)
#define MVPP2_PRS_RI_L2_BCAST			BIT(10)
#define MVPP2_PRS_RI_PPPOE_MASK			0x800
586 587
#define MVPP2_PRS_RI_L3_PROTO_MASK		(BIT(12) | BIT(13) | BIT(14))
#define MVPP2_PRS_RI_L3_UN			0x0
588 589 590 591 592 593
#define MVPP2_PRS_RI_L3_IP4			BIT(12)
#define MVPP2_PRS_RI_L3_IP4_OPT			BIT(13)
#define MVPP2_PRS_RI_L3_IP4_OTHER		(BIT(12) | BIT(13))
#define MVPP2_PRS_RI_L3_IP6			BIT(14)
#define MVPP2_PRS_RI_L3_IP6_EXT			(BIT(12) | BIT(14))
#define MVPP2_PRS_RI_L3_ARP			(BIT(13) | BIT(14))
594 595
#define MVPP2_PRS_RI_L3_ADDR_MASK		(BIT(15) | BIT(16))
#define MVPP2_PRS_RI_L3_UCAST			0x0
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
#define MVPP2_PRS_RI_L3_MCAST			BIT(15)
#define MVPP2_PRS_RI_L3_BCAST			(BIT(15) | BIT(16))
#define MVPP2_PRS_RI_IP_FRAG_MASK		0x20000
#define MVPP2_PRS_RI_UDF3_MASK			0x300000
#define MVPP2_PRS_RI_UDF3_RX_SPECIAL		BIT(21)
#define MVPP2_PRS_RI_L4_PROTO_MASK		0x1c00000
#define MVPP2_PRS_RI_L4_TCP			BIT(22)
#define MVPP2_PRS_RI_L4_UDP			BIT(23)
#define MVPP2_PRS_RI_L4_OTHER			(BIT(22) | BIT(23))
#define MVPP2_PRS_RI_UDF7_MASK			0x60000000
#define MVPP2_PRS_RI_UDF7_IP6_LITE		BIT(29)
#define MVPP2_PRS_RI_DROP_MASK			0x80000000

/* Sram additional info bits assignment */
#define MVPP2_PRS_IPV4_DIP_AI_BIT		BIT(0)
#define MVPP2_PRS_IPV6_NO_EXT_AI_BIT		BIT(0)
#define MVPP2_PRS_IPV6_EXT_AI_BIT		BIT(1)
#define MVPP2_PRS_IPV6_EXT_AH_AI_BIT		BIT(2)
#define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT	BIT(3)
#define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT		BIT(4)
#define MVPP2_PRS_SINGLE_VLAN_AI		0
#define MVPP2_PRS_DBL_VLAN_AI_BIT		BIT(7)

/* DSA/EDSA type */
#define MVPP2_PRS_TAGGED		true
#define MVPP2_PRS_UNTAGGED		false
#define MVPP2_PRS_EDSA			true
#define MVPP2_PRS_DSA			false

/* MAC entries, shadow udf */
enum mvpp2_prs_udf {
	MVPP2_PRS_UDF_MAC_DEF,
	MVPP2_PRS_UDF_MAC_RANGE,
	MVPP2_PRS_UDF_L2_DEF,
	MVPP2_PRS_UDF_L2_DEF_COPY,
	MVPP2_PRS_UDF_L2_USER,
};

/* Lookup ID */
enum mvpp2_prs_lookup {
	MVPP2_PRS_LU_MH,
	MVPP2_PRS_LU_MAC,
	MVPP2_PRS_LU_DSA,
	MVPP2_PRS_LU_VLAN,
	MVPP2_PRS_LU_L2,
	MVPP2_PRS_LU_PPPOE,
	MVPP2_PRS_LU_IP4,
	MVPP2_PRS_LU_IP6,
	MVPP2_PRS_LU_FLOWS,
	MVPP2_PRS_LU_LAST,
};

/* L3 cast enum */
enum mvpp2_prs_l3_cast {
	MVPP2_PRS_L3_UNI_CAST,
	MVPP2_PRS_L3_MULTI_CAST,
	MVPP2_PRS_L3_BROAD_CAST
};

/* Classifier constants */
#define MVPP2_CLS_FLOWS_TBL_SIZE	512
#define MVPP2_CLS_FLOWS_TBL_DATA_WORDS	3
#define MVPP2_CLS_LKP_TBL_SIZE		64

/* BM constants */
#define MVPP2_BM_POOLS_NUM		8
#define MVPP2_BM_LONG_BUF_NUM		1024
#define MVPP2_BM_SHORT_BUF_NUM		2048
#define MVPP2_BM_POOL_SIZE_MAX		(16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
#define MVPP2_BM_POOL_PTR_ALIGN		128
#define MVPP2_BM_SWF_LONG_POOL(port)	((port > 2) ? 2 : port)
#define MVPP2_BM_SWF_SHORT_POOL		3

/* BM cookie (32 bits) definition */
#define MVPP2_BM_COOKIE_POOL_OFFS	8
#define MVPP2_BM_COOKIE_CPU_OFFS	24

/* BM short pool packet size
 * These value assure that for SWF the total number
 * of bytes allocated for each buffer will be 512
 */
#define MVPP2_BM_SHORT_PKT_SIZE		MVPP2_RX_MAX_PKT_SIZE(512)

679 680 681 682 683
#define MVPP21_ADDR_SPACE_SZ		0
#define MVPP22_ADDR_SPACE_SZ		SZ_64K

#define MVPP2_MAX_CPUS			4

684 685 686 687 688 689 690 691 692 693 694 695
enum mvpp2_bm_type {
	MVPP2_BM_FREE,
	MVPP2_BM_SWF_LONG,
	MVPP2_BM_SWF_SHORT
};

/* Definitions */

/* Shared Packet Processor resources */
struct mvpp2 {
	/* Shared registers' base addresses */
	void __iomem *lms_base;
696 697 698 699 700 701 702
	void __iomem *iface_base;

	/* On PPv2.2, each CPU can access the base register through a
	 * separate address space, each 64 KB apart from each
	 * other.
	 */
	void __iomem *cpu_base[MVPP2_MAX_CPUS];
703 704 705 706

	/* Common clocks */
	struct clk *pp_clk;
	struct clk *gop_clk;
707
	struct clk *mg_clk;
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724

	/* List of pointers to port structures */
	struct mvpp2_port **port_list;

	/* Aggregated TXQs */
	struct mvpp2_tx_queue *aggr_txqs;

	/* BM pools */
	struct mvpp2_bm_pool *bm_pools;

	/* PRS shadow table */
	struct mvpp2_prs_shadow *prs_shadow;
	/* PRS auxiliary table for double vlan entries control */
	bool *prs_double_vlans;

	/* Tclk value */
	u32 tclk;
725 726 727

	/* HW version */
	enum { MVPP21, MVPP22 } hw_version;
728 729 730

	/* Maximum number of RXQs per port */
	unsigned int max_port_rxqs;
731 732 733 734 735 736 737 738 739 740
};

struct mvpp2_pcpu_stats {
	struct	u64_stats_sync syncp;
	u64	rx_packets;
	u64	rx_bytes;
	u64	tx_packets;
	u64	tx_bytes;
};

741 742 743 744 745 746 747 748
/* Per-CPU port control */
struct mvpp2_port_pcpu {
	struct hrtimer tx_done_timer;
	bool timer_scheduled;
	/* Tasklet for egress finalization */
	struct tasklet_struct tx_done_tasklet;
};

749 750 751
struct mvpp2_port {
	u8 id;

752 753 754 755 756
	/* Index of the port from the "group of ports" complex point
	 * of view
	 */
	int gop_id;

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
	int irq;

	struct mvpp2 *priv;

	/* Per-port registers' base address */
	void __iomem *base;

	struct mvpp2_rx_queue **rxqs;
	struct mvpp2_tx_queue **txqs;
	struct net_device *dev;

	int pkt_size;

	u32 pending_cause_rx;
	struct napi_struct napi;

773 774 775
	/* Per-CPU port control */
	struct mvpp2_port_pcpu __percpu *pcpu;

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	/* Flags */
	unsigned long flags;

	u16 tx_ring_size;
	u16 rx_ring_size;
	struct mvpp2_pcpu_stats __percpu *stats;

	phy_interface_t phy_interface;
	struct device_node *phy_node;
	unsigned int link;
	unsigned int duplex;
	unsigned int speed;

	struct mvpp2_bm_pool *pool_long;
	struct mvpp2_bm_pool *pool_short;

	/* Index of first port's physical RXQ */
	u8 first_rxq;
};

/* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
 * layout of the transmit and reception DMA descriptors, and their
 * layout is therefore defined by the hardware design
 */

#define MVPP2_TXD_L3_OFF_SHIFT		0
#define MVPP2_TXD_IP_HLEN_SHIFT		8
#define MVPP2_TXD_L4_CSUM_FRAG		BIT(13)
#define MVPP2_TXD_L4_CSUM_NOT		BIT(14)
#define MVPP2_TXD_IP_CSUM_DISABLE	BIT(15)
#define MVPP2_TXD_PADDING_DISABLE	BIT(23)
#define MVPP2_TXD_L4_UDP		BIT(24)
#define MVPP2_TXD_L3_IP6		BIT(26)
#define MVPP2_TXD_L_DESC		BIT(28)
#define MVPP2_TXD_F_DESC		BIT(29)

#define MVPP2_RXD_ERR_SUMMARY		BIT(15)
#define MVPP2_RXD_ERR_CODE_MASK		(BIT(13) | BIT(14))
#define MVPP2_RXD_ERR_CRC		0x0
#define MVPP2_RXD_ERR_OVERRUN		BIT(13)
#define MVPP2_RXD_ERR_RESOURCE		(BIT(13) | BIT(14))
#define MVPP2_RXD_BM_POOL_ID_OFFS	16
#define MVPP2_RXD_BM_POOL_ID_MASK	(BIT(16) | BIT(17) | BIT(18))
#define MVPP2_RXD_HWF_SYNC		BIT(21)
#define MVPP2_RXD_L4_CSUM_OK		BIT(22)
#define MVPP2_RXD_IP4_HEADER_ERR	BIT(24)
#define MVPP2_RXD_L4_TCP		BIT(25)
#define MVPP2_RXD_L4_UDP		BIT(26)
#define MVPP2_RXD_L3_IP4		BIT(28)
#define MVPP2_RXD_L3_IP6		BIT(30)
#define MVPP2_RXD_BUF_HDR		BIT(31)

828 829
/* HW TX descriptor for PPv2.1 */
struct mvpp21_tx_desc {
830 831 832 833
	u32 command;		/* Options used by HW for packet transmitting.*/
	u8  packet_offset;	/* the offset from the buffer beginning	*/
	u8  phys_txq;		/* destination queue ID			*/
	u16 data_size;		/* data size of transmitted packet in bytes */
834
	u32 buf_dma_addr;	/* physical addr of transmitted buffer	*/
835 836 837 838 839
	u32 buf_cookie;		/* cookie for access to TX buffer in tx path */
	u32 reserved1[3];	/* hw_cmd (for future use, BM, PON, PNC) */
	u32 reserved2;		/* reserved (for future use)		*/
};

840 841
/* HW RX descriptor for PPv2.1 */
struct mvpp21_rx_desc {
842 843 844
	u32 status;		/* info about received packet		*/
	u16 reserved1;		/* parser_info (for future use, PnC)	*/
	u16 data_size;		/* size of received packet in bytes	*/
845
	u32 buf_dma_addr;	/* physical address of the buffer	*/
846 847 848 849 850 851 852 853 854 855
	u32 buf_cookie;		/* cookie for access to RX buffer in rx path */
	u16 reserved2;		/* gem_port_id (for future use, PON)	*/
	u16 reserved3;		/* csum_l4 (for future use, PnC)	*/
	u8  reserved4;		/* bm_qset (for future use, BM)		*/
	u8  reserved5;
	u16 reserved6;		/* classify_info (for future use, PnC)	*/
	u32 reserved7;		/* flow_id (for future use, PnC) */
	u32 reserved8;
};

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
/* HW TX descriptor for PPv2.2 */
struct mvpp22_tx_desc {
	u32 command;
	u8  packet_offset;
	u8  phys_txq;
	u16 data_size;
	u64 reserved1;
	u64 buf_dma_addr_ptp;
	u64 buf_cookie_misc;
};

/* HW RX descriptor for PPv2.2 */
struct mvpp22_rx_desc {
	u32 status;
	u16 reserved1;
	u16 data_size;
	u32 reserved2;
	u32 reserved3;
	u64 buf_dma_addr_key_hash;
	u64 buf_cookie_misc;
};

878 879 880 881 882 883
/* Opaque type used by the driver to manipulate the HW TX and RX
 * descriptors
 */
struct mvpp2_tx_desc {
	union {
		struct mvpp21_tx_desc pp21;
884
		struct mvpp22_tx_desc pp22;
885 886 887 888 889 890
	};
};

struct mvpp2_rx_desc {
	union {
		struct mvpp21_rx_desc pp21;
891
		struct mvpp22_rx_desc pp22;
892 893 894
	};
};

895 896 897 898 899
struct mvpp2_txq_pcpu_buf {
	/* Transmitted SKB */
	struct sk_buff *skb;

	/* Physical address of transmitted buffer */
900
	dma_addr_t dma;
901 902 903 904 905

	/* Size transmitted */
	size_t size;
};

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
/* Per-CPU Tx queue control */
struct mvpp2_txq_pcpu {
	int cpu;

	/* Number of Tx DMA descriptors in the descriptor ring */
	int size;

	/* Number of currently used Tx DMA descriptor in the
	 * descriptor ring
	 */
	int count;

	/* Number of Tx DMA descriptors reserved for each CPU */
	int reserved_num;

921 922
	/* Infos about transmitted buffers */
	struct mvpp2_txq_pcpu_buf *buffs;
923

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	/* Index of last TX DMA descriptor that was inserted */
	int txq_put_index;

	/* Index of the TX DMA descriptor to be cleaned up */
	int txq_get_index;
};

struct mvpp2_tx_queue {
	/* Physical number of this Tx queue */
	u8 id;

	/* Logical number of this Tx queue */
	u8 log_id;

	/* Number of Tx DMA descriptors in the descriptor ring */
	int size;

	/* Number of currently used Tx DMA descriptor in the descriptor ring */
	int count;

	/* Per-CPU control of physical Tx queues */
	struct mvpp2_txq_pcpu __percpu *pcpu;

	u32 done_pkts_coal;

	/* Virtual address of thex Tx DMA descriptors array */
	struct mvpp2_tx_desc *descs;

	/* DMA address of the Tx DMA descriptors array */
953
	dma_addr_t descs_dma;
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975

	/* Index of the last Tx DMA descriptor */
	int last_desc;

	/* Index of the next Tx DMA descriptor to process */
	int next_desc_to_proc;
};

struct mvpp2_rx_queue {
	/* RX queue number, in the range 0-31 for physical RXQs */
	u8 id;

	/* Num of rx descriptors in the rx descriptor ring */
	int size;

	u32 pkts_coal;
	u32 time_coal;

	/* Virtual address of the RX DMA descriptors array */
	struct mvpp2_rx_desc *descs;

	/* DMA address of the RX DMA descriptors array */
976
	dma_addr_t descs_dma;
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

	/* Index of the last RX DMA descriptor */
	int last_desc;

	/* Index of the next RX DMA descriptor to process */
	int next_desc_to_proc;

	/* ID of port to which physical RXQ is mapped */
	int port;

	/* Port's logic RXQ number to which physical RXQ is mapped */
	int logic_rxq;
};

union mvpp2_prs_tcam_entry {
	u32 word[MVPP2_PRS_TCAM_WORDS];
	u8  byte[MVPP2_PRS_TCAM_WORDS * 4];
};

union mvpp2_prs_sram_entry {
	u32 word[MVPP2_PRS_SRAM_WORDS];
	u8  byte[MVPP2_PRS_SRAM_WORDS * 4];
};

struct mvpp2_prs_entry {
	u32 index;
	union mvpp2_prs_tcam_entry tcam;
	union mvpp2_prs_sram_entry sram;
};

struct mvpp2_prs_shadow {
	bool valid;
	bool finish;

	/* Lookup ID */
	int lu;

	/* User defined offset */
	int udf;

	/* Result info */
	u32 ri;
	u32 ri_mask;
};

struct mvpp2_cls_flow_entry {
	u32 index;
	u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
};

struct mvpp2_cls_lookup_entry {
	u32 lkpid;
	u32 way;
	u32 data;
};

struct mvpp2_bm_pool {
	/* Pool number in the range 0-7 */
	int id;
	enum mvpp2_bm_type type;

	/* Buffer Pointers Pool External (BPPE) size */
	int size;
1040 1041
	/* BPPE size in bytes */
	int size_bytes;
1042 1043 1044 1045 1046 1047
	/* Number of buffers for this pool */
	int buf_num;
	/* Pool buffer size */
	int buf_size;
	/* Packet size */
	int pkt_size;
1048
	int frag_size;
1049 1050 1051

	/* BPPE virtual base address */
	u32 *virt_addr;
1052 1053
	/* BPPE DMA base address */
	dma_addr_t dma_addr;
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

	/* Ports using BM pool */
	u32 port_map;
};

/* Static declaractions */

/* Number of RXQs used by single port */
static int rxq_number = MVPP2_DEFAULT_RXQ;
/* Number of TXQs used by single port */
static int txq_number = MVPP2_MAX_TXQ;

#define MVPP2_DRIVER_NAME "mvpp2"
#define MVPP2_DRIVER_VERSION "1.0"

/* Utility/helper methods */

static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
{
1073
	writel(data, priv->cpu_base[0] + offset);
1074 1075 1076 1077
}

static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
{
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	return readl(priv->cpu_base[0] + offset);
}

/* These accessors should be used to access:
 *
 * - per-CPU registers, where each CPU has its own copy of the
 *   register.
 *
 *   MVPP2_BM_VIRT_ALLOC_REG
 *   MVPP2_BM_ADDR_HIGH_ALLOC
 *   MVPP22_BM_ADDR_HIGH_RLS_REG
 *   MVPP2_BM_VIRT_RLS_REG
 *   MVPP2_ISR_RX_TX_CAUSE_REG
 *   MVPP2_ISR_RX_TX_MASK_REG
 *   MVPP2_TXQ_NUM_REG
 *   MVPP2_AGGR_TXQ_UPDATE_REG
 *   MVPP2_TXQ_RSVD_REQ_REG
 *   MVPP2_TXQ_RSVD_RSLT_REG
 *   MVPP2_TXQ_SENT_REG
 *   MVPP2_RXQ_NUM_REG
 *
 * - global registers that must be accessed through a specific CPU
 *   window, because they are related to an access to a per-CPU
 *   register
 *
 *   MVPP2_BM_PHY_ALLOC_REG    (related to MVPP2_BM_VIRT_ALLOC_REG)
 *   MVPP2_BM_PHY_RLS_REG      (related to MVPP2_BM_VIRT_RLS_REG)
 *   MVPP2_RXQ_THRESH_REG      (related to MVPP2_RXQ_NUM_REG)
 *   MVPP2_RXQ_DESC_ADDR_REG   (related to MVPP2_RXQ_NUM_REG)
 *   MVPP2_RXQ_DESC_SIZE_REG   (related to MVPP2_RXQ_NUM_REG)
 *   MVPP2_RXQ_INDEX_REG       (related to MVPP2_RXQ_NUM_REG)
 *   MVPP2_TXQ_PENDING_REG     (related to MVPP2_TXQ_NUM_REG)
 *   MVPP2_TXQ_DESC_ADDR_REG   (related to MVPP2_TXQ_NUM_REG)
 *   MVPP2_TXQ_DESC_SIZE_REG   (related to MVPP2_TXQ_NUM_REG)
 *   MVPP2_TXQ_INDEX_REG       (related to MVPP2_TXQ_NUM_REG)
 *   MVPP2_TXQ_PENDING_REG     (related to MVPP2_TXQ_NUM_REG)
 *   MVPP2_TXQ_PREF_BUF_REG    (related to MVPP2_TXQ_NUM_REG)
 *   MVPP2_TXQ_PREF_BUF_REG    (related to MVPP2_TXQ_NUM_REG)
 */
static void mvpp2_percpu_write(struct mvpp2 *priv, int cpu,
			       u32 offset, u32 data)
{
	writel(data, priv->cpu_base[cpu] + offset);
}

static u32 mvpp2_percpu_read(struct mvpp2 *priv, int cpu,
			     u32 offset)
{
	return readl(priv->cpu_base[cpu] + offset);
1127 1128
}

1129 1130 1131
static dma_addr_t mvpp2_txdesc_dma_addr_get(struct mvpp2_port *port,
					    struct mvpp2_tx_desc *tx_desc)
{
1132 1133 1134 1135
	if (port->priv->hw_version == MVPP21)
		return tx_desc->pp21.buf_dma_addr;
	else
		return tx_desc->pp22.buf_dma_addr_ptp & GENMASK_ULL(40, 0);
1136 1137 1138 1139 1140 1141
}

static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
				      struct mvpp2_tx_desc *tx_desc,
				      dma_addr_t dma_addr)
{
1142 1143 1144 1145 1146 1147 1148 1149
	if (port->priv->hw_version == MVPP21) {
		tx_desc->pp21.buf_dma_addr = dma_addr;
	} else {
		u64 val = (u64)dma_addr;

		tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0);
		tx_desc->pp22.buf_dma_addr_ptp |= val;
	}
1150 1151 1152 1153 1154
}

static size_t mvpp2_txdesc_size_get(struct mvpp2_port *port,
				    struct mvpp2_tx_desc *tx_desc)
{
1155 1156 1157 1158
	if (port->priv->hw_version == MVPP21)
		return tx_desc->pp21.data_size;
	else
		return tx_desc->pp22.data_size;
1159 1160 1161 1162 1163 1164
}

static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
				  struct mvpp2_tx_desc *tx_desc,
				  size_t size)
{
1165 1166 1167 1168
	if (port->priv->hw_version == MVPP21)
		tx_desc->pp21.data_size = size;
	else
		tx_desc->pp22.data_size = size;
1169 1170 1171 1172 1173 1174
}

static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
				 struct mvpp2_tx_desc *tx_desc,
				 unsigned int txq)
{
1175 1176 1177 1178
	if (port->priv->hw_version == MVPP21)
		tx_desc->pp21.phys_txq = txq;
	else
		tx_desc->pp22.phys_txq = txq;
1179 1180 1181 1182 1183 1184
}

static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
				 struct mvpp2_tx_desc *tx_desc,
				 unsigned int command)
{
1185 1186 1187 1188
	if (port->priv->hw_version == MVPP21)
		tx_desc->pp21.command = command;
	else
		tx_desc->pp22.command = command;
1189 1190 1191 1192 1193 1194
}

static void mvpp2_txdesc_offset_set(struct mvpp2_port *port,
				    struct mvpp2_tx_desc *tx_desc,
				    unsigned int offset)
{
1195 1196 1197 1198
	if (port->priv->hw_version == MVPP21)
		tx_desc->pp21.packet_offset = offset;
	else
		tx_desc->pp22.packet_offset = offset;
1199 1200 1201 1202 1203
}

static unsigned int mvpp2_txdesc_offset_get(struct mvpp2_port *port,
					    struct mvpp2_tx_desc *tx_desc)
{
1204 1205 1206 1207
	if (port->priv->hw_version == MVPP21)
		return tx_desc->pp21.packet_offset;
	else
		return tx_desc->pp22.packet_offset;
1208 1209 1210 1211 1212
}

static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
					    struct mvpp2_rx_desc *rx_desc)
{
1213 1214 1215 1216
	if (port->priv->hw_version == MVPP21)
		return rx_desc->pp21.buf_dma_addr;
	else
		return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0);
1217 1218 1219 1220 1221
}

static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
					     struct mvpp2_rx_desc *rx_desc)
{
1222 1223 1224 1225
	if (port->priv->hw_version == MVPP21)
		return rx_desc->pp21.buf_cookie;
	else
		return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0);
1226 1227 1228 1229 1230
}

static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
				    struct mvpp2_rx_desc *rx_desc)
{
1231 1232 1233 1234
	if (port->priv->hw_version == MVPP21)
		return rx_desc->pp21.data_size;
	else
		return rx_desc->pp22.data_size;
1235 1236 1237 1238 1239
}

static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
				   struct mvpp2_rx_desc *rx_desc)
{
1240 1241 1242 1243
	if (port->priv->hw_version == MVPP21)
		return rx_desc->pp21.status;
	else
		return rx_desc->pp22.status;
1244 1245
}

1246 1247 1248 1249 1250 1251 1252
static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
{
	txq_pcpu->txq_get_index++;
	if (txq_pcpu->txq_get_index == txq_pcpu->size)
		txq_pcpu->txq_get_index = 0;
}

1253 1254
static void mvpp2_txq_inc_put(struct mvpp2_port *port,
			      struct mvpp2_txq_pcpu *txq_pcpu,
1255 1256
			      struct sk_buff *skb,
			      struct mvpp2_tx_desc *tx_desc)
1257
{
1258 1259 1260
	struct mvpp2_txq_pcpu_buf *tx_buf =
		txq_pcpu->buffs + txq_pcpu->txq_put_index;
	tx_buf->skb = skb;
1261 1262 1263
	tx_buf->size = mvpp2_txdesc_size_get(port, tx_desc);
	tx_buf->dma = mvpp2_txdesc_dma_addr_get(port, tx_desc) +
		mvpp2_txdesc_offset_get(port, tx_desc);
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	txq_pcpu->txq_put_index++;
	if (txq_pcpu->txq_put_index == txq_pcpu->size)
		txq_pcpu->txq_put_index = 0;
}

/* Get number of physical egress port */
static inline int mvpp2_egress_port(struct mvpp2_port *port)
{
	return MVPP2_MAX_TCONT + port->id;
}

/* Get number of physical TXQ */
static inline int mvpp2_txq_phys(int port, int txq)
{
	return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
}

/* Parser configuration routines */

/* Update parser tcam and sram hw entries */
static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
{
	int i;

	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
		return -EINVAL;

	/* Clear entry invalidation bit */
	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;

	/* Write tcam index - indirect access */
	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
		mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);

	/* Write sram index - indirect access */
	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
		mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);

	return 0;
}

/* Read tcam entry from hw */
static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
{
	int i;

	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
		return -EINVAL;

	/* Write tcam index - indirect access */
	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);

	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
			      MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
	if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
		return MVPP2_PRS_TCAM_ENTRY_INVALID;

	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
		pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));

	/* Write sram index - indirect access */
	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
		pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));

	return 0;
}

/* Invalidate tcam hw entry */
static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
{
	/* Write index - indirect access */
	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
	mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
		    MVPP2_PRS_TCAM_INV_MASK);
}

/* Enable shadow table entry and set its lookup ID */
static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
{
	priv->prs_shadow[index].valid = true;
	priv->prs_shadow[index].lu = lu;
}

/* Update ri fields in shadow table entry */
static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
				    unsigned int ri, unsigned int ri_mask)
{
	priv->prs_shadow[index].ri_mask = ri_mask;
	priv->prs_shadow[index].ri = ri;
}

/* Update lookup field in tcam sw entry */
static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
{
	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);

	pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
	pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
}

/* Update mask for single port in tcam sw entry */
static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
				    unsigned int port, bool add)
{
	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);

	if (add)
		pe->tcam.byte[enable_off] &= ~(1 << port);
	else
		pe->tcam.byte[enable_off] |= 1 << port;
}

/* Update port map in tcam sw entry */
static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
					unsigned int ports)
{
	unsigned char port_mask = MVPP2_PRS_PORT_MASK;
	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);

	pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
	pe->tcam.byte[enable_off] &= ~port_mask;
	pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
}

/* Obtain port map from tcam sw entry */
static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
{
	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);

	return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
}

/* Set byte of data and its enable bits in tcam sw entry */
static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
					 unsigned int offs, unsigned char byte,
					 unsigned char enable)
{
	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
}

/* Get byte of data and its enable bits from tcam sw entry */
static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
					 unsigned int offs, unsigned char *byte,
					 unsigned char *enable)
{
	*byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
	*enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
}

/* Compare tcam data bytes with a pattern */
static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs,
				    u16 data)
{
	int off = MVPP2_PRS_TCAM_DATA_BYTE(offs);
	u16 tcam_data;

	tcam_data = (8 << pe->tcam.byte[off + 1]) | pe->tcam.byte[off];
	if (tcam_data != data)
		return false;
	return true;
}

/* Update ai bits in tcam sw entry */
static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe,
				     unsigned int bits, unsigned int enable)
{
	int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE;

	for (i = 0; i < MVPP2_PRS_AI_BITS; i++) {

		if (!(enable & BIT(i)))
			continue;

		if (bits & BIT(i))
			pe->tcam.byte[ai_idx] |= 1 << i;
		else
			pe->tcam.byte[ai_idx] &= ~(1 << i);
	}

	pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable;
}

/* Get ai bits from tcam sw entry */
static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe)
{
	return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE];
}

/* Set ethertype in tcam sw entry */
static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
				  unsigned short ethertype)
{
	mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
	mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
}

/* Set bits in sram sw entry */
static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
				    int val)
{
	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
}

/* Clear bits in sram sw entry */
static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
				      int val)
{
	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
}

/* Update ri bits in sram sw entry */
static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
				     unsigned int bits, unsigned int mask)
{
	unsigned int i;

	for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
		int ri_off = MVPP2_PRS_SRAM_RI_OFFS;

		if (!(mask & BIT(i)))
			continue;

		if (bits & BIT(i))
			mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
		else
			mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);

		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
	}
}

/* Obtain ri bits from sram sw entry */
static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe)
{
	return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD];
}

/* Update ai bits in sram sw entry */
static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
				     unsigned int bits, unsigned int mask)
{
	unsigned int i;
	int ai_off = MVPP2_PRS_SRAM_AI_OFFS;

	for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {

		if (!(mask & BIT(i)))
			continue;

		if (bits & BIT(i))
			mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
		else
			mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);

		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
	}
}

/* Read ai bits from sram sw entry */
static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
{
	u8 bits;
	int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
	int ai_en_off = ai_off + 1;
	int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;

	bits = (pe->sram.byte[ai_off] >> ai_shift) |
	       (pe->sram.byte[ai_en_off] << (8 - ai_shift));

	return bits;
}

/* In sram sw entry set lookup ID field of the tcam key to be used in the next
 * lookup interation
 */
static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
				       unsigned int lu)
{
	int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;

	mvpp2_prs_sram_bits_clear(pe, sram_next_off,
				  MVPP2_PRS_SRAM_NEXT_LU_MASK);
	mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
}

/* In the sram sw entry set sign and value of the next lookup offset
 * and the offset value generated to the classifier
 */
static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
				     unsigned int op)
{
	/* Set sign */
	if (shift < 0) {
		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
		shift = 0 - shift;
	} else {
		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
	}

	/* Set value */
	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
							   (unsigned char)shift;

	/* Reset and set operation */
	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
				  MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);

	/* Set base offset as current */
	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
}

/* In the sram sw entry set sign and value of the user defined offset
 * generated to the classifier
 */
static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
				      unsigned int type, int offset,
				      unsigned int op)
{
	/* Set sign */
	if (offset < 0) {
		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
		offset = 0 - offset;
	} else {
		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
	}

	/* Set value */
	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
				  MVPP2_PRS_SRAM_UDF_MASK);
	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
					MVPP2_PRS_SRAM_UDF_BITS)] &=
	      ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
					MVPP2_PRS_SRAM_UDF_BITS)] |=
				(offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));

	/* Set offset type */
	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
				  MVPP2_PRS_SRAM_UDF_TYPE_MASK);
	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);

	/* Set offset operation */
	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);

	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
					     ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
				    (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));

	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
			     (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));

	/* Set base offset as current */
	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
}

/* Find parser flow entry */
static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
{
	struct mvpp2_prs_entry *pe;
	int tid;

	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
	if (!pe)
		return NULL;
	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);

	/* Go through the all entires with MVPP2_PRS_LU_FLOWS */
	for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
		u8 bits;

		if (!priv->prs_shadow[tid].valid ||
		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
			continue;

		pe->index = tid;
		mvpp2_prs_hw_read(priv, pe);
		bits = mvpp2_prs_sram_ai_get(pe);

		/* Sram store classification lookup ID in AI bits [5:0] */
		if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
			return pe;
	}
	kfree(pe);

	return NULL;
}

/* Return first free tcam index, seeking from start to end */
static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
				     unsigned char end)
{
	int tid;

	if (start > end)
		swap(start, end);

	if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
		end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;

	for (tid = start; tid <= end; tid++) {
		if (!priv->prs_shadow[tid].valid)
			return tid;
	}

	return -EINVAL;
}

/* Enable/disable dropping all mac da's */
static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
{
	struct mvpp2_prs_entry pe;

	if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
		/* Entry exist - update port only */
		pe.index = MVPP2_PE_DROP_ALL;
		mvpp2_prs_hw_read(priv, &pe);
	} else {
		/* Entry doesn't exist - create new */
		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
		pe.index = MVPP2_PE_DROP_ALL;

		/* Non-promiscuous mode for all ports - DROP unknown packets */
		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
					 MVPP2_PRS_RI_DROP_MASK);

		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);

		/* Update shadow table */
		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);

		/* Mask all ports */
		mvpp2_prs_tcam_port_map_set(&pe, 0);
	}

	/* Update port mask */
	mvpp2_prs_tcam_port_set(&pe, port, add);

	mvpp2_prs_hw_write(priv, &pe);
}

/* Set port to promiscuous mode */
static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
{
	struct mvpp2_prs_entry pe;

1721
	/* Promiscuous mode - Accept unknown packets */
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

	if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
		/* Entry exist - update port only */
		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
		mvpp2_prs_hw_read(priv, &pe);
	} else {
		/* Entry doesn't exist - create new */
		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
		pe.index = MVPP2_PE_MAC_PROMISCUOUS;

		/* Continue - set next lookup */
		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);

		/* Set result info bits */
		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
					 MVPP2_PRS_RI_L2_CAST_MASK);

		/* Shift to ethertype */
		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);

		/* Mask all ports */
		mvpp2_prs_tcam_port_map_set(&pe, 0);

		/* Update shadow table */
		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
	}

	/* Update port mask */
	mvpp2_prs_tcam_port_set(&pe, port, add);

	mvpp2_prs_hw_write(priv, &pe);
}

/* Accept multicast */
static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
				    bool add)
{
	struct mvpp2_prs_entry pe;
	unsigned char da_mc;

	/* Ethernet multicast address first byte is
	 * 0x01 for IPv4 and 0x33 for IPv6
	 */
	da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;

	if (priv->prs_shadow[index].valid) {
		/* Entry exist - update port only */
		pe.index = index;
		mvpp2_prs_hw_read(priv, &pe);
	} else {
		/* Entry doesn't exist - create new */
		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
		pe.index = index;

		/* Continue - set next lookup */
		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);

		/* Set result info bits */
		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
					 MVPP2_PRS_RI_L2_CAST_MASK);

		/* Update tcam entry data first byte */
		mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);

		/* Shift to ethertype */
		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);

		/* Mask all ports */
		mvpp2_prs_tcam_port_map_set(&pe, 0);

		/* Update shadow table */
		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
	}

	/* Update port mask */
	mvpp2_prs_tcam_port_set(&pe, port, add);

	mvpp2_prs_hw_write(priv, &pe);
}

/* Set entry for dsa packets */
static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add,
				  bool tagged, bool extend)
{
	struct mvpp2_prs_entry pe;
	int tid, shift;

	if (extend) {
		tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED;
		shift = 8;
	} else {
		tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED;
		shift = 4;
	}

	if (priv->prs_shadow[tid].valid) {
		/* Entry exist - update port only */
		pe.index = tid;
		mvpp2_prs_hw_read(priv, &pe);
	} else {
		/* Entry doesn't exist - create new */
		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
		pe.index = tid;

		/* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/
		mvpp2_prs_sram_shift_set(&pe, shift,
					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);

		/* Update shadow table */
		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);

		if (tagged) {
			/* Set tagged bit in DSA tag */
			mvpp2_prs_tcam_data_byte_set(&pe, 0,
						     MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
						     MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
			/* Clear all ai bits for next iteration */
			mvpp2_prs_sram_ai_update(&pe, 0,
						 MVPP2_PRS_SRAM_AI_MASK);
			/* If packet is tagged continue check vlans */
			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
		} else {
			/* Set result info bits to 'no vlans' */
			mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
						 MVPP2_PRS_RI_VLAN_MASK);
			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
		}

		/* Mask all ports */
		mvpp2_prs_tcam_port_map_set(&pe, 0);
	}

	/* Update port mask */
	mvpp2_prs_tcam_port_set(&pe, port, add);

	mvpp2_prs_hw_write(priv, &pe);
}

/* Set entry for dsa ethertype */
static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port,
					    bool add, bool tagged, bool extend)
{
	struct mvpp2_prs_entry pe;
	int tid, shift, port_mask;

	if (extend) {
		tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED :
		      MVPP2_PE_ETYPE_EDSA_UNTAGGED;
		port_mask = 0;
		shift = 8;
	} else {
		tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED :
		      MVPP2_PE_ETYPE_DSA_UNTAGGED;
		port_mask = MVPP2_PRS_PORT_MASK;
		shift = 4;
	}

	if (priv->prs_shadow[tid].valid) {
		/* Entry exist - update port only */
		pe.index = tid;
		mvpp2_prs_hw_read(priv, &pe);
	} else {
		/* Entry doesn't exist - create new */
		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
		pe.index = tid;

		/* Set ethertype */
		mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA);
		mvpp2_prs_match_etype(&pe, 2, 0);

		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK,
					 MVPP2_PRS_RI_DSA_MASK);
		/* Shift ethertype + 2 byte reserved + tag*/
		mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift,
					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);

		/* Update shadow table */
		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);

		if (tagged) {
			/* Set tagged bit in DSA tag */
			mvpp2_prs_tcam_data_byte_set(&pe,
						     MVPP2_ETH_TYPE_LEN + 2 + 3,
						 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
						 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
			/* Clear all ai bits for next iteration */
			mvpp2_prs_sram_ai_update(&pe, 0,
						 MVPP2_PRS_SRAM_AI_MASK);
			/* If packet is tagged continue check vlans */
			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
		} else {
			/* Set result info bits to 'no vlans' */
			mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
						 MVPP2_PRS_RI_VLAN_MASK);
			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
		}
		/* Mask/unmask all ports, depending on dsa type */
		mvpp2_prs_tcam_port_map_set(&pe, port_mask);
	}

	/* Update port mask */
	mvpp2_prs_tcam_port_set(&pe, port, add);

	mvpp2_prs_hw_write(priv, &pe);
}

/* Search for existing single/triple vlan entry */
static struct mvpp2_prs_entry *mvpp2_prs_vlan_find(struct mvpp2 *priv,
						   unsigned short tpid, int ai)
{
	struct mvpp2_prs_entry *pe;
	int tid;

	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
	if (!pe)
		return NULL;
	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);

	/* Go through the all entries with MVPP2_PRS_LU_VLAN */
	for (tid = MVPP2_PE_FIRST_FREE_TID;
	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
		unsigned int ri_bits, ai_bits;
		bool match;

		if (!priv->prs_shadow[tid].valid ||
		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
			continue;

		pe->index = tid;

		mvpp2_prs_hw_read(priv, pe);
		match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid));
		if (!match)
			continue;

		/* Get vlan type */
		ri_bits = mvpp2_prs_sram_ri_get(pe);
		ri_bits &= MVPP2_PRS_RI_VLAN_MASK;

		/* Get current ai value from tcam */
		ai_bits = mvpp2_prs_tcam_ai_get(pe);
		/* Clear double vlan bit */
		ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT;

		if (ai != ai_bits)
			continue;

		if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
		    ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
			return pe;
	}
	kfree(pe);

	return NULL;
}

/* Add/update single/triple vlan entry */
static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai,
			      unsigned int port_map)
{
	struct mvpp2_prs_entry *pe;
	int tid_aux, tid;
1990
	int ret = 0;
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

	pe = mvpp2_prs_vlan_find(priv, tpid, ai);

	if (!pe) {
		/* Create new tcam entry */
		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID,
						MVPP2_PE_FIRST_FREE_TID);
		if (tid < 0)
			return tid;

		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
		if (!pe)
			return -ENOMEM;

		/* Get last double vlan tid */
		for (tid_aux = MVPP2_PE_LAST_FREE_TID;
		     tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) {
			unsigned int ri_bits;

			if (!priv->prs_shadow[tid_aux].valid ||
			    priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
				continue;

			pe->index = tid_aux;
			mvpp2_prs_hw_read(priv, pe);
			ri_bits = mvpp2_prs_sram_ri_get(pe);
			if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) ==
			    MVPP2_PRS_RI_VLAN_DOUBLE)
				break;
		}

2022 2023 2024 2025
		if (tid <= tid_aux) {
			ret = -EINVAL;
			goto error;
		}
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

		memset(pe, 0 , sizeof(struct mvpp2_prs_entry));
		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
		pe->index = tid;

		mvpp2_prs_match_etype(pe, 0, tpid);

		mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_L2);
		/* Shift 4 bytes - skip 1 vlan tag */
		mvpp2_prs_sram_shift_set(pe, MVPP2_VLAN_TAG_LEN,
					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
		/* Clear all ai bits for next iteration */
		mvpp2_prs_sram_ai_update(pe, 0, MVPP2_PRS_SRAM_AI_MASK);

		if (ai == MVPP2_PRS_SINGLE_VLAN_AI) {
			mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_SINGLE,
						 MVPP2_PRS_RI_VLAN_MASK);
		} else {
			ai |= MVPP2_PRS_DBL_VLAN_AI_BIT;
			mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_TRIPLE,
						 MVPP2_PRS_RI_VLAN_MASK);
		}
		mvpp2_prs_tcam_ai_update(pe, ai, MVPP2_PRS_SRAM_AI_MASK);

		mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
	}
	/* Update ports' mask */
	mvpp2_prs_tcam_port_map_set(pe, port_map);

	mvpp2_prs_hw_write(priv, pe);

2057
error:
2058 2059
	kfree(pe);

2060
	return ret;
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
}

/* Get first free double vlan ai number */
static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv)
{
	int i;

	for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) {
		if (!priv->prs_double_vlans[i])
			return i;
	}

	return -EINVAL;
}

/* Search for existing double vlan entry */
static struct mvpp2_prs_entry *mvpp2_prs_double_vlan_find(struct mvpp2 *priv,
							  unsigned short tpid1,
							  unsigned short tpid2)
{
	struct mvpp2_prs_entry *pe;
	int tid;

	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
	if (!pe)
		return NULL;
	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);

	/* Go through the all entries with MVPP2_PRS_LU_VLAN */
	for (tid = MVPP2_PE_FIRST_FREE_TID;
	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
		unsigned int ri_mask;
		bool match;

		if (!priv->prs_shadow[tid].valid ||
		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
			continue;

		pe->index = tid;
		mvpp2_prs_hw_read(priv, pe);

		match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid1))
			&& mvpp2_prs_tcam_data_cmp(pe, 4, swab16(tpid2));

		if (!match)
			continue;

		ri_mask = mvpp2_prs_sram_ri_get(pe) & MVPP2_PRS_RI_VLAN_MASK;
		if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE)
			return pe;
	}
	kfree(pe);

	return NULL;
}

/* Add or update double vlan entry */
static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1,
				     unsigned short tpid2,
				     unsigned int port_map)
{
	struct mvpp2_prs_entry *pe;
2123
	int tid_aux, tid, ai, ret = 0;
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

	pe = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2);

	if (!pe) {
		/* Create new tcam entry */
		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
				MVPP2_PE_LAST_FREE_TID);
		if (tid < 0)
			return tid;

		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
		if (!pe)
			return -ENOMEM;

		/* Set ai value for new double vlan entry */
		ai = mvpp2_prs_double_vlan_ai_free_get(priv);
2140 2141 2142 2143
		if (ai < 0) {
			ret = ai;
			goto error;
		}
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162

		/* Get first single/triple vlan tid */
		for (tid_aux = MVPP2_PE_FIRST_FREE_TID;
		     tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) {
			unsigned int ri_bits;

			if (!priv->prs_shadow[tid_aux].valid ||
			    priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
				continue;

			pe->index = tid_aux;
			mvpp2_prs_hw_read(priv, pe);
			ri_bits = mvpp2_prs_sram_ri_get(pe);
			ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
			if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
			    ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
				break;
		}

2163 2164 2165 2166
		if (tid >= tid_aux) {
			ret = -ERANGE;
			goto error;
		}
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192

		memset(pe, 0, sizeof(struct mvpp2_prs_entry));
		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
		pe->index = tid;

		priv->prs_double_vlans[ai] = true;

		mvpp2_prs_match_etype(pe, 0, tpid1);
		mvpp2_prs_match_etype(pe, 4, tpid2);

		mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_VLAN);
		/* Shift 8 bytes - skip 2 vlan tags */
		mvpp2_prs_sram_shift_set(pe, 2 * MVPP2_VLAN_TAG_LEN,
					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
		mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_DOUBLE,
					 MVPP2_PRS_RI_VLAN_MASK);
		mvpp2_prs_sram_ai_update(pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT,
					 MVPP2_PRS_SRAM_AI_MASK);

		mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
	}

	/* Update ports' mask */
	mvpp2_prs_tcam_port_map_set(pe, port_map);
	mvpp2_prs_hw_write(priv, pe);

2193
error:
2194
	kfree(pe);
2195
	return ret;
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
}

/* IPv4 header parsing for fragmentation and L4 offset */
static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto,
			       unsigned int ri, unsigned int ri_mask)
{
	struct mvpp2_prs_entry pe;
	int tid;

	if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
	    (proto != IPPROTO_IGMP))
		return -EINVAL;

	/* Fragmented packet */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
	pe.index = tid;

	/* Set next lu to IPv4 */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
	mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
	/* Set L4 offset */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
				  sizeof(struct iphdr) - 4,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
				 MVPP2_PRS_IPV4_DIP_AI_BIT);
	mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_MASK,
				 ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);

	mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK);
	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
	mvpp2_prs_hw_write(priv, &pe);

	/* Not fragmented packet */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	pe.index = tid;
	/* Clear ri before updating */
	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
	mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);

	mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, MVPP2_PRS_TCAM_PROTO_MASK_L);
	mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, MVPP2_PRS_TCAM_PROTO_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
	mvpp2_prs_hw_write(priv, &pe);

	return 0;
}

/* IPv4 L3 multicast or broadcast */
static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast)
{
	struct mvpp2_prs_entry pe;
	int mask, tid;

	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
	pe.index = tid;

	switch (l3_cast) {
	case MVPP2_PRS_L3_MULTI_CAST:
		mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC,
					     MVPP2_PRS_IPV4_MC_MASK);
		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
					 MVPP2_PRS_RI_L3_ADDR_MASK);
		break;
	case  MVPP2_PRS_L3_BROAD_CAST:
		mask = MVPP2_PRS_IPV4_BC_MASK;
		mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask);
		mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask);
		mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask);
		mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask);
		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST,
					 MVPP2_PRS_RI_L3_ADDR_MASK);
		break;
	default:
		return -EINVAL;
	}

	/* Finished: go to flowid generation */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);

	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
				 MVPP2_PRS_IPV4_DIP_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
	mvpp2_prs_hw_write(priv, &pe);

	return 0;
}

/* Set entries for protocols over IPv6  */
static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto,
			       unsigned int ri, unsigned int ri_mask)
{
	struct mvpp2_prs_entry pe;
	int tid;

	if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
	    (proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP))
		return -EINVAL;

	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
	pe.index = tid;

	/* Finished: go to flowid generation */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
				  sizeof(struct ipv6hdr) - 6,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK);
	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Write HW */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
	mvpp2_prs_hw_write(priv, &pe);

	return 0;
}

/* IPv6 L3 multicast entry */
static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast)
{
	struct mvpp2_prs_entry pe;
	int tid;

	if (l3_cast != MVPP2_PRS_L3_MULTI_CAST)
		return -EINVAL;

	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
	pe.index = tid;

	/* Finished: go to flowid generation */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
				 MVPP2_PRS_RI_L3_ADDR_MASK);
	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
	/* Shift back to IPv6 NH */
	mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);

	mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC,
				     MVPP2_PRS_IPV6_MC_MASK);
	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
	mvpp2_prs_hw_write(priv, &pe);

	return 0;
}

/* Parser per-port initialization */
static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
				   int lu_max, int offset)
{
	u32 val;

	/* Set lookup ID */
	val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
	val &= ~MVPP2_PRS_PORT_LU_MASK(port);
	val |=  MVPP2_PRS_PORT_LU_VAL(port, lu_first);
	mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);

	/* Set maximum number of loops for packet received from port */
	val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
	val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
	val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
	mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);

	/* Set initial offset for packet header extraction for the first
	 * searching loop
	 */
	val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
	val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
	val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
	mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
}

/* Default flow entries initialization for all ports */
static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
{
	struct mvpp2_prs_entry pe;
	int port;

	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
		pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;

		/* Mask all ports */
		mvpp2_prs_tcam_port_map_set(&pe, 0);

		/* Set flow ID*/
		mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);

		/* Update shadow table and hw entry */
		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
		mvpp2_prs_hw_write(priv, &pe);
	}
}

/* Set default entry for Marvell Header field */
static void mvpp2_prs_mh_init(struct mvpp2 *priv)
{
	struct mvpp2_prs_entry pe;

	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));

	pe.index = MVPP2_PE_MH_DEFAULT;
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
	mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);

	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
	mvpp2_prs_hw_write(priv, &pe);
}

/* Set default entires (place holder) for promiscuous, non-promiscuous and
 * multicast MAC addresses
 */
static void mvpp2_prs_mac_init(struct mvpp2 *priv)
{
	struct mvpp2_prs_entry pe;

	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));

	/* Non-promiscuous mode for all ports - DROP unknown packets */
	pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);

	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
				 MVPP2_PRS_RI_DROP_MASK);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);

	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
	mvpp2_prs_hw_write(priv, &pe);

	/* place holders only - no ports */
	mvpp2_prs_mac_drop_all_set(priv, 0, false);
	mvpp2_prs_mac_promisc_set(priv, 0, false);
	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
}

/* Set default entries for various types of dsa packets */
static void mvpp2_prs_dsa_init(struct mvpp2 *priv)
{
	struct mvpp2_prs_entry pe;

	/* None tagged EDSA entry - place holder */
	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
			      MVPP2_PRS_EDSA);

	/* Tagged EDSA entry - place holder */
	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);

	/* None tagged DSA entry - place holder */
	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
			      MVPP2_PRS_DSA);

	/* Tagged DSA entry - place holder */
	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);

	/* None tagged EDSA ethertype entry - place holder*/
	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
					MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);

	/* Tagged EDSA ethertype entry - place holder*/
	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
					MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);

	/* None tagged DSA ethertype entry */
	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
					MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);

	/* Tagged DSA ethertype entry */
	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
					MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);

	/* Set default entry, in case DSA or EDSA tag not found */
	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
	pe.index = MVPP2_PE_DSA_DEFAULT;
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);

	/* Shift 0 bytes */
	mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);

	/* Clear all sram ai bits for next iteration */
	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);

	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	mvpp2_prs_hw_write(priv, &pe);
}

/* Match basic ethertypes */
static int mvpp2_prs_etype_init(struct mvpp2 *priv)
{
	struct mvpp2_prs_entry pe;
	int tid;

	/* Ethertype: PPPoE */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
	pe.index = tid;

	mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES);

	mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
				 MVPP2_PRS_RI_PPPOE_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
	priv->prs_shadow[pe.index].finish = false;
	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
				MVPP2_PRS_RI_PPPOE_MASK);
	mvpp2_prs_hw_write(priv, &pe);

	/* Ethertype: ARP */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
	pe.index = tid;

	mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP);

	/* Generate flow in the next iteration*/
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
				 MVPP2_PRS_RI_L3_PROTO_MASK);
	/* Set L3 offset */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
				  MVPP2_ETH_TYPE_LEN,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
	priv->prs_shadow[pe.index].finish = true;
	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
				MVPP2_PRS_RI_L3_PROTO_MASK);
	mvpp2_prs_hw_write(priv, &pe);

	/* Ethertype: LBTD */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
	pe.index = tid;

	mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);

	/* Generate flow in the next iteration*/
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
				 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
				 MVPP2_PRS_RI_CPU_CODE_MASK |
				 MVPP2_PRS_RI_UDF3_MASK);
	/* Set L3 offset */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
				  MVPP2_ETH_TYPE_LEN,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
	priv->prs_shadow[pe.index].finish = true;
	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
				MVPP2_PRS_RI_UDF3_RX_SPECIAL,
				MVPP2_PRS_RI_CPU_CODE_MASK |
				MVPP2_PRS_RI_UDF3_MASK);
	mvpp2_prs_hw_write(priv, &pe);

	/* Ethertype: IPv4 without options */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
	pe.index = tid;

	mvpp2_prs_match_etype(&pe, 0, ETH_P_IP);
	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
				     MVPP2_PRS_IPV4_HEAD_MASK |
				     MVPP2_PRS_IPV4_IHL_MASK);

	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
				 MVPP2_PRS_RI_L3_PROTO_MASK);
	/* Skip eth_type + 4 bytes of IP header */
	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
	/* Set L3 offset */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
				  MVPP2_ETH_TYPE_LEN,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
	priv->prs_shadow[pe.index].finish = false;
	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
				MVPP2_PRS_RI_L3_PROTO_MASK);
	mvpp2_prs_hw_write(priv, &pe);

	/* Ethertype: IPv4 with options */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	pe.index = tid;

	/* Clear tcam data before updating */
	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;

	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
				     MVPP2_PRS_IPV4_HEAD,
				     MVPP2_PRS_IPV4_HEAD_MASK);

	/* Clear ri before updating */
	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
				 MVPP2_PRS_RI_L3_PROTO_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
	priv->prs_shadow[pe.index].finish = false;
	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
				MVPP2_PRS_RI_L3_PROTO_MASK);
	mvpp2_prs_hw_write(priv, &pe);

	/* Ethertype: IPv6 without options */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
	pe.index = tid;

	mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6);

	/* Skip DIP of IPV6 header */
	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
				 MVPP2_MAX_L3_ADDR_SIZE,
				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
				 MVPP2_PRS_RI_L3_PROTO_MASK);
	/* Set L3 offset */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
				  MVPP2_ETH_TYPE_LEN,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
	priv->prs_shadow[pe.index].finish = false;
	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
				MVPP2_PRS_RI_L3_PROTO_MASK);
	mvpp2_prs_hw_write(priv, &pe);

	/* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
	pe.index = MVPP2_PE_ETH_TYPE_UN;

	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Generate flow in the next iteration*/
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
				 MVPP2_PRS_RI_L3_PROTO_MASK);
	/* Set L3 offset even it's unknown L3 */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
				  MVPP2_ETH_TYPE_LEN,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
	priv->prs_shadow[pe.index].finish = true;
	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
				MVPP2_PRS_RI_L3_PROTO_MASK);
	mvpp2_prs_hw_write(priv, &pe);

	return 0;
}

/* Configure vlan entries and detect up to 2 successive VLAN tags.
 * Possible options:
 * 0x8100, 0x88A8
 * 0x8100, 0x8100
 * 0x8100
 * 0x88A8
 */
static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv)
{
	struct mvpp2_prs_entry pe;
	int err;

	priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool),
					      MVPP2_PRS_DBL_VLANS_MAX,
					      GFP_KERNEL);
	if (!priv->prs_double_vlans)
		return -ENOMEM;

	/* Double VLAN: 0x8100, 0x88A8 */
	err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD,
					MVPP2_PRS_PORT_MASK);
	if (err)
		return err;

	/* Double VLAN: 0x8100, 0x8100 */
	err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q,
					MVPP2_PRS_PORT_MASK);
	if (err)
		return err;

	/* Single VLAN: 0x88a8 */
	err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI,
				 MVPP2_PRS_PORT_MASK);
	if (err)
		return err;

	/* Single VLAN: 0x8100 */
	err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI,
				 MVPP2_PRS_PORT_MASK);
	if (err)
		return err;

	/* Set default double vlan entry */
	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
	pe.index = MVPP2_PE_VLAN_DBL;

	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
	/* Clear ai for next iterations */
	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE,
				 MVPP2_PRS_RI_VLAN_MASK);

	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT,
				 MVPP2_PRS_DBL_VLAN_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
	mvpp2_prs_hw_write(priv, &pe);

	/* Set default vlan none entry */
	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
	pe.index = MVPP2_PE_VLAN_NONE;

	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
				 MVPP2_PRS_RI_VLAN_MASK);

	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
	mvpp2_prs_hw_write(priv, &pe);

	return 0;
}

/* Set entries for PPPoE ethertype */
static int mvpp2_prs_pppoe_init(struct mvpp2 *priv)
{
	struct mvpp2_prs_entry pe;
	int tid;

	/* IPv4 over PPPoE with options */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
	pe.index = tid;

	mvpp2_prs_match_etype(&pe, 0, PPP_IP);

	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
				 MVPP2_PRS_RI_L3_PROTO_MASK);
	/* Skip eth_type + 4 bytes of IP header */
	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
	/* Set L3 offset */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
				  MVPP2_ETH_TYPE_LEN,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
	mvpp2_prs_hw_write(priv, &pe);

	/* IPv4 over PPPoE without options */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	pe.index = tid;

	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
				     MVPP2_PRS_IPV4_HEAD_MASK |
				     MVPP2_PRS_IPV4_IHL_MASK);

	/* Clear ri before updating */
	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
				 MVPP2_PRS_RI_L3_PROTO_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
	mvpp2_prs_hw_write(priv, &pe);

	/* IPv6 over PPPoE */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
	pe.index = tid;

	mvpp2_prs_match_etype(&pe, 0, PPP_IPV6);

	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
				 MVPP2_PRS_RI_L3_PROTO_MASK);
	/* Skip eth_type + 4 bytes of IPv6 header */
	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
	/* Set L3 offset */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
				  MVPP2_ETH_TYPE_LEN,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
	mvpp2_prs_hw_write(priv, &pe);

	/* Non-IP over PPPoE */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
	pe.index = tid;

	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
				 MVPP2_PRS_RI_L3_PROTO_MASK);

	/* Finished: go to flowid generation */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	/* Set L3 offset even if it's unknown L3 */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
				  MVPP2_ETH_TYPE_LEN,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
	mvpp2_prs_hw_write(priv, &pe);

	return 0;
}

/* Initialize entries for IPv4 */
static int mvpp2_prs_ip4_init(struct mvpp2 *priv)
{
	struct mvpp2_prs_entry pe;
	int err;

	/* Set entries for TCP, UDP and IGMP over IPv4 */
	err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP,
				  MVPP2_PRS_RI_L4_PROTO_MASK);
	if (err)
		return err;

	err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP,
				  MVPP2_PRS_RI_L4_PROTO_MASK);
	if (err)
		return err;

	err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP,
				  MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
				  MVPP2_PRS_RI_UDF3_RX_SPECIAL,
				  MVPP2_PRS_RI_CPU_CODE_MASK |
				  MVPP2_PRS_RI_UDF3_MASK);
	if (err)
		return err;

	/* IPv4 Broadcast */
	err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST);
	if (err)
		return err;

	/* IPv4 Multicast */
	err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
	if (err)
		return err;

	/* Default IPv4 entry for unknown protocols */
	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
	pe.index = MVPP2_PE_IP4_PROTO_UN;

	/* Set next lu to IPv4 */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
	mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
	/* Set L4 offset */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
				  sizeof(struct iphdr) - 4,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
				 MVPP2_PRS_IPV4_DIP_AI_BIT);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
				 MVPP2_PRS_RI_L4_PROTO_MASK);

	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
	mvpp2_prs_hw_write(priv, &pe);

	/* Default IPv4 entry for unicast address */
	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
	pe.index = MVPP2_PE_IP4_ADDR_UN;

	/* Finished: go to flowid generation */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
				 MVPP2_PRS_RI_L3_ADDR_MASK);

	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
				 MVPP2_PRS_IPV4_DIP_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
	mvpp2_prs_hw_write(priv, &pe);

	return 0;
}

/* Initialize entries for IPv6 */
static int mvpp2_prs_ip6_init(struct mvpp2 *priv)
{
	struct mvpp2_prs_entry pe;
	int tid, err;

	/* Set entries for TCP, UDP and ICMP over IPv6 */
	err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP,
				  MVPP2_PRS_RI_L4_TCP,
				  MVPP2_PRS_RI_L4_PROTO_MASK);
	if (err)
		return err;

	err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP,
				  MVPP2_PRS_RI_L4_UDP,
				  MVPP2_PRS_RI_L4_PROTO_MASK);
	if (err)
		return err;

	err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6,
				  MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
				  MVPP2_PRS_RI_UDF3_RX_SPECIAL,
				  MVPP2_PRS_RI_CPU_CODE_MASK |
				  MVPP2_PRS_RI_UDF3_MASK);
	if (err)
		return err;

	/* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */
	/* Result Info: UDF7=1, DS lite */
	err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP,
				  MVPP2_PRS_RI_UDF7_IP6_LITE,
				  MVPP2_PRS_RI_UDF7_MASK);
	if (err)
		return err;

	/* IPv6 multicast */
	err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
	if (err)
		return err;

	/* Entry for checking hop limit */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
	pe.index = tid;

	/* Finished: go to flowid generation */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN |
				 MVPP2_PRS_RI_DROP_MASK,
				 MVPP2_PRS_RI_L3_PROTO_MASK |
				 MVPP2_PRS_RI_DROP_MASK);

	mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK);
	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
	mvpp2_prs_hw_write(priv, &pe);

	/* Default IPv6 entry for unknown protocols */
	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
	pe.index = MVPP2_PE_IP6_PROTO_UN;

	/* Finished: go to flowid generation */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
				 MVPP2_PRS_RI_L4_PROTO_MASK);
	/* Set L4 offset relatively to our current place */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
				  sizeof(struct ipv6hdr) - 4,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
	mvpp2_prs_hw_write(priv, &pe);

	/* Default IPv6 entry for unknown ext protocols */
	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
	pe.index = MVPP2_PE_IP6_EXT_PROTO_UN;

	/* Finished: go to flowid generation */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
				 MVPP2_PRS_RI_L4_PROTO_MASK);

	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT,
				 MVPP2_PRS_IPV6_EXT_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
	mvpp2_prs_hw_write(priv, &pe);

	/* Default IPv6 entry for unicast address */
	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
	pe.index = MVPP2_PE_IP6_ADDR_UN;

	/* Finished: go to IPv6 again */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
				 MVPP2_PRS_RI_L3_ADDR_MASK);
	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
	/* Shift back to IPV6 NH */
	mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);

	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
	mvpp2_prs_hw_write(priv, &pe);

	return 0;
}

/* Parser default initialization */
static int mvpp2_prs_default_init(struct platform_device *pdev,
				  struct mvpp2 *priv)
{
	int err, index, i;

	/* Enable tcam table */
	mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);

	/* Clear all tcam and sram entries */
	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
		mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
		for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
			mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);

		mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
		for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
			mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
	}

	/* Invalidate all tcam entries */
	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
		mvpp2_prs_hw_inv(priv, index);

	priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE,
3208
					sizeof(*priv->prs_shadow),
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
					GFP_KERNEL);
	if (!priv->prs_shadow)
		return -ENOMEM;

	/* Always start from lookup = 0 */
	for (index = 0; index < MVPP2_MAX_PORTS; index++)
		mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
				       MVPP2_PRS_PORT_LU_MAX, 0);

	mvpp2_prs_def_flow_init(priv);

	mvpp2_prs_mh_init(priv);

	mvpp2_prs_mac_init(priv);

	mvpp2_prs_dsa_init(priv);

	err = mvpp2_prs_etype_init(priv);
	if (err)
		return err;

	err = mvpp2_prs_vlan_init(pdev, priv);
	if (err)
		return err;

	err = mvpp2_prs_pppoe_init(priv);
	if (err)
		return err;

	err = mvpp2_prs_ip6_init(priv);
	if (err)
		return err;

	err = mvpp2_prs_ip4_init(priv);
	if (err)
		return err;

	return 0;
}

/* Compare MAC DA with tcam entry data */
static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
				       const u8 *da, unsigned char *mask)
{
	unsigned char tcam_byte, tcam_mask;
	int index;

	for (index = 0; index < ETH_ALEN; index++) {
		mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
		if (tcam_mask != mask[index])
			return false;

		if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
			return false;
	}

	return true;
}

/* Find tcam entry with matched pair <MAC DA, port> */
static struct mvpp2_prs_entry *
mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
			    unsigned char *mask, int udf_type)
{
	struct mvpp2_prs_entry *pe;
	int tid;

	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
	if (!pe)
		return NULL;
	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);

	/* Go through the all entires with MVPP2_PRS_LU_MAC */
	for (tid = MVPP2_PE_FIRST_FREE_TID;
	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
		unsigned int entry_pmap;

		if (!priv->prs_shadow[tid].valid ||
		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
		    (priv->prs_shadow[tid].udf != udf_type))
			continue;

		pe->index = tid;
		mvpp2_prs_hw_read(priv, pe);
		entry_pmap = mvpp2_prs_tcam_port_map_get(pe);

		if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
		    entry_pmap == pmap)
			return pe;
	}
	kfree(pe);

	return NULL;
}

/* Update parser's mac da entry */
static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
				   const u8 *da, bool add)
{
	struct mvpp2_prs_entry *pe;
	unsigned int pmap, len, ri;
	unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
	int tid;

	/* Scan TCAM and see if entry with this <MAC DA, port> already exist */
	pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
					 MVPP2_PRS_UDF_MAC_DEF);

	/* No such entry */
	if (!pe) {
		if (!add)
			return 0;

		/* Create new TCAM entry */
		/* Find first range mac entry*/
		for (tid = MVPP2_PE_FIRST_FREE_TID;
		     tid <= MVPP2_PE_LAST_FREE_TID; tid++)
			if (priv->prs_shadow[tid].valid &&
			    (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
			    (priv->prs_shadow[tid].udf ==
						       MVPP2_PRS_UDF_MAC_RANGE))
				break;

		/* Go through the all entries from first to last */
		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
						tid - 1);
		if (tid < 0)
			return tid;

		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
		if (!pe)
3340
			return -ENOMEM;
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
		pe->index = tid;

		/* Mask all ports */
		mvpp2_prs_tcam_port_map_set(pe, 0);
	}

	/* Update port mask */
	mvpp2_prs_tcam_port_set(pe, port, add);

	/* Invalidate the entry if no ports are left enabled */
	pmap = mvpp2_prs_tcam_port_map_get(pe);
	if (pmap == 0) {
		if (add) {
			kfree(pe);
3356
			return -EINVAL;
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
		}
		mvpp2_prs_hw_inv(priv, pe->index);
		priv->prs_shadow[pe->index].valid = false;
		kfree(pe);
		return 0;
	}

	/* Continue - set next lookup */
	mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);

	/* Set match on DA */
	len = ETH_ALEN;
	while (len--)
		mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);

	/* Set result info bits */
	if (is_broadcast_ether_addr(da))
		ri = MVPP2_PRS_RI_L2_BCAST;
	else if (is_multicast_ether_addr(da))
		ri = MVPP2_PRS_RI_L2_MCAST;
	else
		ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;

	mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
				 MVPP2_PRS_RI_MAC_ME_MASK);
	mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
				MVPP2_PRS_RI_MAC_ME_MASK);

	/* Shift to ethertype */
	mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);

	/* Update shadow table and hw entry */
	priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
	mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
	mvpp2_prs_hw_write(priv, pe);

	kfree(pe);

	return 0;
}

static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da)
{
	struct mvpp2_port *port = netdev_priv(dev);
	int err;

	/* Remove old parser entry */
	err = mvpp2_prs_mac_da_accept(port->priv, port->id, dev->dev_addr,
				      false);
	if (err)
		return err;

	/* Add new parser entry */
	err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
	if (err)
		return err;

	/* Set addr in the device */
	ether_addr_copy(dev->dev_addr, da);

	return 0;
}

/* Delete all port's multicast simple (not range) entries */
static void mvpp2_prs_mcast_del_all(struct mvpp2 *priv, int port)
{
	struct mvpp2_prs_entry pe;
	int index, tid;

	for (tid = MVPP2_PE_FIRST_FREE_TID;
	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
		unsigned char da[ETH_ALEN], da_mask[ETH_ALEN];

		if (!priv->prs_shadow[tid].valid ||
		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
		    (priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF))
			continue;

		/* Only simple mac entries */
		pe.index = tid;
		mvpp2_prs_hw_read(priv, &pe);

		/* Read mac addr from entry */
		for (index = 0; index < ETH_ALEN; index++)
			mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index],
						     &da_mask[index]);

		if (is_multicast_ether_addr(da) && !is_broadcast_ether_addr(da))
			/* Delete this entry */
			mvpp2_prs_mac_da_accept(priv, port, da, false);
	}
}

static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type)
{
	switch (type) {
	case MVPP2_TAG_TYPE_EDSA:
		/* Add port to EDSA entries */
		mvpp2_prs_dsa_tag_set(priv, port, true,
				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
		mvpp2_prs_dsa_tag_set(priv, port, true,
				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
		/* Remove port from DSA entries */
		mvpp2_prs_dsa_tag_set(priv, port, false,
				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
		mvpp2_prs_dsa_tag_set(priv, port, false,
				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
		break;

	case MVPP2_TAG_TYPE_DSA:
		/* Add port to DSA entries */
		mvpp2_prs_dsa_tag_set(priv, port, true,
				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
		mvpp2_prs_dsa_tag_set(priv, port, true,
				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
		/* Remove port from EDSA entries */
		mvpp2_prs_dsa_tag_set(priv, port, false,
				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
		mvpp2_prs_dsa_tag_set(priv, port, false,
				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
		break;

	case MVPP2_TAG_TYPE_MH:
	case MVPP2_TAG_TYPE_NONE:
		/* Remove port form EDSA and DSA entries */
		mvpp2_prs_dsa_tag_set(priv, port, false,
				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
		mvpp2_prs_dsa_tag_set(priv, port, false,
				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
		mvpp2_prs_dsa_tag_set(priv, port, false,
				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
		mvpp2_prs_dsa_tag_set(priv, port, false,
				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
		break;

	default:
		if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA))
			return -EINVAL;
	}

	return 0;
}

/* Set prs flow for the port */
static int mvpp2_prs_def_flow(struct mvpp2_port *port)
{
	struct mvpp2_prs_entry *pe;
	int tid;

	pe = mvpp2_prs_flow_find(port->priv, port->id);

	/* Such entry not exist */
	if (!pe) {
		/* Go through the all entires from last to first */
		tid = mvpp2_prs_tcam_first_free(port->priv,
						MVPP2_PE_LAST_FREE_TID,
					       MVPP2_PE_FIRST_FREE_TID);
		if (tid < 0)
			return tid;

		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
		if (!pe)
			return -ENOMEM;

		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
		pe->index = tid;

		/* Set flow ID*/
		mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);

		/* Update shadow table */
		mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
	}

	mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
	mvpp2_prs_hw_write(port->priv, pe);
	kfree(pe);

	return 0;
}

/* Classifier configuration routines */

/* Update classification flow table registers */
static void mvpp2_cls_flow_write(struct mvpp2 *priv,
				 struct mvpp2_cls_flow_entry *fe)
{
	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG,  fe->data[0]);
	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG,  fe->data[1]);
	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG,  fe->data[2]);
}

/* Update classification lookup table register */
static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
				   struct mvpp2_cls_lookup_entry *le)
{
	u32 val;

	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
}

/* Classifier default initialization */
static void mvpp2_cls_init(struct mvpp2 *priv)
{
	struct mvpp2_cls_lookup_entry le;
	struct mvpp2_cls_flow_entry fe;
	int index;

	/* Enable classifier */
	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);

	/* Clear classifier flow table */
A
Arnd Bergmann 已提交
3574
	memset(&fe.data, 0, sizeof(fe.data));
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
		fe.index = index;
		mvpp2_cls_flow_write(priv, &fe);
	}

	/* Clear classifier lookup table */
	le.data = 0;
	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
		le.lkpid = index;
		le.way = 0;
		mvpp2_cls_lookup_write(priv, &le);

		le.way = 1;
		mvpp2_cls_lookup_write(priv, &le);
	}
}

static void mvpp2_cls_port_config(struct mvpp2_port *port)
{
	struct mvpp2_cls_lookup_entry le;
	u32 val;

	/* Set way for the port */
	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);

	/* Pick the entry to be accessed in lookup ID decoding table
	 * according to the way and lkpid.
	 */
	le.lkpid = port->id;
	le.way = 0;
	le.data = 0;

	/* Set initial CPU queue for receiving packets */
	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
	le.data |= port->first_rxq;

	/* Disable classification engines */
	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;

	/* Update lookup ID table entry */
	mvpp2_cls_lookup_write(port->priv, &le);
}

/* Set CPU queue number for oversize packets */
static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
{
	u32 val;

	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);

	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));

	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
	val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
}

3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
static void *mvpp2_frag_alloc(const struct mvpp2_bm_pool *pool)
{
	if (likely(pool->frag_size <= PAGE_SIZE))
		return netdev_alloc_frag(pool->frag_size);
	else
		return kmalloc(pool->frag_size, GFP_ATOMIC);
}

static void mvpp2_frag_free(const struct mvpp2_bm_pool *pool, void *data)
{
	if (likely(pool->frag_size <= PAGE_SIZE))
		skb_free_frag(data);
	else
		kfree(data);
}

3652 3653 3654 3655 3656 3657 3658 3659 3660
/* Buffer Manager configuration routines */

/* Create pool */
static int mvpp2_bm_pool_create(struct platform_device *pdev,
				struct mvpp2 *priv,
				struct mvpp2_bm_pool *bm_pool, int size)
{
	u32 val;

3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
	/* Number of buffer pointers must be a multiple of 16, as per
	 * hardware constraints
	 */
	if (!IS_ALIGNED(size, 16))
		return -EINVAL;

	/* PPv2.1 needs 8 bytes per buffer pointer, PPv2.2 needs 16
	 * bytes per buffer pointer
	 */
	if (priv->hw_version == MVPP21)
		bm_pool->size_bytes = 2 * sizeof(u32) * size;
	else
		bm_pool->size_bytes = 2 * sizeof(u64) * size;

	bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, bm_pool->size_bytes,
3676
						&bm_pool->dma_addr,
3677 3678 3679 3680
						GFP_KERNEL);
	if (!bm_pool->virt_addr)
		return -ENOMEM;

3681 3682
	if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
			MVPP2_BM_POOL_PTR_ALIGN)) {
3683 3684
		dma_free_coherent(&pdev->dev, bm_pool->size_bytes,
				  bm_pool->virt_addr, bm_pool->dma_addr);
3685 3686 3687 3688 3689 3690
		dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
			bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
		return -ENOMEM;
	}

	mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
3691
		    lower_32_bits(bm_pool->dma_addr));
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
	mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);

	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
	val |= MVPP2_BM_START_MASK;
	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);

	bm_pool->type = MVPP2_BM_FREE;
	bm_pool->size = size;
	bm_pool->pkt_size = 0;
	bm_pool->buf_num = 0;

	return 0;
}

/* Set pool buffer size */
static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
				      struct mvpp2_bm_pool *bm_pool,
				      int buf_size)
{
	u32 val;

	bm_pool->buf_size = buf_size;

	val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
	mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
}

3719 3720 3721 3722 3723
static void mvpp2_bm_bufs_get_addrs(struct device *dev, struct mvpp2 *priv,
				    struct mvpp2_bm_pool *bm_pool,
				    dma_addr_t *dma_addr,
				    phys_addr_t *phys_addr)
{
3724 3725 3726 3727 3728
	int cpu = smp_processor_id();

	*dma_addr = mvpp2_percpu_read(priv, cpu,
				      MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
	*phys_addr = mvpp2_percpu_read(priv, cpu, MVPP2_BM_VIRT_ALLOC_REG);
3729 3730 3731 3732 3733

	if (priv->hw_version == MVPP22) {
		u32 val;
		u32 dma_addr_highbits, phys_addr_highbits;

3734
		val = mvpp2_percpu_read(priv, cpu, MVPP22_BM_ADDR_HIGH_ALLOC);
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
		dma_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_PHYS_MASK);
		phys_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_VIRT_MASK) >>
			MVPP22_BM_ADDR_HIGH_VIRT_SHIFT;

		if (sizeof(dma_addr_t) == 8)
			*dma_addr |= (u64)dma_addr_highbits << 32;

		if (sizeof(phys_addr_t) == 8)
			*phys_addr |= (u64)phys_addr_highbits << 32;
	}
}

3747
/* Free all buffers from the pool */
3748 3749
static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv,
			       struct mvpp2_bm_pool *bm_pool)
3750 3751 3752
{
	int i;

3753
	for (i = 0; i < bm_pool->buf_num; i++) {
3754
		dma_addr_t buf_dma_addr;
3755 3756
		phys_addr_t buf_phys_addr;
		void *data;
3757

3758 3759
		mvpp2_bm_bufs_get_addrs(dev, priv, bm_pool,
					&buf_dma_addr, &buf_phys_addr);
3760

3761
		dma_unmap_single(dev, buf_dma_addr,
3762 3763
				 bm_pool->buf_size, DMA_FROM_DEVICE);

3764 3765
		data = (void *)phys_to_virt(buf_phys_addr);
		if (!data)
3766
			break;
3767

3768
		mvpp2_frag_free(bm_pool, data);
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
	}

	/* Update BM driver with number of buffers removed from pool */
	bm_pool->buf_num -= i;
}

/* Cleanup pool */
static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
				 struct mvpp2 *priv,
				 struct mvpp2_bm_pool *bm_pool)
{
	u32 val;

3782
	mvpp2_bm_bufs_free(&pdev->dev, priv, bm_pool);
3783
	if (bm_pool->buf_num) {
3784 3785 3786 3787 3788 3789 3790 3791
		WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id);
		return 0;
	}

	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
	val |= MVPP2_BM_STOP_MASK;
	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);

3792
	dma_free_coherent(&pdev->dev, bm_pool->size_bytes,
3793
			  bm_pool->virt_addr,
3794
			  bm_pool->dma_addr);
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
	return 0;
}

static int mvpp2_bm_pools_init(struct platform_device *pdev,
			       struct mvpp2 *priv)
{
	int i, err, size;
	struct mvpp2_bm_pool *bm_pool;

	/* Create all pools with maximum size */
	size = MVPP2_BM_POOL_SIZE_MAX;
	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
		bm_pool = &priv->bm_pools[i];
		bm_pool->id = i;
		err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
		if (err)
			goto err_unroll_pools;
		mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
	}
	return 0;

err_unroll_pools:
	dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
	for (i = i - 1; i >= 0; i--)
		mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
	return err;
}

static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
{
	int i, err;

	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
		/* Mask BM all interrupts */
		mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
		/* Clear BM cause register */
		mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
	}

	/* Allocate and initialize BM pools */
	priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
3836
				      sizeof(*priv->bm_pools), GFP_KERNEL);
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
	if (!priv->bm_pools)
		return -ENOMEM;

	err = mvpp2_bm_pools_init(pdev, priv);
	if (err < 0)
		return err;
	return 0;
}

/* Attach long pool to rxq */
static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
				    int lrxq, int long_pool)
{
3850
	u32 val, mask;
3851 3852 3853 3854 3855
	int prxq;

	/* Get queue physical ID */
	prxq = port->rxqs[lrxq]->id;

3856 3857 3858 3859
	if (port->priv->hw_version == MVPP21)
		mask = MVPP21_RXQ_POOL_LONG_MASK;
	else
		mask = MVPP22_RXQ_POOL_LONG_MASK;
3860

3861 3862 3863
	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
	val &= ~mask;
	val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
3864 3865 3866 3867 3868 3869 3870
	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
}

/* Attach short pool to rxq */
static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
				     int lrxq, int short_pool)
{
3871
	u32 val, mask;
3872 3873 3874 3875 3876
	int prxq;

	/* Get queue physical ID */
	prxq = port->rxqs[lrxq]->id;

3877 3878 3879 3880
	if (port->priv->hw_version == MVPP21)
		mask = MVPP21_RXQ_POOL_SHORT_MASK;
	else
		mask = MVPP22_RXQ_POOL_SHORT_MASK;
3881

3882 3883 3884
	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
	val &= ~mask;
	val |= (short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) & mask;
3885 3886 3887
	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
}

3888 3889
static void *mvpp2_buf_alloc(struct mvpp2_port *port,
			     struct mvpp2_bm_pool *bm_pool,
3890
			     dma_addr_t *buf_dma_addr,
3891
			     phys_addr_t *buf_phys_addr,
3892
			     gfp_t gfp_mask)
3893
{
3894
	dma_addr_t dma_addr;
3895
	void *data;
3896

3897 3898
	data = mvpp2_frag_alloc(bm_pool);
	if (!data)
3899 3900
		return NULL;

3901 3902 3903 3904
	dma_addr = dma_map_single(port->dev->dev.parent, data,
				  MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
				  DMA_FROM_DEVICE);
	if (unlikely(dma_mapping_error(port->dev->dev.parent, dma_addr))) {
3905
		mvpp2_frag_free(bm_pool, data);
3906 3907
		return NULL;
	}
3908
	*buf_dma_addr = dma_addr;
3909
	*buf_phys_addr = virt_to_phys(data);
3910

3911
	return data;
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
}

/* Set pool number in a BM cookie */
static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
{
	u32 bm;

	bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
	bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);

	return bm;
}

/* Get pool number from a BM cookie */
3926
static inline int mvpp2_bm_cookie_pool_get(unsigned long cookie)
3927 3928 3929 3930 3931 3932
{
	return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
}

/* Release buffer to BM */
static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
3933
				     dma_addr_t buf_dma_addr,
3934
				     phys_addr_t buf_phys_addr)
3935
{
3936 3937
	int cpu = smp_processor_id();

3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
	if (port->priv->hw_version == MVPP22) {
		u32 val = 0;

		if (sizeof(dma_addr_t) == 8)
			val |= upper_32_bits(buf_dma_addr) &
				MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;

		if (sizeof(phys_addr_t) == 8)
			val |= (upper_32_bits(buf_phys_addr)
				<< MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
				MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;

3950 3951
		mvpp2_percpu_write(port->priv, cpu,
				   MVPP22_BM_ADDR_HIGH_RLS_REG, val);
3952 3953
	}

3954 3955 3956 3957 3958
	/* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
	 * returned in the "cookie" field of the RX
	 * descriptor. Instead of storing the virtual address, we
	 * store the physical address
	 */
3959 3960 3961 3962
	mvpp2_percpu_write(port->priv, cpu,
			   MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
	mvpp2_percpu_write(port->priv, cpu,
			   MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
3963 3964 3965 3966
}

/* Refill BM pool */
static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
3967
			      dma_addr_t dma_addr,
3968
			      phys_addr_t phys_addr)
3969 3970 3971
{
	int pool = mvpp2_bm_cookie_pool_get(bm);

3972
	mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
3973 3974 3975 3976 3977 3978 3979
}

/* Allocate buffers for the pool */
static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
			     struct mvpp2_bm_pool *bm_pool, int buf_num)
{
	int i, buf_size, total_size;
3980
	dma_addr_t dma_addr;
3981
	phys_addr_t phys_addr;
3982
	void *buf;
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995

	buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
	total_size = MVPP2_RX_TOTAL_SIZE(buf_size);

	if (buf_num < 0 ||
	    (buf_num + bm_pool->buf_num > bm_pool->size)) {
		netdev_err(port->dev,
			   "cannot allocate %d buffers for pool %d\n",
			   buf_num, bm_pool->id);
		return 0;
	}

	for (i = 0; i < buf_num; i++) {
3996 3997
		buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr,
				      &phys_addr, GFP_KERNEL);
3998
		if (!buf)
3999 4000
			break;

4001
		mvpp2_bm_pool_put(port, bm_pool->id, dma_addr,
4002
				  phys_addr);
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
	}

	/* Update BM driver with number of buffers added to pool */
	bm_pool->buf_num += i;

	netdev_dbg(port->dev,
		   "%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
		   bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
		   bm_pool->id, bm_pool->pkt_size, buf_size, total_size);

	netdev_dbg(port->dev,
		   "%s pool %d: %d of %d buffers added\n",
		   bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
		   bm_pool->id, i, buf_num);
	return i;
}

/* Notify the driver that BM pool is being used as specific type and return the
 * pool pointer on success
 */
static struct mvpp2_bm_pool *
mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
		  int pkt_size)
{
	struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
	int num;

	if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
		netdev_err(port->dev, "mixing pool types is forbidden\n");
		return NULL;
	}

	if (new_pool->type == MVPP2_BM_FREE)
		new_pool->type = type;

	/* Allocate buffers in case BM pool is used as long pool, but packet
	 * size doesn't match MTU or BM pool hasn't being used yet
	 */
	if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
	    (new_pool->pkt_size == 0)) {
		int pkts_num;

		/* Set default buffer number or free all the buffers in case
		 * the pool is not empty
		 */
		pkts_num = new_pool->buf_num;
		if (pkts_num == 0)
			pkts_num = type == MVPP2_BM_SWF_LONG ?
				   MVPP2_BM_LONG_BUF_NUM :
				   MVPP2_BM_SHORT_BUF_NUM;
		else
4054 4055
			mvpp2_bm_bufs_free(port->dev->dev.parent,
					   port->priv, new_pool);
4056 4057

		new_pool->pkt_size = pkt_size;
4058 4059 4060
		new_pool->frag_size =
			SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) +
			MVPP2_SKB_SHINFO_SIZE;
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121

		/* Allocate buffers for this pool */
		num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
		if (num != pkts_num) {
			WARN(1, "pool %d: %d of %d allocated\n",
			     new_pool->id, num, pkts_num);
			return NULL;
		}
	}

	mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
				  MVPP2_RX_BUF_SIZE(new_pool->pkt_size));

	return new_pool;
}

/* Initialize pools for swf */
static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
{
	int rxq;

	if (!port->pool_long) {
		port->pool_long =
		       mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
					 MVPP2_BM_SWF_LONG,
					 port->pkt_size);
		if (!port->pool_long)
			return -ENOMEM;

		port->pool_long->port_map |= (1 << port->id);

		for (rxq = 0; rxq < rxq_number; rxq++)
			mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
	}

	if (!port->pool_short) {
		port->pool_short =
			mvpp2_bm_pool_use(port, MVPP2_BM_SWF_SHORT_POOL,
					  MVPP2_BM_SWF_SHORT,
					  MVPP2_BM_SHORT_PKT_SIZE);
		if (!port->pool_short)
			return -ENOMEM;

		port->pool_short->port_map |= (1 << port->id);

		for (rxq = 0; rxq < rxq_number; rxq++)
			mvpp2_rxq_short_pool_set(port, rxq,
						 port->pool_short->id);
	}

	return 0;
}

static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
{
	struct mvpp2_port *port = netdev_priv(dev);
	struct mvpp2_bm_pool *port_pool = port->pool_long;
	int num, pkts_num = port_pool->buf_num;
	int pkt_size = MVPP2_RX_PKT_SIZE(mtu);

	/* Update BM pool with new buffer size */
4122
	mvpp2_bm_bufs_free(dev->dev.parent, port->priv, port_pool);
4123
	if (port_pool->buf_num) {
4124 4125 4126 4127 4128
		WARN(1, "cannot free all buffers in pool %d\n", port_pool->id);
		return -EIO;
	}

	port_pool->pkt_size = pkt_size;
4129 4130
	port_pool->frag_size = SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) +
		MVPP2_SKB_SHINFO_SIZE;
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
	num = mvpp2_bm_bufs_add(port, port_pool, pkts_num);
	if (num != pkts_num) {
		WARN(1, "pool %d: %d of %d allocated\n",
		     port_pool->id, num, pkts_num);
		return -EIO;
	}

	mvpp2_bm_pool_bufsize_set(port->priv, port_pool,
				  MVPP2_RX_BUF_SIZE(port_pool->pkt_size));
	dev->mtu = mtu;
	netdev_update_features(dev);
	return 0;
}

static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
{
	int cpu, cpu_mask = 0;

	for_each_present_cpu(cpu)
		cpu_mask |= 1 << cpu;
	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
		    MVPP2_ISR_ENABLE_INTERRUPT(cpu_mask));
}

static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
{
	int cpu, cpu_mask = 0;

	for_each_present_cpu(cpu)
		cpu_mask |= 1 << cpu;
	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
		    MVPP2_ISR_DISABLE_INTERRUPT(cpu_mask));
}

/* Mask the current CPU's Rx/Tx interrupts */
static void mvpp2_interrupts_mask(void *arg)
{
	struct mvpp2_port *port = arg;

4170 4171
	mvpp2_percpu_write(port->priv, smp_processor_id(),
			   MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
4172 4173 4174 4175 4176 4177 4178
}

/* Unmask the current CPU's Rx/Tx interrupts */
static void mvpp2_interrupts_unmask(void *arg)
{
	struct mvpp2_port *port = arg;

4179 4180 4181 4182
	mvpp2_percpu_write(port->priv, smp_processor_id(),
			   MVPP2_ISR_RX_TX_MASK_REG(port->id),
			   (MVPP2_CAUSE_MISC_SUM_MASK |
			    MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK));
4183 4184 4185 4186
}

/* Port configuration routines */

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
static void mvpp22_port_mii_set(struct mvpp2_port *port)
{
	u32 val;

	return;

	/* Only GOP port 0 has an XLG MAC */
	if (port->gop_id == 0) {
		val = readl(port->base + MVPP22_XLG_CTRL3_REG);
		val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
		val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
		writel(val, port->base + MVPP22_XLG_CTRL3_REG);
	}

	val = readl(port->base + MVPP22_GMAC_CTRL_4_REG);
	if (port->phy_interface == PHY_INTERFACE_MODE_RGMII)
		val |= MVPP22_CTRL4_EXT_PIN_GMII_SEL;
	else
		val &= ~MVPP22_CTRL4_EXT_PIN_GMII_SEL;
	val &= ~MVPP22_CTRL4_DP_CLK_SEL;
	val |= MVPP22_CTRL4_SYNC_BYPASS;
	val |= MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE;
	writel(val, port->base + MVPP22_GMAC_CTRL_4_REG);
}

4212 4213
static void mvpp2_port_mii_set(struct mvpp2_port *port)
{
4214
	u32 val;
4215

4216 4217 4218
	if (port->priv->hw_version == MVPP22)
		mvpp22_port_mii_set(port);

4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);

	switch (port->phy_interface) {
	case PHY_INTERFACE_MODE_SGMII:
		val |= MVPP2_GMAC_INBAND_AN_MASK;
		break;
	case PHY_INTERFACE_MODE_RGMII:
		val |= MVPP2_GMAC_PORT_RGMII_MASK;
	default:
		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
	}

	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
}
4233

4234 4235 4236 4237 4238 4239 4240
static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
{
	u32 val;

	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
	val |= MVPP2_GMAC_FC_ADV_EN;
	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
}

static void mvpp2_port_enable(struct mvpp2_port *port)
{
	u32 val;

	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
	val |= MVPP2_GMAC_PORT_EN_MASK;
	val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
}

static void mvpp2_port_disable(struct mvpp2_port *port)
{
	u32 val;

	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
	val &= ~(MVPP2_GMAC_PORT_EN_MASK);
	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
}

/* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
{
	u32 val;

	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
		    ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
}

/* Configure loopback port */
static void mvpp2_port_loopback_set(struct mvpp2_port *port)
{
	u32 val;

	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);

	if (port->speed == 1000)
		val |= MVPP2_GMAC_GMII_LB_EN_MASK;
	else
		val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;

	if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
		val |= MVPP2_GMAC_PCS_LB_EN_MASK;
	else
		val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;

	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
}

static void mvpp2_port_reset(struct mvpp2_port *port)
{
	u32 val;

	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
		    ~MVPP2_GMAC_PORT_RESET_MASK;
	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);

	while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
	       MVPP2_GMAC_PORT_RESET_MASK)
		continue;
}

/* Change maximum receive size of the port */
static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
{
	u32 val;

	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
	val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
		    MVPP2_GMAC_MAX_RX_SIZE_OFFS);
	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
}

/* Set defaults to the MVPP2 port */
static void mvpp2_defaults_set(struct mvpp2_port *port)
{
	int tx_port_num, val, queue, ptxq, lrxq;

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
	if (port->priv->hw_version == MVPP21) {
		/* Configure port to loopback if needed */
		if (port->flags & MVPP2_F_LOOPBACK)
			mvpp2_port_loopback_set(port);

		/* Update TX FIFO MIN Threshold */
		val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
		val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
		/* Min. TX threshold must be less than minimal packet length */
		val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
		writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
	}
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520

	/* Disable Legacy WRR, Disable EJP, Release from reset */
	tx_port_num = mvpp2_egress_port(port);
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
		    tx_port_num);
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);

	/* Close bandwidth for all queues */
	for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
		ptxq = mvpp2_txq_phys(port->id, queue);
		mvpp2_write(port->priv,
			    MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
	}

	/* Set refill period to 1 usec, refill tokens
	 * and bucket size to maximum
	 */
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
		    port->priv->tclk / USEC_PER_SEC);
	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
	val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
	val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
	val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
	val = MVPP2_TXP_TOKEN_SIZE_MAX;
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);

	/* Set MaximumLowLatencyPacketSize value to 256 */
	mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
		    MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
		    MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));

	/* Enable Rx cache snoop */
	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
		queue = port->rxqs[lrxq]->id;
		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
		val |= MVPP2_SNOOP_PKT_SIZE_MASK |
			   MVPP2_SNOOP_BUF_HDR_MASK;
		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
	}

	/* At default, mask all interrupts to all present cpus */
	mvpp2_interrupts_disable(port);
}

/* Enable/disable receiving packets */
static void mvpp2_ingress_enable(struct mvpp2_port *port)
{
	u32 val;
	int lrxq, queue;

	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
		queue = port->rxqs[lrxq]->id;
		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
		val &= ~MVPP2_RXQ_DISABLE_MASK;
		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
	}
}

static void mvpp2_ingress_disable(struct mvpp2_port *port)
{
	u32 val;
	int lrxq, queue;

	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
		queue = port->rxqs[lrxq]->id;
		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
		val |= MVPP2_RXQ_DISABLE_MASK;
		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
	}
}

/* Enable transmit via physical egress queue
 * - HW starts take descriptors from DRAM
 */
static void mvpp2_egress_enable(struct mvpp2_port *port)
{
	u32 qmap;
	int queue;
	int tx_port_num = mvpp2_egress_port(port);

	/* Enable all initialized TXs. */
	qmap = 0;
	for (queue = 0; queue < txq_number; queue++) {
		struct mvpp2_tx_queue *txq = port->txqs[queue];

		if (txq->descs != NULL)
			qmap |= (1 << queue);
	}

	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
}

/* Disable transmit via physical egress queue
 * - HW doesn't take descriptors from DRAM
 */
static void mvpp2_egress_disable(struct mvpp2_port *port)
{
	u32 reg_data;
	int delay;
	int tx_port_num = mvpp2_egress_port(port);

	/* Issue stop command for active channels only */
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
	reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
		    MVPP2_TXP_SCHED_ENQ_MASK;
	if (reg_data != 0)
		mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
			    (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));

	/* Wait for all Tx activity to terminate. */
	delay = 0;
	do {
		if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
			netdev_warn(port->dev,
				    "Tx stop timed out, status=0x%08x\n",
				    reg_data);
			break;
		}
		mdelay(1);
		delay++;

		/* Check port TX Command register that all
		 * Tx queues are stopped
		 */
		reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
	} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
}

/* Rx descriptors helper methods */

/* Get number of Rx descriptors occupied by received packets */
static inline int
mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
{
	u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));

	return val & MVPP2_RXQ_OCCUPIED_MASK;
}

/* Update Rx queue status with the number of occupied and available
 * Rx descriptor slots.
 */
static inline void
mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
			int used_count, int free_count)
{
	/* Decrement the number of used descriptors and increment count
	 * increment the number of free descriptors.
	 */
	u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);

	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
}

/* Get pointer to next RX descriptor to be processed by SW */
static inline struct mvpp2_rx_desc *
mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
{
	int rx_desc = rxq->next_desc_to_proc;

	rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
	prefetch(rxq->descs + rxq->next_desc_to_proc);
	return rxq->descs + rx_desc;
}

/* Set rx queue offset */
static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
				 int prxq, int offset)
{
	u32 val;

	/* Convert offset from bytes to units of 32 bytes */
	offset = offset >> 5;

	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
	val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;

	/* Offset is in */
	val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
		    MVPP2_RXQ_PACKET_OFFSET_MASK);

	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
}

/* Obtain BM cookie information from descriptor */
4521 4522
static u32 mvpp2_bm_cookie_build(struct mvpp2_port *port,
				 struct mvpp2_rx_desc *rx_desc)
4523 4524
{
	int cpu = smp_processor_id();
4525 4526 4527 4528 4529
	int pool;

	pool = (mvpp2_rxdesc_status_get(port, rx_desc) &
		MVPP2_RXD_BM_POOL_ID_MASK) >>
		MVPP2_RXD_BM_POOL_ID_OFFS;
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550

	return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
	       ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
}

/* Tx descriptors helper methods */

/* Get pointer to next Tx descriptor to be processed (send) by HW */
static struct mvpp2_tx_desc *
mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
{
	int tx_desc = txq->next_desc_to_proc;

	txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
	return txq->descs + tx_desc;
}

/* Update HW with number of aggregated Tx descriptors to be sent */
static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
{
	/* aggregated access - relevant TXQ number is written in TX desc */
4551 4552
	mvpp2_percpu_write(port->priv, smp_processor_id(),
			   MVPP2_AGGR_TXQ_UPDATE_REG, pending);
4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
}


/* Check if there are enough free descriptors in aggregated txq.
 * If not, update the number of occupied descriptors and repeat the check.
 */
static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
				     struct mvpp2_tx_queue *aggr_txq, int num)
{
	if ((aggr_txq->count + num) > aggr_txq->size) {
		/* Update number of occupied aggregated Tx descriptors */
		int cpu = smp_processor_id();
		u32 val = mvpp2_read(priv, MVPP2_AGGR_TXQ_STATUS_REG(cpu));

		aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
	}

	if ((aggr_txq->count + num) > aggr_txq->size)
		return -ENOMEM;

	return 0;
}

/* Reserved Tx descriptors allocation request */
static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
					 struct mvpp2_tx_queue *txq, int num)
{
	u32 val;
4581
	int cpu = smp_processor_id();
4582 4583

	val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
4584
	mvpp2_percpu_write(priv, cpu, MVPP2_TXQ_RSVD_REQ_REG, val);
4585

4586
	val = mvpp2_percpu_read(priv, cpu, MVPP2_TXQ_RSVD_RSLT_REG);
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686

	return val & MVPP2_TXQ_RSVD_RSLT_MASK;
}

/* Check if there are enough reserved descriptors for transmission.
 * If not, request chunk of reserved descriptors and check again.
 */
static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
					    struct mvpp2_tx_queue *txq,
					    struct mvpp2_txq_pcpu *txq_pcpu,
					    int num)
{
	int req, cpu, desc_count;

	if (txq_pcpu->reserved_num >= num)
		return 0;

	/* Not enough descriptors reserved! Update the reserved descriptor
	 * count and check again.
	 */

	desc_count = 0;
	/* Compute total of used descriptors */
	for_each_present_cpu(cpu) {
		struct mvpp2_txq_pcpu *txq_pcpu_aux;

		txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
		desc_count += txq_pcpu_aux->count;
		desc_count += txq_pcpu_aux->reserved_num;
	}

	req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
	desc_count += req;

	if (desc_count >
	   (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
		return -ENOMEM;

	txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);

	/* OK, the descriptor cound has been updated: check again. */
	if (txq_pcpu->reserved_num < num)
		return -ENOMEM;
	return 0;
}

/* Release the last allocated Tx descriptor. Useful to handle DMA
 * mapping failures in the Tx path.
 */
static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
{
	if (txq->next_desc_to_proc == 0)
		txq->next_desc_to_proc = txq->last_desc - 1;
	else
		txq->next_desc_to_proc--;
}

/* Set Tx descriptors fields relevant for CSUM calculation */
static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
			       int ip_hdr_len, int l4_proto)
{
	u32 command;

	/* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
	 * G_L4_chk, L4_type required only for checksum calculation
	 */
	command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
	command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
	command |= MVPP2_TXD_IP_CSUM_DISABLE;

	if (l3_proto == swab16(ETH_P_IP)) {
		command &= ~MVPP2_TXD_IP_CSUM_DISABLE;	/* enable IPv4 csum */
		command &= ~MVPP2_TXD_L3_IP6;		/* enable IPv4 */
	} else {
		command |= MVPP2_TXD_L3_IP6;		/* enable IPv6 */
	}

	if (l4_proto == IPPROTO_TCP) {
		command &= ~MVPP2_TXD_L4_UDP;		/* enable TCP */
		command &= ~MVPP2_TXD_L4_CSUM_FRAG;	/* generate L4 csum */
	} else if (l4_proto == IPPROTO_UDP) {
		command |= MVPP2_TXD_L4_UDP;		/* enable UDP */
		command &= ~MVPP2_TXD_L4_CSUM_FRAG;	/* generate L4 csum */
	} else {
		command |= MVPP2_TXD_L4_CSUM_NOT;
	}

	return command;
}

/* Get number of sent descriptors and decrement counter.
 * The number of sent descriptors is returned.
 * Per-CPU access
 */
static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
					   struct mvpp2_tx_queue *txq)
{
	u32 val;

	/* Reading status reg resets transmitted descriptor counter */
4687 4688
	val = mvpp2_percpu_read(port->priv, smp_processor_id(),
				MVPP2_TXQ_SENT_REG(txq->id));
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701

	return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
		MVPP2_TRANSMITTED_COUNT_OFFSET;
}

static void mvpp2_txq_sent_counter_clear(void *arg)
{
	struct mvpp2_port *port = arg;
	int queue;

	for (queue = 0; queue < txq_number; queue++) {
		int id = port->txqs[queue]->id;

4702 4703
		mvpp2_percpu_read(port->priv, smp_processor_id(),
				  MVPP2_TXQ_SENT_REG(id));
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
	}
}

/* Set max sizes for Tx queues */
static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
{
	u32	val, size, mtu;
	int	txq, tx_port_num;

	mtu = port->pkt_size * 8;
	if (mtu > MVPP2_TXP_MTU_MAX)
		mtu = MVPP2_TXP_MTU_MAX;

	/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
	mtu = 3 * mtu;

	/* Indirect access to registers */
	tx_port_num = mvpp2_egress_port(port);
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);

	/* Set MTU */
	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
	val &= ~MVPP2_TXP_MTU_MAX;
	val |= mtu;
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);

	/* TXP token size and all TXQs token size must be larger that MTU */
	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
	size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
	if (size < mtu) {
		size = mtu;
		val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
		val |= size;
		mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
	}

	for (txq = 0; txq < txq_number; txq++) {
		val = mvpp2_read(port->priv,
				 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
		size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;

		if (size < mtu) {
			size = mtu;
			val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
			val |= size;
			mvpp2_write(port->priv,
				    MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
				    val);
		}
	}
}

/* Set the number of packets that will be received before Rx interrupt
 * will be generated by HW.
 */
static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
4760
				   struct mvpp2_rx_queue *rxq)
4761
{
4762 4763
	int cpu = smp_processor_id();

4764 4765
	if (rxq->pkts_coal > MVPP2_OCCUPIED_THRESH_MASK)
		rxq->pkts_coal = MVPP2_OCCUPIED_THRESH_MASK;
4766

4767 4768 4769
	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_THRESH_REG,
			   rxq->pkts_coal);
4770 4771
}

4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
static u32 mvpp2_usec_to_cycles(u32 usec, unsigned long clk_hz)
{
	u64 tmp = (u64)clk_hz * usec;

	do_div(tmp, USEC_PER_SEC);

	return tmp > U32_MAX ? U32_MAX : tmp;
}

static u32 mvpp2_cycles_to_usec(u32 cycles, unsigned long clk_hz)
{
	u64 tmp = (u64)cycles * USEC_PER_SEC;

	do_div(tmp, clk_hz);

	return tmp > U32_MAX ? U32_MAX : tmp;
}

4790 4791
/* Set the time delay in usec before Rx interrupt */
static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
4792
				   struct mvpp2_rx_queue *rxq)
4793
{
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803
	unsigned long freq = port->priv->tclk;
	u32 val = mvpp2_usec_to_cycles(rxq->time_coal, freq);

	if (val > MVPP2_MAX_ISR_RX_THRESHOLD) {
		rxq->time_coal =
			mvpp2_cycles_to_usec(MVPP2_MAX_ISR_RX_THRESHOLD, freq);

		/* re-evaluate to get actual register value */
		val = mvpp2_usec_to_cycles(rxq->time_coal, freq);
	}
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815

	mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
}

/* Free Tx queue skbuffs */
static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
				struct mvpp2_tx_queue *txq,
				struct mvpp2_txq_pcpu *txq_pcpu, int num)
{
	int i;

	for (i = 0; i < num; i++) {
4816 4817
		struct mvpp2_txq_pcpu_buf *tx_buf =
			txq_pcpu->buffs + txq_pcpu->txq_get_index;
4818

4819
		dma_unmap_single(port->dev->dev.parent, tx_buf->dma,
4820
				 tx_buf->size, DMA_TO_DEVICE);
4821 4822 4823 4824
		if (tx_buf->skb)
			dev_kfree_skb_any(tx_buf->skb);

		mvpp2_txq_inc_get(txq_pcpu);
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
	}
}

static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
							u32 cause)
{
	int queue = fls(cause) - 1;

	return port->rxqs[queue];
}

static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
							u32 cause)
{
4839
	int queue = fls(cause) - 1;
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865

	return port->txqs[queue];
}

/* Handle end of transmission */
static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
			   struct mvpp2_txq_pcpu *txq_pcpu)
{
	struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
	int tx_done;

	if (txq_pcpu->cpu != smp_processor_id())
		netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");

	tx_done = mvpp2_txq_sent_desc_proc(port, txq);
	if (!tx_done)
		return;
	mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);

	txq_pcpu->count -= tx_done;

	if (netif_tx_queue_stopped(nq))
		if (txq_pcpu->size - txq_pcpu->count >= MAX_SKB_FRAGS + 1)
			netif_tx_wake_queue(nq);
}

4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause)
{
	struct mvpp2_tx_queue *txq;
	struct mvpp2_txq_pcpu *txq_pcpu;
	unsigned int tx_todo = 0;

	while (cause) {
		txq = mvpp2_get_tx_queue(port, cause);
		if (!txq)
			break;

		txq_pcpu = this_cpu_ptr(txq->pcpu);

		if (txq_pcpu->count) {
			mvpp2_txq_done(port, txq, txq_pcpu);
			tx_todo += txq_pcpu->count;
		}

		cause &= ~(1 << txq->log_id);
	}
	return tx_todo;
}

4889 4890 4891 4892 4893 4894 4895 4896
/* Rx/Tx queue initialization/cleanup methods */

/* Allocate and initialize descriptors for aggr TXQ */
static int mvpp2_aggr_txq_init(struct platform_device *pdev,
			       struct mvpp2_tx_queue *aggr_txq,
			       int desc_num, int cpu,
			       struct mvpp2 *priv)
{
4897 4898
	u32 txq_dma;

4899 4900 4901
	/* Allocate memory for TX descriptors */
	aggr_txq->descs = dma_alloc_coherent(&pdev->dev,
				desc_num * MVPP2_DESC_ALIGNED_SIZE,
4902
				&aggr_txq->descs_dma, GFP_KERNEL);
4903 4904 4905 4906 4907 4908 4909 4910 4911
	if (!aggr_txq->descs)
		return -ENOMEM;

	aggr_txq->last_desc = aggr_txq->size - 1;

	/* Aggr TXQ no reset WA */
	aggr_txq->next_desc_to_proc = mvpp2_read(priv,
						 MVPP2_AGGR_TXQ_INDEX_REG(cpu));

4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
	/* Set Tx descriptors queue starting address indirect
	 * access
	 */
	if (priv->hw_version == MVPP21)
		txq_dma = aggr_txq->descs_dma;
	else
		txq_dma = aggr_txq->descs_dma >>
			MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;

	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);

	return 0;
}

/* Create a specified Rx queue */
static int mvpp2_rxq_init(struct mvpp2_port *port,
			  struct mvpp2_rx_queue *rxq)

{
4932
	u32 rxq_dma;
4933
	int cpu;
4934

4935 4936 4937 4938 4939
	rxq->size = port->rx_ring_size;

	/* Allocate memory for RX descriptors */
	rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
					rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4940
					&rxq->descs_dma, GFP_KERNEL);
4941 4942 4943 4944 4945 4946 4947 4948 4949
	if (!rxq->descs)
		return -ENOMEM;

	rxq->last_desc = rxq->size - 1;

	/* Zero occupied and non-occupied counters - direct access */
	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);

	/* Set Rx descriptors queue starting address - indirect access */
4950 4951
	cpu = smp_processor_id();
	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
4952 4953 4954 4955
	if (port->priv->hw_version == MVPP21)
		rxq_dma = rxq->descs_dma;
	else
		rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
4956 4957 4958
	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_INDEX_REG, 0);
4959 4960 4961 4962 4963

	/* Set Offset */
	mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);

	/* Set coalescing pkts and time */
4964 4965
	mvpp2_rx_pkts_coal_set(port, rxq);
	mvpp2_rx_time_coal_set(port, rxq);
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984

	/* Add number of descriptors ready for receiving packets */
	mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);

	return 0;
}

/* Push packets received by the RXQ to BM pool */
static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
				struct mvpp2_rx_queue *rxq)
{
	int rx_received, i;

	rx_received = mvpp2_rxq_received(port, rxq->id);
	if (!rx_received)
		return;

	for (i = 0; i < rx_received; i++) {
		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4985
		u32 bm = mvpp2_bm_cookie_build(port, rx_desc);
4986

4987 4988 4989
		mvpp2_pool_refill(port, bm,
				  mvpp2_rxdesc_dma_addr_get(port, rx_desc),
				  mvpp2_rxdesc_cookie_get(port, rx_desc));
4990 4991 4992 4993 4994 4995 4996 4997
	}
	mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
}

/* Cleanup Rx queue */
static void mvpp2_rxq_deinit(struct mvpp2_port *port,
			     struct mvpp2_rx_queue *rxq)
{
4998 4999
	int cpu;

5000 5001 5002 5003 5004 5005
	mvpp2_rxq_drop_pkts(port, rxq);

	if (rxq->descs)
		dma_free_coherent(port->dev->dev.parent,
				  rxq->size * MVPP2_DESC_ALIGNED_SIZE,
				  rxq->descs,
5006
				  rxq->descs_dma);
5007 5008 5009 5010

	rxq->descs             = NULL;
	rxq->last_desc         = 0;
	rxq->next_desc_to_proc = 0;
5011
	rxq->descs_dma         = 0;
5012 5013 5014 5015 5016

	/* Clear Rx descriptors queue starting address and size;
	 * free descriptor number
	 */
	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
5017 5018 5019 5020
	cpu = smp_processor_id();
	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, 0);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, 0);
5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
}

/* Create and initialize a Tx queue */
static int mvpp2_txq_init(struct mvpp2_port *port,
			  struct mvpp2_tx_queue *txq)
{
	u32 val;
	int cpu, desc, desc_per_txq, tx_port_num;
	struct mvpp2_txq_pcpu *txq_pcpu;

	txq->size = port->tx_ring_size;

	/* Allocate memory for Tx descriptors */
	txq->descs = dma_alloc_coherent(port->dev->dev.parent,
				txq->size * MVPP2_DESC_ALIGNED_SIZE,
5036
				&txq->descs_dma, GFP_KERNEL);
5037 5038 5039 5040 5041 5042
	if (!txq->descs)
		return -ENOMEM;

	txq->last_desc = txq->size - 1;

	/* Set Tx descriptors queue starting address - indirect access */
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
	cpu = smp_processor_id();
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG,
			   txq->descs_dma);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG,
			   txq->size & MVPP2_TXQ_DESC_SIZE_MASK);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_INDEX_REG, 0);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_RSVD_CLR_REG,
			   txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
	val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PENDING_REG);
5053
	val &= ~MVPP2_TXQ_PENDING_MASK;
5054
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PENDING_REG, val);
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064

	/* Calculate base address in prefetch buffer. We reserve 16 descriptors
	 * for each existing TXQ.
	 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
	 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
	 */
	desc_per_txq = 16;
	desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
	       (txq->log_id * desc_per_txq);

5065 5066 5067
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG,
			   MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
			   MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085

	/* WRR / EJP configuration - indirect access */
	tx_port_num = mvpp2_egress_port(port);
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);

	val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
	val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
	val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
	val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);

	val = MVPP2_TXQ_TOKEN_SIZE_MAX;
	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
		    val);

	for_each_present_cpu(cpu) {
		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
		txq_pcpu->size = txq->size;
5086 5087 5088
		txq_pcpu->buffs = kmalloc_array(txq_pcpu->size,
						sizeof(*txq_pcpu->buffs),
						GFP_KERNEL);
5089
		if (!txq_pcpu->buffs)
5090
			goto error;
5091 5092 5093 5094 5095 5096 5097 5098

		txq_pcpu->count = 0;
		txq_pcpu->reserved_num = 0;
		txq_pcpu->txq_put_index = 0;
		txq_pcpu->txq_get_index = 0;
	}

	return 0;
5099 5100 5101 5102

error:
	for_each_present_cpu(cpu) {
		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
5103
		kfree(txq_pcpu->buffs);
5104 5105 5106 5107
	}

	dma_free_coherent(port->dev->dev.parent,
			  txq->size * MVPP2_DESC_ALIGNED_SIZE,
5108
			  txq->descs, txq->descs_dma);
5109 5110

	return -ENOMEM;
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
}

/* Free allocated TXQ resources */
static void mvpp2_txq_deinit(struct mvpp2_port *port,
			     struct mvpp2_tx_queue *txq)
{
	struct mvpp2_txq_pcpu *txq_pcpu;
	int cpu;

	for_each_present_cpu(cpu) {
		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
5122
		kfree(txq_pcpu->buffs);
5123 5124 5125 5126 5127
	}

	if (txq->descs)
		dma_free_coherent(port->dev->dev.parent,
				  txq->size * MVPP2_DESC_ALIGNED_SIZE,
5128
				  txq->descs, txq->descs_dma);
5129 5130 5131 5132

	txq->descs             = NULL;
	txq->last_desc         = 0;
	txq->next_desc_to_proc = 0;
5133
	txq->descs_dma         = 0;
5134 5135 5136 5137 5138

	/* Set minimum bandwidth for disabled TXQs */
	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);

	/* Set Tx descriptors queue starting address and size */
5139 5140 5141 5142
	cpu = smp_processor_id();
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG, 0);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG, 0);
5143 5144 5145 5146 5147 5148 5149 5150 5151
}

/* Cleanup Tx ports */
static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
{
	struct mvpp2_txq_pcpu *txq_pcpu;
	int delay, pending, cpu;
	u32 val;

5152 5153 5154
	cpu = smp_processor_id();
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
	val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG);
5155
	val |= MVPP2_TXQ_DRAIN_EN_MASK;
5156
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val);
5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171

	/* The napi queue has been stopped so wait for all packets
	 * to be transmitted.
	 */
	delay = 0;
	do {
		if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
			netdev_warn(port->dev,
				    "port %d: cleaning queue %d timed out\n",
				    port->id, txq->log_id);
			break;
		}
		mdelay(1);
		delay++;

5172 5173 5174
		pending = mvpp2_percpu_read(port->priv, cpu,
					    MVPP2_TXQ_PENDING_REG);
		pending &= MVPP2_TXQ_PENDING_MASK;
5175 5176 5177
	} while (pending);

	val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
5178
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val);
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280

	for_each_present_cpu(cpu) {
		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);

		/* Release all packets */
		mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);

		/* Reset queue */
		txq_pcpu->count = 0;
		txq_pcpu->txq_put_index = 0;
		txq_pcpu->txq_get_index = 0;
	}
}

/* Cleanup all Tx queues */
static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
{
	struct mvpp2_tx_queue *txq;
	int queue;
	u32 val;

	val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);

	/* Reset Tx ports and delete Tx queues */
	val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);

	for (queue = 0; queue < txq_number; queue++) {
		txq = port->txqs[queue];
		mvpp2_txq_clean(port, txq);
		mvpp2_txq_deinit(port, txq);
	}

	on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);

	val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
}

/* Cleanup all Rx queues */
static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
{
	int queue;

	for (queue = 0; queue < rxq_number; queue++)
		mvpp2_rxq_deinit(port, port->rxqs[queue]);
}

/* Init all Rx queues for port */
static int mvpp2_setup_rxqs(struct mvpp2_port *port)
{
	int queue, err;

	for (queue = 0; queue < rxq_number; queue++) {
		err = mvpp2_rxq_init(port, port->rxqs[queue]);
		if (err)
			goto err_cleanup;
	}
	return 0;

err_cleanup:
	mvpp2_cleanup_rxqs(port);
	return err;
}

/* Init all tx queues for port */
static int mvpp2_setup_txqs(struct mvpp2_port *port)
{
	struct mvpp2_tx_queue *txq;
	int queue, err;

	for (queue = 0; queue < txq_number; queue++) {
		txq = port->txqs[queue];
		err = mvpp2_txq_init(port, txq);
		if (err)
			goto err_cleanup;
	}

	on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
	return 0;

err_cleanup:
	mvpp2_cleanup_txqs(port);
	return err;
}

/* The callback for per-port interrupt */
static irqreturn_t mvpp2_isr(int irq, void *dev_id)
{
	struct mvpp2_port *port = (struct mvpp2_port *)dev_id;

	mvpp2_interrupts_disable(port);

	napi_schedule(&port->napi);

	return IRQ_HANDLED;
}

/* Adjust link */
static void mvpp2_link_event(struct net_device *dev)
{
	struct mvpp2_port *port = netdev_priv(dev);
5281
	struct phy_device *phydev = dev->phydev;
5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
	int status_change = 0;
	u32 val;

	if (phydev->link) {
		if ((port->speed != phydev->speed) ||
		    (port->duplex != phydev->duplex)) {
			u32 val;

			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
			val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
				 MVPP2_GMAC_CONFIG_GMII_SPEED |
				 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
				 MVPP2_GMAC_AN_SPEED_EN |
				 MVPP2_GMAC_AN_DUPLEX_EN);

			if (phydev->duplex)
				val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;

			if (phydev->speed == SPEED_1000)
				val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
5302
			else if (phydev->speed == SPEED_100)
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
				val |= MVPP2_GMAC_CONFIG_MII_SPEED;

			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);

			port->duplex = phydev->duplex;
			port->speed  = phydev->speed;
		}
	}

	if (phydev->link != port->link) {
		if (!phydev->link) {
			port->duplex = -1;
			port->speed = 0;
		}

		port->link = phydev->link;
		status_change = 1;
	}

	if (status_change) {
		if (phydev->link) {
			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
			val |= (MVPP2_GMAC_FORCE_LINK_PASS |
				MVPP2_GMAC_FORCE_LINK_DOWN);
			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
			mvpp2_egress_enable(port);
			mvpp2_ingress_enable(port);
		} else {
			mvpp2_ingress_disable(port);
			mvpp2_egress_disable(port);
		}
		phy_print_status(phydev);
	}
}

5338 5339 5340 5341 5342 5343
static void mvpp2_timer_set(struct mvpp2_port_pcpu *port_pcpu)
{
	ktime_t interval;

	if (!port_pcpu->timer_scheduled) {
		port_pcpu->timer_scheduled = true;
T
Thomas Gleixner 已提交
5344
		interval = MVPP2_TXDONE_HRTIMER_PERIOD_NS;
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
		hrtimer_start(&port_pcpu->tx_done_timer, interval,
			      HRTIMER_MODE_REL_PINNED);
	}
}

static void mvpp2_tx_proc_cb(unsigned long data)
{
	struct net_device *dev = (struct net_device *)data;
	struct mvpp2_port *port = netdev_priv(dev);
	struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
	unsigned int tx_todo, cause;

	if (!netif_running(dev))
		return;
	port_pcpu->timer_scheduled = false;

	/* Process all the Tx queues */
	cause = (1 << txq_number) - 1;
	tx_todo = mvpp2_tx_done(port, cause);

	/* Set the timer in case not all the packets were processed */
	if (tx_todo)
		mvpp2_timer_set(port_pcpu);
}

static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer)
{
	struct mvpp2_port_pcpu *port_pcpu = container_of(timer,
							 struct mvpp2_port_pcpu,
							 tx_done_timer);

	tasklet_schedule(&port_pcpu->tx_done_tasklet);

	return HRTIMER_NORESTART;
}

5381 5382 5383 5384 5385 5386
/* Main RX/TX processing routines */

/* Display more error info */
static void mvpp2_rx_error(struct mvpp2_port *port,
			   struct mvpp2_rx_desc *rx_desc)
{
5387 5388
	u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
	size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
5389 5390 5391

	switch (status & MVPP2_RXD_ERR_CODE_MASK) {
	case MVPP2_RXD_ERR_CRC:
5392 5393
		netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n",
			   status, sz);
5394 5395
		break;
	case MVPP2_RXD_ERR_OVERRUN:
5396 5397
		netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n",
			   status, sz);
5398 5399
		break;
	case MVPP2_RXD_ERR_RESOURCE:
5400 5401
		netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n",
			   status, sz);
5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
		break;
	}
}

/* Handle RX checksum offload */
static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
			  struct sk_buff *skb)
{
	if (((status & MVPP2_RXD_L3_IP4) &&
	     !(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
	    (status & MVPP2_RXD_L3_IP6))
		if (((status & MVPP2_RXD_L4_UDP) ||
		     (status & MVPP2_RXD_L4_TCP)) &&
		     (status & MVPP2_RXD_L4_CSUM_OK)) {
			skb->csum = 0;
			skb->ip_summed = CHECKSUM_UNNECESSARY;
			return;
		}

	skb->ip_summed = CHECKSUM_NONE;
}

/* Reuse skb if possible, or allocate a new skb and add it to BM pool */
static int mvpp2_rx_refill(struct mvpp2_port *port,
5426
			   struct mvpp2_bm_pool *bm_pool, u32 bm)
5427
{
5428
	dma_addr_t dma_addr;
5429
	phys_addr_t phys_addr;
5430
	void *buf;
5431 5432

	/* No recycle or too many buffers are in use, so allocate a new skb */
5433 5434
	buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr, &phys_addr,
			      GFP_ATOMIC);
5435
	if (!buf)
5436 5437
		return -ENOMEM;

5438
	mvpp2_pool_refill(port, bm, dma_addr, phys_addr);
5439

5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
	return 0;
}

/* Handle tx checksum */
static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		int ip_hdr_len = 0;
		u8 l4_proto;

		if (skb->protocol == htons(ETH_P_IP)) {
			struct iphdr *ip4h = ip_hdr(skb);

			/* Calculate IPv4 checksum and L4 checksum */
			ip_hdr_len = ip4h->ihl;
			l4_proto = ip4h->protocol;
		} else if (skb->protocol == htons(ETH_P_IPV6)) {
			struct ipv6hdr *ip6h = ipv6_hdr(skb);

			/* Read l4_protocol from one of IPv6 extra headers */
			if (skb_network_header_len(skb) > 0)
				ip_hdr_len = (skb_network_header_len(skb) >> 2);
			l4_proto = ip6h->nexthdr;
		} else {
			return MVPP2_TXD_L4_CSUM_NOT;
		}

		return mvpp2_txq_desc_csum(skb_network_offset(skb),
				skb->protocol, ip_hdr_len, l4_proto);
	}

	return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
}

/* Main rx processing */
static int mvpp2_rx(struct mvpp2_port *port, int rx_todo,
		    struct mvpp2_rx_queue *rxq)
{
	struct net_device *dev = port->dev;
5479 5480
	int rx_received;
	int rx_done = 0;
5481 5482 5483 5484 5485 5486 5487 5488
	u32 rcvd_pkts = 0;
	u32 rcvd_bytes = 0;

	/* Get number of received packets and clamp the to-do */
	rx_received = mvpp2_rxq_received(port, rxq->id);
	if (rx_todo > rx_received)
		rx_todo = rx_received;

5489
	while (rx_done < rx_todo) {
5490 5491 5492
		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
		struct mvpp2_bm_pool *bm_pool;
		struct sk_buff *skb;
5493
		unsigned int frag_size;
5494
		dma_addr_t dma_addr;
5495
		phys_addr_t phys_addr;
5496 5497
		u32 bm, rx_status;
		int pool, rx_bytes, err;
5498
		void *data;
5499

5500
		rx_done++;
5501 5502 5503 5504 5505 5506 5507 5508
		rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
		rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
		rx_bytes -= MVPP2_MH_SIZE;
		dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
		phys_addr = mvpp2_rxdesc_cookie_get(port, rx_desc);
		data = (void *)phys_to_virt(phys_addr);

		bm = mvpp2_bm_cookie_build(port, rx_desc);
5509 5510 5511 5512 5513 5514 5515 5516 5517
		pool = mvpp2_bm_cookie_pool_get(bm);
		bm_pool = &port->priv->bm_pools[pool];

		/* In case of an error, release the requested buffer pointer
		 * to the Buffer Manager. This request process is controlled
		 * by the hardware, and the information about the buffer is
		 * comprised by the RX descriptor.
		 */
		if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5518
		err_drop_frame:
5519 5520
			dev->stats.rx_errors++;
			mvpp2_rx_error(port, rx_desc);
5521
			/* Return the buffer to the pool */
5522
			mvpp2_pool_refill(port, bm, dma_addr, phys_addr);
5523 5524 5525
			continue;
		}

5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
		if (bm_pool->frag_size > PAGE_SIZE)
			frag_size = 0;
		else
			frag_size = bm_pool->frag_size;

		skb = build_skb(data, frag_size);
		if (!skb) {
			netdev_warn(port->dev, "skb build failed\n");
			goto err_drop_frame;
		}
5536

5537
		err = mvpp2_rx_refill(port, bm_pool, bm);
5538 5539 5540 5541 5542
		if (err) {
			netdev_err(port->dev, "failed to refill BM pools\n");
			goto err_drop_frame;
		}

5543
		dma_unmap_single(dev->dev.parent, dma_addr,
5544 5545
				 bm_pool->buf_size, DMA_FROM_DEVICE);

5546 5547 5548
		rcvd_pkts++;
		rcvd_bytes += rx_bytes;

5549
		skb_reserve(skb, MVPP2_MH_SIZE + NET_SKB_PAD);
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
		skb_put(skb, rx_bytes);
		skb->protocol = eth_type_trans(skb, dev);
		mvpp2_rx_csum(port, rx_status, skb);

		napi_gro_receive(&port->napi, skb);
	}

	if (rcvd_pkts) {
		struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);

		u64_stats_update_begin(&stats->syncp);
		stats->rx_packets += rcvd_pkts;
		stats->rx_bytes   += rcvd_bytes;
		u64_stats_update_end(&stats->syncp);
	}

	/* Update Rx queue management counters */
	wmb();
5568
	mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done);
5569 5570 5571 5572 5573

	return rx_todo;
}

static inline void
5574
tx_desc_unmap_put(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
5575 5576
		  struct mvpp2_tx_desc *desc)
{
5577 5578 5579 5580 5581 5582
	dma_addr_t buf_dma_addr =
		mvpp2_txdesc_dma_addr_get(port, desc);
	size_t buf_sz =
		mvpp2_txdesc_size_get(port, desc);
	dma_unmap_single(port->dev->dev.parent, buf_dma_addr,
			 buf_sz, DMA_TO_DEVICE);
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
	mvpp2_txq_desc_put(txq);
}

/* Handle tx fragmentation processing */
static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
				 struct mvpp2_tx_queue *aggr_txq,
				 struct mvpp2_tx_queue *txq)
{
	struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
	struct mvpp2_tx_desc *tx_desc;
	int i;
5594
	dma_addr_t buf_dma_addr;
5595 5596 5597 5598 5599 5600

	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		void *addr = page_address(frag->page.p) + frag->page_offset;

		tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5601 5602
		mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
		mvpp2_txdesc_size_set(port, tx_desc, frag->size);
5603

5604
		buf_dma_addr = dma_map_single(port->dev->dev.parent, addr,
5605 5606
					       frag->size,
					       DMA_TO_DEVICE);
5607
		if (dma_mapping_error(port->dev->dev.parent, buf_dma_addr)) {
5608 5609 5610 5611
			mvpp2_txq_desc_put(txq);
			goto error;
		}

5612 5613 5614 5615
		mvpp2_txdesc_offset_set(port, tx_desc,
					buf_dma_addr & MVPP2_TX_DESC_ALIGN);
		mvpp2_txdesc_dma_addr_set(port, tx_desc,
					  buf_dma_addr & ~MVPP2_TX_DESC_ALIGN);
5616 5617 5618

		if (i == (skb_shinfo(skb)->nr_frags - 1)) {
			/* Last descriptor */
5619 5620 5621
			mvpp2_txdesc_cmd_set(port, tx_desc,
					     MVPP2_TXD_L_DESC);
			mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
5622 5623
		} else {
			/* Descriptor in the middle: Not First, Not Last */
5624 5625
			mvpp2_txdesc_cmd_set(port, tx_desc, 0);
			mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
		}
	}

	return 0;

error:
	/* Release all descriptors that were used to map fragments of
	 * this packet, as well as the corresponding DMA mappings
	 */
	for (i = i - 1; i >= 0; i--) {
		tx_desc = txq->descs + i;
5637
		tx_desc_unmap_put(port, txq, tx_desc);
5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649
	}

	return -ENOMEM;
}

/* Main tx processing */
static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct mvpp2_port *port = netdev_priv(dev);
	struct mvpp2_tx_queue *txq, *aggr_txq;
	struct mvpp2_txq_pcpu *txq_pcpu;
	struct mvpp2_tx_desc *tx_desc;
5650
	dma_addr_t buf_dma_addr;
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
	int frags = 0;
	u16 txq_id;
	u32 tx_cmd;

	txq_id = skb_get_queue_mapping(skb);
	txq = port->txqs[txq_id];
	txq_pcpu = this_cpu_ptr(txq->pcpu);
	aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];

	frags = skb_shinfo(skb)->nr_frags + 1;

	/* Check number of available descriptors */
	if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
	    mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
					     txq_pcpu, frags)) {
		frags = 0;
		goto out;
	}

	/* Get a descriptor for the first part of the packet */
	tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5672 5673
	mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
	mvpp2_txdesc_size_set(port, tx_desc, skb_headlen(skb));
5674

5675
	buf_dma_addr = dma_map_single(dev->dev.parent, skb->data,
5676
				      skb_headlen(skb), DMA_TO_DEVICE);
5677
	if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) {
5678 5679 5680 5681
		mvpp2_txq_desc_put(txq);
		frags = 0;
		goto out;
	}
5682 5683 5684 5685 5686

	mvpp2_txdesc_offset_set(port, tx_desc,
				buf_dma_addr & MVPP2_TX_DESC_ALIGN);
	mvpp2_txdesc_dma_addr_set(port, tx_desc,
				  buf_dma_addr & ~MVPP2_TX_DESC_ALIGN);
5687 5688 5689 5690 5691 5692

	tx_cmd = mvpp2_skb_tx_csum(port, skb);

	if (frags == 1) {
		/* First and Last descriptor */
		tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
5693 5694
		mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
		mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
5695 5696 5697
	} else {
		/* First but not Last */
		tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
5698 5699
		mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
		mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
5700 5701 5702

		/* Continue with other skb fragments */
		if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
5703
			tx_desc_unmap_put(port, txq, tx_desc);
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734
			frags = 0;
			goto out;
		}
	}

	txq_pcpu->reserved_num -= frags;
	txq_pcpu->count += frags;
	aggr_txq->count += frags;

	/* Enable transmit */
	wmb();
	mvpp2_aggr_txq_pend_desc_add(port, frags);

	if (txq_pcpu->size - txq_pcpu->count < MAX_SKB_FRAGS + 1) {
		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);

		netif_tx_stop_queue(nq);
	}
out:
	if (frags > 0) {
		struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);

		u64_stats_update_begin(&stats->syncp);
		stats->tx_packets++;
		stats->tx_bytes += skb->len;
		u64_stats_update_end(&stats->syncp);
	} else {
		dev->stats.tx_dropped++;
		dev_kfree_skb_any(skb);
	}

5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
	/* Finalize TX processing */
	if (txq_pcpu->count >= txq->done_pkts_coal)
		mvpp2_txq_done(port, txq, txq_pcpu);

	/* Set the timer in case not all frags were processed */
	if (txq_pcpu->count <= frags && txq_pcpu->count > 0) {
		struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);

		mvpp2_timer_set(port_pcpu);
	}

5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758
	return NETDEV_TX_OK;
}

static inline void mvpp2_cause_error(struct net_device *dev, int cause)
{
	if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
		netdev_err(dev, "FCS error\n");
	if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
		netdev_err(dev, "rx fifo overrun error\n");
	if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
		netdev_err(dev, "tx fifo underrun error\n");
}

5759
static int mvpp2_poll(struct napi_struct *napi, int budget)
5760
{
5761 5762 5763
	u32 cause_rx_tx, cause_rx, cause_misc;
	int rx_done = 0;
	struct mvpp2_port *port = netdev_priv(napi->dev);
5764
	int cpu = smp_processor_id();
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775

	/* Rx/Tx cause register
	 *
	 * Bits 0-15: each bit indicates received packets on the Rx queue
	 * (bit 0 is for Rx queue 0).
	 *
	 * Bits 16-23: each bit indicates transmitted packets on the Tx queue
	 * (bit 16 is for Tx queue 0).
	 *
	 * Each CPU has its own Rx/Tx cause register
	 */
5776 5777
	cause_rx_tx = mvpp2_percpu_read(port->priv, cpu,
					MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
5778
	cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
5779 5780 5781 5782 5783 5784 5785
	cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;

	if (cause_misc) {
		mvpp2_cause_error(port->dev, cause_misc);

		/* Clear the cause register */
		mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
5786 5787 5788
		mvpp2_percpu_write(port->priv, cpu,
				   MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
				   cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816
	}

	cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;

	/* Process RX packets */
	cause_rx |= port->pending_cause_rx;
	while (cause_rx && budget > 0) {
		int count;
		struct mvpp2_rx_queue *rxq;

		rxq = mvpp2_get_rx_queue(port, cause_rx);
		if (!rxq)
			break;

		count = mvpp2_rx(port, budget, rxq);
		rx_done += count;
		budget -= count;
		if (budget > 0) {
			/* Clear the bit associated to this Rx queue
			 * so that next iteration will continue from
			 * the next Rx queue.
			 */
			cause_rx &= ~(1 << rxq->logic_rxq);
		}
	}

	if (budget > 0) {
		cause_rx = 0;
5817
		napi_complete_done(napi, rx_done);
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827

		mvpp2_interrupts_enable(port);
	}
	port->pending_cause_rx = cause_rx;
	return rx_done;
}

/* Set hw internals when starting port */
static void mvpp2_start_dev(struct mvpp2_port *port)
{
5828 5829
	struct net_device *ndev = port->dev;

5830 5831 5832 5833 5834 5835 5836 5837 5838
	mvpp2_gmac_max_rx_size_set(port);
	mvpp2_txp_max_tx_size_set(port);

	napi_enable(&port->napi);

	/* Enable interrupts on all CPUs */
	mvpp2_interrupts_enable(port);

	mvpp2_port_enable(port);
5839
	phy_start(ndev->phydev);
5840 5841 5842 5843 5844 5845
	netif_tx_start_all_queues(port->dev);
}

/* Set hw internals when stopping port */
static void mvpp2_stop_dev(struct mvpp2_port *port)
{
5846 5847
	struct net_device *ndev = port->dev;

5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
	/* Stop new packets from arriving to RXQs */
	mvpp2_ingress_disable(port);

	mdelay(10);

	/* Disable interrupts on all CPUs */
	mvpp2_interrupts_disable(port);

	napi_disable(&port->napi);

	netif_carrier_off(port->dev);
	netif_tx_stop_all_queues(port->dev);

	mvpp2_egress_disable(port);
	mvpp2_port_disable(port);
5863
	phy_stop(ndev->phydev);
5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899
}

static int mvpp2_check_ringparam_valid(struct net_device *dev,
				       struct ethtool_ringparam *ring)
{
	u16 new_rx_pending = ring->rx_pending;
	u16 new_tx_pending = ring->tx_pending;

	if (ring->rx_pending == 0 || ring->tx_pending == 0)
		return -EINVAL;

	if (ring->rx_pending > MVPP2_MAX_RXD)
		new_rx_pending = MVPP2_MAX_RXD;
	else if (!IS_ALIGNED(ring->rx_pending, 16))
		new_rx_pending = ALIGN(ring->rx_pending, 16);

	if (ring->tx_pending > MVPP2_MAX_TXD)
		new_tx_pending = MVPP2_MAX_TXD;
	else if (!IS_ALIGNED(ring->tx_pending, 32))
		new_tx_pending = ALIGN(ring->tx_pending, 32);

	if (ring->rx_pending != new_rx_pending) {
		netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
			    ring->rx_pending, new_rx_pending);
		ring->rx_pending = new_rx_pending;
	}

	if (ring->tx_pending != new_tx_pending) {
		netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
			    ring->tx_pending, new_tx_pending);
		ring->tx_pending = new_tx_pending;
	}

	return 0;
}

5900
static void mvpp21_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936
{
	u32 mac_addr_l, mac_addr_m, mac_addr_h;

	mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
	mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
	mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
	addr[0] = (mac_addr_h >> 24) & 0xFF;
	addr[1] = (mac_addr_h >> 16) & 0xFF;
	addr[2] = (mac_addr_h >> 8) & 0xFF;
	addr[3] = mac_addr_h & 0xFF;
	addr[4] = mac_addr_m & 0xFF;
	addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
}

static int mvpp2_phy_connect(struct mvpp2_port *port)
{
	struct phy_device *phy_dev;

	phy_dev = of_phy_connect(port->dev, port->phy_node, mvpp2_link_event, 0,
				 port->phy_interface);
	if (!phy_dev) {
		netdev_err(port->dev, "cannot connect to phy\n");
		return -ENODEV;
	}
	phy_dev->supported &= PHY_GBIT_FEATURES;
	phy_dev->advertising = phy_dev->supported;

	port->link    = 0;
	port->duplex  = 0;
	port->speed   = 0;

	return 0;
}

static void mvpp2_phy_disconnect(struct mvpp2_port *port)
{
5937 5938 5939
	struct net_device *ndev = port->dev;

	phy_disconnect(ndev->phydev);
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015
}

static int mvpp2_open(struct net_device *dev)
{
	struct mvpp2_port *port = netdev_priv(dev);
	unsigned char mac_bcast[ETH_ALEN] = {
			0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
	int err;

	err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
	if (err) {
		netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
		return err;
	}
	err = mvpp2_prs_mac_da_accept(port->priv, port->id,
				      dev->dev_addr, true);
	if (err) {
		netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
		return err;
	}
	err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
	if (err) {
		netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
		return err;
	}
	err = mvpp2_prs_def_flow(port);
	if (err) {
		netdev_err(dev, "mvpp2_prs_def_flow failed\n");
		return err;
	}

	/* Allocate the Rx/Tx queues */
	err = mvpp2_setup_rxqs(port);
	if (err) {
		netdev_err(port->dev, "cannot allocate Rx queues\n");
		return err;
	}

	err = mvpp2_setup_txqs(port);
	if (err) {
		netdev_err(port->dev, "cannot allocate Tx queues\n");
		goto err_cleanup_rxqs;
	}

	err = request_irq(port->irq, mvpp2_isr, 0, dev->name, port);
	if (err) {
		netdev_err(port->dev, "cannot request IRQ %d\n", port->irq);
		goto err_cleanup_txqs;
	}

	/* In default link is down */
	netif_carrier_off(port->dev);

	err = mvpp2_phy_connect(port);
	if (err < 0)
		goto err_free_irq;

	/* Unmask interrupts on all CPUs */
	on_each_cpu(mvpp2_interrupts_unmask, port, 1);

	mvpp2_start_dev(port);

	return 0;

err_free_irq:
	free_irq(port->irq, port);
err_cleanup_txqs:
	mvpp2_cleanup_txqs(port);
err_cleanup_rxqs:
	mvpp2_cleanup_rxqs(port);
	return err;
}

static int mvpp2_stop(struct net_device *dev)
{
	struct mvpp2_port *port = netdev_priv(dev);
6016 6017
	struct mvpp2_port_pcpu *port_pcpu;
	int cpu;
6018 6019 6020 6021 6022 6023 6024 6025

	mvpp2_stop_dev(port);
	mvpp2_phy_disconnect(port);

	/* Mask interrupts on all CPUs */
	on_each_cpu(mvpp2_interrupts_mask, port, 1);

	free_irq(port->irq, port);
6026 6027 6028 6029 6030 6031 6032
	for_each_present_cpu(cpu) {
		port_pcpu = per_cpu_ptr(port->pcpu, cpu);

		hrtimer_cancel(&port_pcpu->tx_done_timer);
		port_pcpu->timer_scheduled = false;
		tasklet_kill(&port_pcpu->tx_done_tasklet);
	}
6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106
	mvpp2_cleanup_rxqs(port);
	mvpp2_cleanup_txqs(port);

	return 0;
}

static void mvpp2_set_rx_mode(struct net_device *dev)
{
	struct mvpp2_port *port = netdev_priv(dev);
	struct mvpp2 *priv = port->priv;
	struct netdev_hw_addr *ha;
	int id = port->id;
	bool allmulti = dev->flags & IFF_ALLMULTI;

	mvpp2_prs_mac_promisc_set(priv, id, dev->flags & IFF_PROMISC);
	mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_ALL, allmulti);
	mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_IP6, allmulti);

	/* Remove all port->id's mcast enries */
	mvpp2_prs_mcast_del_all(priv, id);

	if (allmulti && !netdev_mc_empty(dev)) {
		netdev_for_each_mc_addr(ha, dev)
			mvpp2_prs_mac_da_accept(priv, id, ha->addr, true);
	}
}

static int mvpp2_set_mac_address(struct net_device *dev, void *p)
{
	struct mvpp2_port *port = netdev_priv(dev);
	const struct sockaddr *addr = p;
	int err;

	if (!is_valid_ether_addr(addr->sa_data)) {
		err = -EADDRNOTAVAIL;
		goto error;
	}

	if (!netif_running(dev)) {
		err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
		if (!err)
			return 0;
		/* Reconfigure parser to accept the original MAC address */
		err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
		if (err)
			goto error;
	}

	mvpp2_stop_dev(port);

	err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
	if (!err)
		goto out_start;

	/* Reconfigure parser accept the original MAC address */
	err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
	if (err)
		goto error;
out_start:
	mvpp2_start_dev(port);
	mvpp2_egress_enable(port);
	mvpp2_ingress_enable(port);
	return 0;

error:
	netdev_err(dev, "fail to change MAC address\n");
	return err;
}

static int mvpp2_change_mtu(struct net_device *dev, int mtu)
{
	struct mvpp2_port *port = netdev_priv(dev);
	int err;

6107 6108 6109 6110
	if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
		netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
			    ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
		mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150
	}

	if (!netif_running(dev)) {
		err = mvpp2_bm_update_mtu(dev, mtu);
		if (!err) {
			port->pkt_size =  MVPP2_RX_PKT_SIZE(mtu);
			return 0;
		}

		/* Reconfigure BM to the original MTU */
		err = mvpp2_bm_update_mtu(dev, dev->mtu);
		if (err)
			goto error;
	}

	mvpp2_stop_dev(port);

	err = mvpp2_bm_update_mtu(dev, mtu);
	if (!err) {
		port->pkt_size =  MVPP2_RX_PKT_SIZE(mtu);
		goto out_start;
	}

	/* Reconfigure BM to the original MTU */
	err = mvpp2_bm_update_mtu(dev, dev->mtu);
	if (err)
		goto error;

out_start:
	mvpp2_start_dev(port);
	mvpp2_egress_enable(port);
	mvpp2_ingress_enable(port);

	return 0;

error:
	netdev_err(dev, "fail to change MTU\n");
	return err;
}

6151
static void
6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
{
	struct mvpp2_port *port = netdev_priv(dev);
	unsigned int start;
	int cpu;

	for_each_possible_cpu(cpu) {
		struct mvpp2_pcpu_stats *cpu_stats;
		u64 rx_packets;
		u64 rx_bytes;
		u64 tx_packets;
		u64 tx_bytes;

		cpu_stats = per_cpu_ptr(port->stats, cpu);
		do {
			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
			rx_packets = cpu_stats->rx_packets;
			rx_bytes   = cpu_stats->rx_bytes;
			tx_packets = cpu_stats->tx_packets;
			tx_bytes   = cpu_stats->tx_bytes;
		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));

		stats->rx_packets += rx_packets;
		stats->rx_bytes   += rx_bytes;
		stats->tx_packets += tx_packets;
		stats->tx_bytes   += tx_bytes;
	}

	stats->rx_errors	= dev->stats.rx_errors;
	stats->rx_dropped	= dev->stats.rx_dropped;
	stats->tx_dropped	= dev->stats.tx_dropped;
}

6185 6186 6187 6188
static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	int ret;

6189
	if (!dev->phydev)
6190 6191
		return -ENOTSUPP;

6192
	ret = phy_mii_ioctl(dev->phydev, ifr, cmd);
6193 6194 6195 6196 6197 6198
	if (!ret)
		mvpp2_link_event(dev);

	return ret;
}

6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212
/* Ethtool methods */

/* Set interrupt coalescing for ethtools */
static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
				      struct ethtool_coalesce *c)
{
	struct mvpp2_port *port = netdev_priv(dev);
	int queue;

	for (queue = 0; queue < rxq_number; queue++) {
		struct mvpp2_rx_queue *rxq = port->rxqs[queue];

		rxq->time_coal = c->rx_coalesce_usecs;
		rxq->pkts_coal = c->rx_max_coalesced_frames;
6213 6214
		mvpp2_rx_pkts_coal_set(port, rxq);
		mvpp2_rx_time_coal_set(port, rxq);
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329
	}

	for (queue = 0; queue < txq_number; queue++) {
		struct mvpp2_tx_queue *txq = port->txqs[queue];

		txq->done_pkts_coal = c->tx_max_coalesced_frames;
	}

	return 0;
}

/* get coalescing for ethtools */
static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
				      struct ethtool_coalesce *c)
{
	struct mvpp2_port *port = netdev_priv(dev);

	c->rx_coalesce_usecs        = port->rxqs[0]->time_coal;
	c->rx_max_coalesced_frames  = port->rxqs[0]->pkts_coal;
	c->tx_max_coalesced_frames =  port->txqs[0]->done_pkts_coal;
	return 0;
}

static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
				      struct ethtool_drvinfo *drvinfo)
{
	strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
		sizeof(drvinfo->driver));
	strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
		sizeof(drvinfo->version));
	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
		sizeof(drvinfo->bus_info));
}

static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
					struct ethtool_ringparam *ring)
{
	struct mvpp2_port *port = netdev_priv(dev);

	ring->rx_max_pending = MVPP2_MAX_RXD;
	ring->tx_max_pending = MVPP2_MAX_TXD;
	ring->rx_pending = port->rx_ring_size;
	ring->tx_pending = port->tx_ring_size;
}

static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
				       struct ethtool_ringparam *ring)
{
	struct mvpp2_port *port = netdev_priv(dev);
	u16 prev_rx_ring_size = port->rx_ring_size;
	u16 prev_tx_ring_size = port->tx_ring_size;
	int err;

	err = mvpp2_check_ringparam_valid(dev, ring);
	if (err)
		return err;

	if (!netif_running(dev)) {
		port->rx_ring_size = ring->rx_pending;
		port->tx_ring_size = ring->tx_pending;
		return 0;
	}

	/* The interface is running, so we have to force a
	 * reallocation of the queues
	 */
	mvpp2_stop_dev(port);
	mvpp2_cleanup_rxqs(port);
	mvpp2_cleanup_txqs(port);

	port->rx_ring_size = ring->rx_pending;
	port->tx_ring_size = ring->tx_pending;

	err = mvpp2_setup_rxqs(port);
	if (err) {
		/* Reallocate Rx queues with the original ring size */
		port->rx_ring_size = prev_rx_ring_size;
		ring->rx_pending = prev_rx_ring_size;
		err = mvpp2_setup_rxqs(port);
		if (err)
			goto err_out;
	}
	err = mvpp2_setup_txqs(port);
	if (err) {
		/* Reallocate Tx queues with the original ring size */
		port->tx_ring_size = prev_tx_ring_size;
		ring->tx_pending = prev_tx_ring_size;
		err = mvpp2_setup_txqs(port);
		if (err)
			goto err_clean_rxqs;
	}

	mvpp2_start_dev(port);
	mvpp2_egress_enable(port);
	mvpp2_ingress_enable(port);

	return 0;

err_clean_rxqs:
	mvpp2_cleanup_rxqs(port);
err_out:
	netdev_err(dev, "fail to change ring parameters");
	return err;
}

/* Device ops */

static const struct net_device_ops mvpp2_netdev_ops = {
	.ndo_open		= mvpp2_open,
	.ndo_stop		= mvpp2_stop,
	.ndo_start_xmit		= mvpp2_tx,
	.ndo_set_rx_mode	= mvpp2_set_rx_mode,
	.ndo_set_mac_address	= mvpp2_set_mac_address,
	.ndo_change_mtu		= mvpp2_change_mtu,
	.ndo_get_stats64	= mvpp2_get_stats64,
6330
	.ndo_do_ioctl		= mvpp2_ioctl,
6331 6332 6333
};

static const struct ethtool_ops mvpp2_eth_tool_ops = {
6334
	.nway_reset	= phy_ethtool_nway_reset,
6335 6336 6337 6338 6339 6340
	.get_link	= ethtool_op_get_link,
	.set_coalesce	= mvpp2_ethtool_set_coalesce,
	.get_coalesce	= mvpp2_ethtool_get_coalesce,
	.get_drvinfo	= mvpp2_ethtool_get_drvinfo,
	.get_ringparam	= mvpp2_ethtool_get_ringparam,
	.set_ringparam	= mvpp2_ethtool_set_ringparam,
6341 6342
	.get_link_ksettings = phy_ethtool_get_link_ksettings,
	.set_link_ksettings = phy_ethtool_set_link_ksettings,
6343 6344 6345 6346 6347 6348 6349 6350 6351 6352
};

/* Initialize port HW */
static int mvpp2_port_init(struct mvpp2_port *port)
{
	struct device *dev = port->dev->dev.parent;
	struct mvpp2 *priv = port->priv;
	struct mvpp2_txq_pcpu *txq_pcpu;
	int queue, cpu, err;

6353 6354
	if (port->first_rxq + rxq_number >
	    MVPP2_MAX_PORTS * priv->max_port_rxqs)
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373
		return -EINVAL;

	/* Disable port */
	mvpp2_egress_disable(port);
	mvpp2_port_disable(port);

	port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
				  GFP_KERNEL);
	if (!port->txqs)
		return -ENOMEM;

	/* Associate physical Tx queues to this port and initialize.
	 * The mapping is predefined.
	 */
	for (queue = 0; queue < txq_number; queue++) {
		int queue_phy_id = mvpp2_txq_phys(port->id, queue);
		struct mvpp2_tx_queue *txq;

		txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
6374 6375 6376 6377
		if (!txq) {
			err = -ENOMEM;
			goto err_free_percpu;
		}
6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408

		txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
		if (!txq->pcpu) {
			err = -ENOMEM;
			goto err_free_percpu;
		}

		txq->id = queue_phy_id;
		txq->log_id = queue;
		txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
		for_each_present_cpu(cpu) {
			txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
			txq_pcpu->cpu = cpu;
		}

		port->txqs[queue] = txq;
	}

	port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
				  GFP_KERNEL);
	if (!port->rxqs) {
		err = -ENOMEM;
		goto err_free_percpu;
	}

	/* Allocate and initialize Rx queue for this port */
	for (queue = 0; queue < rxq_number; queue++) {
		struct mvpp2_rx_queue *rxq;

		/* Map physical Rx queue to port's logical Rx queue */
		rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
6409 6410
		if (!rxq) {
			err = -ENOMEM;
6411
			goto err_free_percpu;
6412
		}
6413 6414 6415 6416 6417 6418 6419 6420 6421
		/* Map this Rx queue to a physical queue */
		rxq->id = port->first_rxq + queue;
		rxq->port = port->id;
		rxq->logic_rxq = queue;

		port->rxqs[queue] = rxq;
	}

	/* Configure Rx queue group interrupt for this port */
6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
	if (priv->hw_version == MVPP21) {
		mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id),
			    rxq_number);
	} else {
		u32 val;

		val = (port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET);
		mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);

		val = (rxq_number << MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET);
		mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
	}
6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474

	/* Create Rx descriptor rings */
	for (queue = 0; queue < rxq_number; queue++) {
		struct mvpp2_rx_queue *rxq = port->rxqs[queue];

		rxq->size = port->rx_ring_size;
		rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
		rxq->time_coal = MVPP2_RX_COAL_USEC;
	}

	mvpp2_ingress_disable(port);

	/* Port default configuration */
	mvpp2_defaults_set(port);

	/* Port's classifier configuration */
	mvpp2_cls_oversize_rxq_set(port);
	mvpp2_cls_port_config(port);

	/* Provide an initial Rx packet size */
	port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);

	/* Initialize pools for swf */
	err = mvpp2_swf_bm_pool_init(port);
	if (err)
		goto err_free_percpu;

	return 0;

err_free_percpu:
	for (queue = 0; queue < txq_number; queue++) {
		if (!port->txqs[queue])
			continue;
		free_percpu(port->txqs[queue]->pcpu);
	}
	return err;
}

/* Ports initialization */
static int mvpp2_port_probe(struct platform_device *pdev,
			    struct device_node *port_node,
6475
			    struct mvpp2 *priv)
6476 6477 6478
{
	struct device_node *phy_node;
	struct mvpp2_port *port;
6479
	struct mvpp2_port_pcpu *port_pcpu;
6480 6481 6482 6483 6484 6485 6486 6487
	struct net_device *dev;
	struct resource *res;
	const char *dt_mac_addr;
	const char *mac_from;
	char hw_mac_addr[ETH_ALEN];
	u32 id;
	int features;
	int phy_mode;
6488
	int err, i, cpu;
6489

6490
	dev = alloc_etherdev_mqs(sizeof(*port), txq_number, rxq_number);
6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
	if (!dev)
		return -ENOMEM;

	phy_node = of_parse_phandle(port_node, "phy", 0);
	if (!phy_node) {
		dev_err(&pdev->dev, "missing phy\n");
		err = -ENODEV;
		goto err_free_netdev;
	}

	phy_mode = of_get_phy_mode(port_node);
	if (phy_mode < 0) {
		dev_err(&pdev->dev, "incorrect phy mode\n");
		err = phy_mode;
		goto err_free_netdev;
	}

	if (of_property_read_u32(port_node, "port-id", &id)) {
		err = -EINVAL;
		dev_err(&pdev->dev, "missing port-id value\n");
		goto err_free_netdev;
	}

	dev->tx_queue_len = MVPP2_MAX_TXD;
	dev->watchdog_timeo = 5 * HZ;
	dev->netdev_ops = &mvpp2_netdev_ops;
	dev->ethtool_ops = &mvpp2_eth_tool_ops;

	port = netdev_priv(dev);

	port->irq = irq_of_parse_and_map(port_node, 0);
	if (port->irq <= 0) {
		err = -EINVAL;
		goto err_free_netdev;
	}

	if (of_property_read_bool(port_node, "marvell,loopback"))
		port->flags |= MVPP2_F_LOOPBACK;

	port->priv = priv;
	port->id = id;
6532 6533 6534 6535 6536
	if (priv->hw_version == MVPP21)
		port->first_rxq = port->id * rxq_number;
	else
		port->first_rxq = port->id * priv->max_port_rxqs;

6537 6538 6539
	port->phy_node = phy_node;
	port->phy_interface = phy_mode;

6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
	if (priv->hw_version == MVPP21) {
		res = platform_get_resource(pdev, IORESOURCE_MEM, 2 + id);
		port->base = devm_ioremap_resource(&pdev->dev, res);
		if (IS_ERR(port->base)) {
			err = PTR_ERR(port->base);
			goto err_free_irq;
		}
	} else {
		if (of_property_read_u32(port_node, "gop-port-id",
					 &port->gop_id)) {
			err = -EINVAL;
			dev_err(&pdev->dev, "missing gop-port-id value\n");
			goto err_free_irq;
		}

		port->base = priv->iface_base + MVPP22_GMAC_BASE(port->gop_id);
6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
	}

	/* Alloc per-cpu stats */
	port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
	if (!port->stats) {
		err = -ENOMEM;
		goto err_free_irq;
	}

	dt_mac_addr = of_get_mac_address(port_node);
	if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
		mac_from = "device tree";
		ether_addr_copy(dev->dev_addr, dt_mac_addr);
	} else {
6570 6571
		if (priv->hw_version == MVPP21)
			mvpp21_get_mac_address(port, hw_mac_addr);
6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
		if (is_valid_ether_addr(hw_mac_addr)) {
			mac_from = "hardware";
			ether_addr_copy(dev->dev_addr, hw_mac_addr);
		} else {
			mac_from = "random";
			eth_hw_addr_random(dev);
		}
	}

	port->tx_ring_size = MVPP2_MAX_TXD;
	port->rx_ring_size = MVPP2_MAX_RXD;
	port->dev = dev;
	SET_NETDEV_DEV(dev, &pdev->dev);

	err = mvpp2_port_init(port);
	if (err < 0) {
		dev_err(&pdev->dev, "failed to init port %d\n", id);
		goto err_free_stats;
	}
6591 6592 6593 6594 6595 6596 6597 6598

	mvpp2_port_mii_set(port);
	mvpp2_port_periodic_xon_disable(port);

	if (priv->hw_version == MVPP21)
		mvpp2_port_fc_adv_enable(port);

	mvpp2_port_reset(port);
6599

6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617
	port->pcpu = alloc_percpu(struct mvpp2_port_pcpu);
	if (!port->pcpu) {
		err = -ENOMEM;
		goto err_free_txq_pcpu;
	}

	for_each_present_cpu(cpu) {
		port_pcpu = per_cpu_ptr(port->pcpu, cpu);

		hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC,
			     HRTIMER_MODE_REL_PINNED);
		port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb;
		port_pcpu->timer_scheduled = false;

		tasklet_init(&port_pcpu->tx_done_tasklet, mvpp2_tx_proc_cb,
			     (unsigned long)dev);
	}

6618 6619 6620 6621 6622 6623
	netif_napi_add(dev, &port->napi, mvpp2_poll, NAPI_POLL_WEIGHT);
	features = NETIF_F_SG | NETIF_F_IP_CSUM;
	dev->features = features | NETIF_F_RXCSUM;
	dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO;
	dev->vlan_features |= features;

6624 6625 6626 6627 6628
	/* MTU range: 68 - 9676 */
	dev->min_mtu = ETH_MIN_MTU;
	/* 9676 == 9700 - 20 and rounding to 8 */
	dev->max_mtu = 9676;

6629 6630 6631
	err = register_netdev(dev);
	if (err < 0) {
		dev_err(&pdev->dev, "failed to register netdev\n");
6632
		goto err_free_port_pcpu;
6633 6634 6635 6636 6637 6638
	}
	netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);

	priv->port_list[id] = port;
	return 0;

6639 6640
err_free_port_pcpu:
	free_percpu(port->pcpu);
6641 6642 6643 6644 6645 6646 6647 6648
err_free_txq_pcpu:
	for (i = 0; i < txq_number; i++)
		free_percpu(port->txqs[i]->pcpu);
err_free_stats:
	free_percpu(port->stats);
err_free_irq:
	irq_dispose_mapping(port->irq);
err_free_netdev:
6649
	of_node_put(phy_node);
6650 6651 6652 6653 6654 6655 6656 6657 6658 6659
	free_netdev(dev);
	return err;
}

/* Ports removal routine */
static void mvpp2_port_remove(struct mvpp2_port *port)
{
	int i;

	unregister_netdev(port->dev);
6660
	of_node_put(port->phy_node);
6661
	free_percpu(port->pcpu);
6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718
	free_percpu(port->stats);
	for (i = 0; i < txq_number; i++)
		free_percpu(port->txqs[i]->pcpu);
	irq_dispose_mapping(port->irq);
	free_netdev(port->dev);
}

/* Initialize decoding windows */
static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
				    struct mvpp2 *priv)
{
	u32 win_enable;
	int i;

	for (i = 0; i < 6; i++) {
		mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
		mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);

		if (i < 4)
			mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
	}

	win_enable = 0;

	for (i = 0; i < dram->num_cs; i++) {
		const struct mbus_dram_window *cs = dram->cs + i;

		mvpp2_write(priv, MVPP2_WIN_BASE(i),
			    (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
			    dram->mbus_dram_target_id);

		mvpp2_write(priv, MVPP2_WIN_SIZE(i),
			    (cs->size - 1) & 0xffff0000);

		win_enable |= (1 << i);
	}

	mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
}

/* Initialize Rx FIFO's */
static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
{
	int port;

	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
		mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
			    MVPP2_RX_FIFO_PORT_DATA_SIZE);
		mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
			    MVPP2_RX_FIFO_PORT_ATTR_SIZE);
	}

	mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
		    MVPP2_RX_FIFO_PORT_MIN_PKT);
	mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
}

6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
static void mvpp2_axi_init(struct mvpp2 *priv)
{
	u32 val, rdval, wrval;

	mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);

	/* AXI Bridge Configuration */

	rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
		<< MVPP22_AXI_ATTR_CACHE_OFFS;
	rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
		<< MVPP22_AXI_ATTR_DOMAIN_OFFS;

	wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
		<< MVPP22_AXI_ATTR_CACHE_OFFS;
	wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
		<< MVPP22_AXI_ATTR_DOMAIN_OFFS;

	/* BM */
	mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
	mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);

	/* Descriptors */
	mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
	mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
	mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
	mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);

	/* Buffer Data */
	mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
	mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);

	val = MVPP22_AXI_CODE_CACHE_NON_CACHE
		<< MVPP22_AXI_CODE_CACHE_OFFS;
	val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
	mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
	mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);

	val = MVPP22_AXI_CODE_CACHE_RD_CACHE
		<< MVPP22_AXI_CODE_CACHE_OFFS;
	val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
		<< MVPP22_AXI_CODE_DOMAIN_OFFS;

	mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);

	val = MVPP22_AXI_CODE_CACHE_WR_CACHE
		<< MVPP22_AXI_CODE_CACHE_OFFS;
	val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
		<< MVPP22_AXI_CODE_DOMAIN_OFFS;

	mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
}

6773 6774 6775 6776 6777
/* Initialize network controller common part HW */
static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
{
	const struct mbus_dram_target_info *dram_target_info;
	int err, i;
6778
	u32 val;
6779 6780

	/* Checks for hardware constraints */
6781
	if (rxq_number % 4 || (rxq_number > priv->max_port_rxqs) ||
6782 6783 6784 6785 6786 6787 6788 6789 6790 6791
	    (txq_number > MVPP2_MAX_TXQ)) {
		dev_err(&pdev->dev, "invalid queue size parameter\n");
		return -EINVAL;
	}

	/* MBUS windows configuration */
	dram_target_info = mv_mbus_dram_info();
	if (dram_target_info)
		mvpp2_conf_mbus_windows(dram_target_info, priv);

6792 6793 6794
	if (priv->hw_version == MVPP22)
		mvpp2_axi_init(priv);

6795
	/* Disable HW PHY polling */
6796 6797 6798 6799 6800 6801 6802 6803 6804
	if (priv->hw_version == MVPP21) {
		val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
		val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
		writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
	} else {
		val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
		val &= ~MVPP22_SMI_POLLING_EN;
		writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
	}
6805

6806 6807
	/* Allocate and initialize aggregated TXQs */
	priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
6808
				       sizeof(*priv->aggr_txqs),
6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825
				       GFP_KERNEL);
	if (!priv->aggr_txqs)
		return -ENOMEM;

	for_each_present_cpu(i) {
		priv->aggr_txqs[i].id = i;
		priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
		err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i],
					  MVPP2_AGGR_TXQ_SIZE, i, priv);
		if (err < 0)
			return err;
	}

	/* Rx Fifo Init */
	mvpp2_rx_fifo_init(priv);

	/* Reset Rx queue group interrupt configuration */
6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
	for (i = 0; i < MVPP2_MAX_PORTS; i++) {
		if (priv->hw_version == MVPP21) {
			mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(i),
				    rxq_number);
			continue;
		} else {
			u32 val;

			val = (i << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET);
			mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);

			val = (rxq_number << MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET);
			mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
		}
	}
6841

6842 6843 6844
	if (priv->hw_version == MVPP21)
		writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
		       priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870

	/* Allow cache snoop when transmiting packets */
	mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);

	/* Buffer Manager initialization */
	err = mvpp2_bm_init(pdev, priv);
	if (err < 0)
		return err;

	/* Parser default initialization */
	err = mvpp2_prs_default_init(pdev, priv);
	if (err < 0)
		return err;

	/* Classifier default initialization */
	mvpp2_cls_init(priv);

	return 0;
}

static int mvpp2_probe(struct platform_device *pdev)
{
	struct device_node *dn = pdev->dev.of_node;
	struct device_node *port_node;
	struct mvpp2 *priv;
	struct resource *res;
6871
	void __iomem *base;
6872
	int port_count, cpu;
6873 6874
	int err;

6875
	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
6876 6877 6878
	if (!priv)
		return -ENOMEM;

6879 6880 6881
	priv->hw_version =
		(unsigned long)of_device_get_match_data(&pdev->dev);

6882
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905
	base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(base))
		return PTR_ERR(base);

	if (priv->hw_version == MVPP21) {
		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
		priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
		if (IS_ERR(priv->lms_base))
			return PTR_ERR(priv->lms_base);
	} else {
		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
		priv->iface_base = devm_ioremap_resource(&pdev->dev, res);
		if (IS_ERR(priv->iface_base))
			return PTR_ERR(priv->iface_base);
	}

	for_each_present_cpu(cpu) {
		u32 addr_space_sz;

		addr_space_sz = (priv->hw_version == MVPP21 ?
				 MVPP21_ADDR_SPACE_SZ : MVPP22_ADDR_SPACE_SZ);
		priv->cpu_base[cpu] = base + cpu * addr_space_sz;
	}
6906

6907 6908 6909 6910 6911
	if (priv->hw_version == MVPP21)
		priv->max_port_rxqs = 8;
	else
		priv->max_port_rxqs = 32;

6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927
	priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
	if (IS_ERR(priv->pp_clk))
		return PTR_ERR(priv->pp_clk);
	err = clk_prepare_enable(priv->pp_clk);
	if (err < 0)
		return err;

	priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
	if (IS_ERR(priv->gop_clk)) {
		err = PTR_ERR(priv->gop_clk);
		goto err_pp_clk;
	}
	err = clk_prepare_enable(priv->gop_clk);
	if (err < 0)
		goto err_pp_clk;

6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939
	if (priv->hw_version == MVPP22) {
		priv->mg_clk = devm_clk_get(&pdev->dev, "mg_clk");
		if (IS_ERR(priv->mg_clk)) {
			err = PTR_ERR(priv->mg_clk);
			goto err_gop_clk;
		}

		err = clk_prepare_enable(priv->mg_clk);
		if (err < 0)
			goto err_gop_clk;
	}

6940 6941 6942
	/* Get system's tclk rate */
	priv->tclk = clk_get_rate(priv->pp_clk);

6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956
	if (priv->hw_version == MVPP22) {
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(40));
		if (err)
			goto err_mg_clk;
		/* Sadly, the BM pools all share the same register to
		 * store the high 32 bits of their address. So they
		 * must all have the same high 32 bits, which forces
		 * us to restrict coherent memory to DMA_BIT_MASK(32).
		 */
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
		if (err)
			goto err_mg_clk;
	}

6957 6958 6959 6960
	/* Initialize network controller */
	err = mvpp2_init(pdev, priv);
	if (err < 0) {
		dev_err(&pdev->dev, "failed to initialize controller\n");
6961
		goto err_mg_clk;
6962 6963 6964 6965 6966
	}

	port_count = of_get_available_child_count(dn);
	if (port_count == 0) {
		dev_err(&pdev->dev, "no ports enabled\n");
6967
		err = -ENODEV;
6968
		goto err_mg_clk;
6969 6970 6971
	}

	priv->port_list = devm_kcalloc(&pdev->dev, port_count,
6972 6973
				       sizeof(*priv->port_list),
				       GFP_KERNEL);
6974 6975
	if (!priv->port_list) {
		err = -ENOMEM;
6976
		goto err_mg_clk;
6977 6978 6979 6980
	}

	/* Initialize ports */
	for_each_available_child_of_node(dn, port_node) {
6981
		err = mvpp2_port_probe(pdev, port_node, priv);
6982
		if (err < 0)
6983
			goto err_mg_clk;
6984 6985 6986 6987 6988
	}

	platform_set_drvdata(pdev, priv);
	return 0;

6989 6990 6991
err_mg_clk:
	if (priv->hw_version == MVPP22)
		clk_disable_unprepare(priv->mg_clk);
6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023
err_gop_clk:
	clk_disable_unprepare(priv->gop_clk);
err_pp_clk:
	clk_disable_unprepare(priv->pp_clk);
	return err;
}

static int mvpp2_remove(struct platform_device *pdev)
{
	struct mvpp2 *priv = platform_get_drvdata(pdev);
	struct device_node *dn = pdev->dev.of_node;
	struct device_node *port_node;
	int i = 0;

	for_each_available_child_of_node(dn, port_node) {
		if (priv->port_list[i])
			mvpp2_port_remove(priv->port_list[i]);
		i++;
	}

	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
		struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];

		mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
	}

	for_each_present_cpu(i) {
		struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];

		dma_free_coherent(&pdev->dev,
				  MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
				  aggr_txq->descs,
7024
				  aggr_txq->descs_dma);
7025 7026
	}

7027
	clk_disable_unprepare(priv->mg_clk);
7028 7029 7030 7031 7032 7033 7034
	clk_disable_unprepare(priv->pp_clk);
	clk_disable_unprepare(priv->gop_clk);

	return 0;
}

static const struct of_device_id mvpp2_match[] = {
7035 7036 7037 7038
	{
		.compatible = "marvell,armada-375-pp2",
		.data = (void *)MVPP21,
	},
7039 7040 7041 7042
	{
		.compatible = "marvell,armada-7k-pp22",
		.data = (void *)MVPP22,
	},
7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059
	{ }
};
MODULE_DEVICE_TABLE(of, mvpp2_match);

static struct platform_driver mvpp2_driver = {
	.probe = mvpp2_probe,
	.remove = mvpp2_remove,
	.driver = {
		.name = MVPP2_DRIVER_NAME,
		.of_match_table = mvpp2_match,
	},
};

module_platform_driver(mvpp2_driver);

MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
7060
MODULE_LICENSE("GPL v2");