dl2k.c 49.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
/*
    Copyright (c) 2001, 2002 by D-Link Corporation
    Written by Edward Peng.<edward_peng@dlink.com.tw>
    Created 03-May-2001, base on Linux' sundance.c.

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.
*/
/*
    Rev		Date		Description
    ==========================================================================
    0.01	2001/05/03	Created DL2000-based linux driver
    0.02	2001/05/21	Added VLAN and hardware checksum support.
    1.00	2001/06/26	Added jumbo frame support.
    1.01	2001/08/21	Added two parameters, rx_coalesce and rx_timeout.
    1.02	2001/10/08	Supported fiber media.
    				Added flow control parameters.
    1.03	2001/10/12	Changed the default media to 1000mbps_fd for 
    				the fiber devices.
    1.04	2001/11/08	Fixed Tx stopped when tx very busy.
    1.05	2001/11/22	Fixed Tx stopped when unidirectional tx busy.
    1.06	2001/12/13	Fixed disconnect bug at 10Mbps mode.
    				Fixed tx_full flag incorrect.
				Added tx_coalesce paramter.
    1.07	2002/01/03	Fixed miscount of RX frame error.
    1.08	2002/01/17	Fixed the multicast bug.
    1.09	2002/03/07	Move rx-poll-now to re-fill loop.	
    				Added rio_timer() to watch rx buffers. 
    1.10	2002/04/16	Fixed miscount of carrier error.
    1.11	2002/05/23	Added ISR schedule scheme
    				Fixed miscount of rx frame error for DGE-550SX.
    				Fixed VLAN bug.
    1.12	2002/06/13	Lock tx_coalesce=1 on 10/100Mbps mode.
    1.13	2002/08/13	1. Fix disconnection (many tx:carrier/rx:frame
    				   errs) with some mainboards.
    				2. Use definition "DRV_NAME" "DRV_VERSION" 
				   "DRV_RELDATE" for flexibility.	
    1.14	2002/08/14	Support ethtool.	
    1.15	2002/08/27	Changed the default media to Auto-Negotiation
				for the fiber devices.    
    1.16	2002/09/04      More power down time for fiber devices auto-
    				negotiation.
				Fix disconnect bug after ifup and ifdown.
    1.17	2002/10/03	Fix RMON statistics overflow. 
			     	Always use I/O mapping to access eeprom, 
				avoid system freezing with some chipsets.

*/
#define DRV_NAME	"D-Link DL2000-based linux driver"
J
Jon Mason 已提交
53 54
#define DRV_VERSION	"v1.17b"
#define DRV_RELDATE	"2006/03/10"
L
Linus Torvalds 已提交
55
#include "dl2k.h"
A
Andrew Morton 已提交
56
#include <linux/dma-mapping.h>
L
Linus Torvalds 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

static char version[] __devinitdata =
      KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";	
#define MAX_UNITS 8
static int mtu[MAX_UNITS];
static int vlan[MAX_UNITS];
static int jumbo[MAX_UNITS];
static char *media[MAX_UNITS];
static int tx_flow=-1;
static int rx_flow=-1;
static int copy_thresh;
static int rx_coalesce=10;	/* Rx frame count each interrupt */
static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */


MODULE_AUTHOR ("Edward Peng");
MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
MODULE_LICENSE("GPL");
module_param_array(mtu, int, NULL, 0);
module_param_array(media, charp, NULL, 0);
module_param_array(vlan, int, NULL, 0);
module_param_array(jumbo, int, NULL, 0);
module_param(tx_flow, int, 0);
module_param(rx_flow, int, 0);
module_param(copy_thresh, int, 0);
module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */


/* Enable the default interrupts */
#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
       UpdateStats | LinkEvent)
#define EnableInt() \
writew(DEFAULT_INTR, ioaddr + IntEnable)

94 95
static const int max_intrloop = 50;
static const int multicast_filter_limit = 0x40;
L
Linus Torvalds 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

static int rio_open (struct net_device *dev);
static void rio_timer (unsigned long data);
static void rio_tx_timeout (struct net_device *dev);
static void alloc_list (struct net_device *dev);
static int start_xmit (struct sk_buff *skb, struct net_device *dev);
static irqreturn_t rio_interrupt (int irq, void *dev_instance, struct pt_regs *regs);
static void rio_free_tx (struct net_device *dev, int irq);
static void tx_error (struct net_device *dev, int tx_status);
static int receive_packet (struct net_device *dev);
static void rio_error (struct net_device *dev, int int_status);
static int change_mtu (struct net_device *dev, int new_mtu);
static void set_multicast (struct net_device *dev);
static struct net_device_stats *get_stats (struct net_device *dev);
static int clear_stats (struct net_device *dev);
static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
static int rio_close (struct net_device *dev);
static int find_miiphy (struct net_device *dev);
static int parse_eeprom (struct net_device *dev);
static int read_eeprom (long ioaddr, int eep_addr);
static int mii_wait_link (struct net_device *dev, int wait);
static int mii_set_media (struct net_device *dev);
static int mii_get_media (struct net_device *dev);
static int mii_set_media_pcs (struct net_device *dev);
static int mii_get_media_pcs (struct net_device *dev);
static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
		      u16 data);

static struct ethtool_ops ethtool_ops;

static int __devinit
rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
{
	struct net_device *dev;
	struct netdev_private *np;
	static int card_idx;
	int chip_idx = ent->driver_data;
	int err, irq;
	long ioaddr;
	static int version_printed;
	void *ring_space;
	dma_addr_t ring_dma;

	if (!version_printed++)
		printk ("%s", version);

	err = pci_enable_device (pdev);
	if (err)
		return err;

	irq = pdev->irq;
	err = pci_request_regions (pdev, "dl2k");
	if (err)
		goto err_out_disable;

	pci_set_master (pdev);
	dev = alloc_etherdev (sizeof (*np));
	if (!dev) {
		err = -ENOMEM;
		goto err_out_res;
	}
	SET_MODULE_OWNER (dev);
	SET_NETDEV_DEV(dev, &pdev->dev);

#ifdef MEM_MAPPING
	ioaddr = pci_resource_start (pdev, 1);
	ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);
	if (!ioaddr) {
		err = -ENOMEM;
		goto err_out_dev;
	}
#else
	ioaddr = pci_resource_start (pdev, 0);
#endif
	dev->base_addr = ioaddr;
	dev->irq = irq;
	np = netdev_priv(dev);
	np->chip_id = chip_idx;
	np->pdev = pdev;
	spin_lock_init (&np->tx_lock);
	spin_lock_init (&np->rx_lock);

	/* Parse manual configuration */
	np->an_enable = 1;
	np->tx_coalesce = 1;
	if (card_idx < MAX_UNITS) {
		if (media[card_idx] != NULL) {
			np->an_enable = 0;
			if (strcmp (media[card_idx], "auto") == 0 ||
			    strcmp (media[card_idx], "autosense") == 0 || 
			    strcmp (media[card_idx], "0") == 0 ) {
				np->an_enable = 2; 
			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
			    strcmp (media[card_idx], "4") == 0) {
				np->speed = 100;
				np->full_duplex = 1;
			} else if (strcmp (media[card_idx], "100mbps_hd") == 0
				   || strcmp (media[card_idx], "3") == 0) {
				np->speed = 100;
				np->full_duplex = 0;
			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
				   strcmp (media[card_idx], "2") == 0) {
				np->speed = 10;
				np->full_duplex = 1;
			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
				   strcmp (media[card_idx], "1") == 0) {
				np->speed = 10;
				np->full_duplex = 0;
			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
				 strcmp (media[card_idx], "6") == 0) {
				np->speed=1000;
				np->full_duplex=1;
			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
				 strcmp (media[card_idx], "5") == 0) {
				np->speed = 1000;
				np->full_duplex = 0;
			} else {
				np->an_enable = 1;
			}
		}
		if (jumbo[card_idx] != 0) {
			np->jumbo = 1;
			dev->mtu = MAX_JUMBO;
		} else {
			np->jumbo = 0;
			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
				dev->mtu = mtu[card_idx];
		}
		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
		    vlan[card_idx] : 0;
		if (rx_coalesce > 0 && rx_timeout > 0) {
			np->rx_coalesce = rx_coalesce;
			np->rx_timeout = rx_timeout;
			np->coalesce = 1;
		}
		np->tx_flow = (tx_flow == 0) ? 0 : 1;
		np->rx_flow = (rx_flow == 0) ? 0 : 1;

		if (tx_coalesce < 1)
			tx_coalesce = 1;
		else if (tx_coalesce > TX_RING_SIZE-1)
			tx_coalesce = TX_RING_SIZE - 1;
	}
	dev->open = &rio_open;
	dev->hard_start_xmit = &start_xmit;
	dev->stop = &rio_close;
	dev->get_stats = &get_stats;
	dev->set_multicast_list = &set_multicast;
	dev->do_ioctl = &rio_ioctl;
	dev->tx_timeout = &rio_tx_timeout;
	dev->watchdog_timeo = TX_TIMEOUT;
	dev->change_mtu = &change_mtu;
	SET_ETHTOOL_OPS(dev, &ethtool_ops);
#if 0
	dev->features = NETIF_F_IP_CSUM;
#endif
	pci_set_drvdata (pdev, dev);

	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
	if (!ring_space)
		goto err_out_iounmap;
	np->tx_ring = (struct netdev_desc *) ring_space;
	np->tx_ring_dma = ring_dma;

	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
	if (!ring_space)
		goto err_out_unmap_tx;
	np->rx_ring = (struct netdev_desc *) ring_space;
	np->rx_ring_dma = ring_dma;

	/* Parse eeprom data */
	parse_eeprom (dev);

	/* Find PHY address */
	err = find_miiphy (dev);
	if (err)
		goto err_out_unmap_rx;
	
	/* Fiber device? */
	np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;
	np->link_status = 0;
	/* Set media and reset PHY */
	if (np->phy_media) {
		/* default Auto-Negotiation for fiber deivices */
	 	if (np->an_enable == 2) {
			np->an_enable = 1;
		}
		mii_set_media_pcs (dev);
	} else {
		/* Auto-Negotiation is mandatory for 1000BASE-T,
		   IEEE 802.3ab Annex 28D page 14 */
		if (np->speed == 1000)
			np->an_enable = 1;
		mii_set_media (dev);
	}
	pci_read_config_byte(pdev, PCI_REVISION_ID, &np->pci_rev_id);

	err = register_netdev (dev);
	if (err)
		goto err_out_unmap_rx;

	card_idx++;

	printk (KERN_INFO "%s: %s, %02x:%02x:%02x:%02x:%02x:%02x, IRQ %d\n",
		dev->name, np->name,
		dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
		dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], irq);
	if (tx_coalesce > 1)
		printk(KERN_INFO "tx_coalesce:\t%d packets\n", 
				tx_coalesce);
	if (np->coalesce)
		printk(KERN_INFO "rx_coalesce:\t%d packets\n"
		       KERN_INFO "rx_timeout: \t%d ns\n", 
				np->rx_coalesce, np->rx_timeout*640);
	if (np->vlan)
		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
	return 0;

      err_out_unmap_rx:
	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
      err_out_unmap_tx:
	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
      err_out_iounmap:
#ifdef MEM_MAPPING
	iounmap ((void *) ioaddr);

      err_out_dev:
#endif
	free_netdev (dev);

      err_out_res:
	pci_release_regions (pdev);

      err_out_disable:
	pci_disable_device (pdev);
	return err;
}

int
find_miiphy (struct net_device *dev)
{
	int i, phy_found = 0;
	struct netdev_private *np;
	long ioaddr;
	np = netdev_priv(dev);
	ioaddr = dev->base_addr;
	np->phy_addr = 1;

	for (i = 31; i >= 0; i--) {
		int mii_status = mii_read (dev, i, 1);
		if (mii_status != 0xffff && mii_status != 0x0000) {
			np->phy_addr = i;
			phy_found++;
		}
	}
	if (!phy_found) {
		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
		return -ENODEV;
	}
	return 0;
}

int
parse_eeprom (struct net_device *dev)
{
	int i, j;
	long ioaddr = dev->base_addr;
	u8 sromdata[256];
	u8 *psib;
	u32 crc;
	PSROM_t psrom = (PSROM_t) sromdata;
	struct netdev_private *np = netdev_priv(dev);

	int cid, next;

#ifdef	MEM_MAPPING
	ioaddr = pci_resource_start (np->pdev, 0);
#endif
	/* Read eeprom */
	for (i = 0; i < 128; i++) {
		((u16 *) sromdata)[i] = le16_to_cpu (read_eeprom (ioaddr, i));
	}
#ifdef	MEM_MAPPING
	ioaddr = dev->base_addr;
#endif	
	/* Check CRC */
	crc = ~ether_crc_le (256 - 4, sromdata);
	if (psrom->crc != crc) {
		printk (KERN_ERR "%s: EEPROM data CRC error.\n", dev->name);
		return -1;
	}

	/* Set MAC address */
	for (i = 0; i < 6; i++)
		dev->dev_addr[i] = psrom->mac_addr[i];

393
	/* Parse Software Information Block */
L
Linus Torvalds 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	i = 0x30;
	psib = (u8 *) sromdata;
	do {
		cid = psib[i++];
		next = psib[i++];
		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
			printk (KERN_ERR "Cell data error\n");
			return -1;
		}
		switch (cid) {
		case 0:	/* Format version */
			break;
		case 1:	/* End of cell */
			return 0;
		case 2:	/* Duplex Polarity */
			np->duplex_polarity = psib[i];
			writeb (readb (ioaddr + PhyCtrl) | psib[i],
				ioaddr + PhyCtrl);
			break;
		case 3:	/* Wake Polarity */
			np->wake_polarity = psib[i];
			break;
		case 9:	/* Adapter description */
			j = (next - i > 255) ? 255 : next - i;
			memcpy (np->name, &(psib[i]), j);
			break;
		case 4:
		case 5:
		case 6:
		case 7:
		case 8:	/* Reversed */
			break;
		default:	/* Unknown cell */
			return -1;
		}
		i = next;
	} while (1);

	return 0;
}

static int
rio_open (struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	long ioaddr = dev->base_addr;
	int i;
	u16 macctrl;
	
443
	i = request_irq (dev->irq, &rio_interrupt, IRQF_SHARED, dev->name, dev);
L
Linus Torvalds 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
	if (i)
		return i;
	
	/* Reset all logic functions */
	writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,
		ioaddr + ASICCtrl + 2);
	mdelay(10);
	
	/* DebugCtrl bit 4, 5, 9 must set */
	writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);

	/* Jumbo frame */
	if (np->jumbo != 0)
		writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);

	alloc_list (dev);

	/* Get station address */
	for (i = 0; i < 6; i++)
		writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);

	set_multicast (dev);
	if (np->coalesce) {
		writel (np->rx_coalesce | np->rx_timeout << 16,
			ioaddr + RxDMAIntCtrl);
	}
	/* Set RIO to poll every N*320nsec. */
	writeb (0x20, ioaddr + RxDMAPollPeriod);
	writeb (0xff, ioaddr + TxDMAPollPeriod);
	writeb (0x30, ioaddr + RxDMABurstThresh);
	writeb (0x30, ioaddr + RxDMAUrgentThresh);
	writel (0x0007ffff, ioaddr + RmonStatMask);
	/* clear statistics */
	clear_stats (dev);

	/* VLAN supported */
	if (np->vlan) {
		/* priority field in RxDMAIntCtrl  */
		writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10, 
			ioaddr + RxDMAIntCtrl);
		/* VLANId */
		writew (np->vlan, ioaddr + VLANId);
		/* Length/Type should be 0x8100 */
		writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);
		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
		   VLAN information tagged by TFC' VID, CFI fields. */
		writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,
			ioaddr + MACCtrl);
	}

	init_timer (&np->timer);
	np->timer.expires = jiffies + 1*HZ;
	np->timer.data = (unsigned long) dev;
	np->timer.function = &rio_timer;
	add_timer (&np->timer);

	/* Start Tx/Rx */
	writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable, 
			ioaddr + MACCtrl);
	
	macctrl = 0;
	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
	writew(macctrl,	ioaddr + MACCtrl);

	netif_start_queue (dev);
	
	/* Enable default interrupts */
	EnableInt ();
	return 0;
}

static void 
rio_timer (unsigned long data)
{
	struct net_device *dev = (struct net_device *)data;
	struct netdev_private *np = netdev_priv(dev);
	unsigned int entry;
	int next_tick = 1*HZ;
	unsigned long flags;

	spin_lock_irqsave(&np->rx_lock, flags);
	/* Recover rx ring exhausted error */
	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
		/* Re-allocate skbuffs to fill the descriptor ring */
		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
			struct sk_buff *skb;
			entry = np->old_rx % RX_RING_SIZE;
			/* Dropped packets don't need to re-allocate */
			if (np->rx_skbuff[entry] == NULL) {
				skb = dev_alloc_skb (np->rx_buf_sz);
				if (skb == NULL) {
					np->rx_ring[entry].fraginfo = 0;
					printk (KERN_INFO
						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
						dev->name, entry);
					break;
				}
				np->rx_skbuff[entry] = skb;
				skb->dev = dev;
				/* 16 byte align the IP header */
				skb_reserve (skb, 2);
				np->rx_ring[entry].fraginfo =
				    cpu_to_le64 (pci_map_single
551
					 (np->pdev, skb->data, np->rx_buf_sz,
L
Linus Torvalds 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
					  PCI_DMA_FROMDEVICE));
			}
			np->rx_ring[entry].fraginfo |=
			    cpu_to_le64 (np->rx_buf_sz) << 48;
			np->rx_ring[entry].status = 0;
		} /* end for */
	} /* end if */
	spin_unlock_irqrestore (&np->rx_lock, flags);
	np->timer.expires = jiffies + next_tick;
	add_timer(&np->timer);
}
	
static void
rio_tx_timeout (struct net_device *dev)
{
	long ioaddr = dev->base_addr;

	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
		dev->name, readl (ioaddr + TxStatus));
	rio_free_tx(dev, 0);
	dev->if_port = 0;
	dev->trans_start = jiffies;
}

 /* allocate and initialize Tx and Rx descriptors */
static void
alloc_list (struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	int i;

	np->cur_rx = np->cur_tx = 0;
	np->old_rx = np->old_tx = 0;
	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);

	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
	for (i = 0; i < TX_RING_SIZE; i++) {
		np->tx_skbuff[i] = NULL;
		np->tx_ring[i].status = cpu_to_le64 (TFDDone);
		np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
					      ((i+1)%TX_RING_SIZE) *
					      sizeof (struct netdev_desc));
	}

	/* Initialize Rx descriptors */
	for (i = 0; i < RX_RING_SIZE; i++) {
		np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
						((i + 1) % RX_RING_SIZE) *
						sizeof (struct netdev_desc));
		np->rx_ring[i].status = 0;
		np->rx_ring[i].fraginfo = 0;
		np->rx_skbuff[i] = NULL;
	}

	/* Allocate the rx buffers */
	for (i = 0; i < RX_RING_SIZE; i++) {
		/* Allocated fixed size of skbuff */
		struct sk_buff *skb = dev_alloc_skb (np->rx_buf_sz);
		np->rx_skbuff[i] = skb;
		if (skb == NULL) {
			printk (KERN_ERR
				"%s: alloc_list: allocate Rx buffer error! ",
				dev->name);
			break;
		}
		skb->dev = dev;	/* Mark as being used by this device. */
		skb_reserve (skb, 2);	/* 16 byte align the IP header. */
		/* Rubicon now supports 40 bits of addressing space. */
		np->rx_ring[i].fraginfo =
		    cpu_to_le64 ( pci_map_single (
622
			 	  np->pdev, skb->data, np->rx_buf_sz,
L
Linus Torvalds 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
				  PCI_DMA_FROMDEVICE));
		np->rx_ring[i].fraginfo |= cpu_to_le64 (np->rx_buf_sz) << 48;
	}

	/* Set RFDListPtr */
	writel (cpu_to_le32 (np->rx_ring_dma), dev->base_addr + RFDListPtr0);
	writel (0, dev->base_addr + RFDListPtr1);

	return;
}

static int
start_xmit (struct sk_buff *skb, struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	struct netdev_desc *txdesc;
	unsigned entry;
	u32 ioaddr;
	u64 tfc_vlan_tag = 0;

	if (np->link_status == 0) {	/* Link Down */
		dev_kfree_skb(skb);
		return 0;
	}
	ioaddr = dev->base_addr;
	entry = np->cur_tx % TX_RING_SIZE;
	np->tx_skbuff[entry] = skb;
	txdesc = &np->tx_ring[entry];

#if 0
	if (skb->ip_summed == CHECKSUM_HW) {
		txdesc->status |=
		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
				 IPChecksumEnable);
	}
#endif
	if (np->vlan) {
		tfc_vlan_tag =
		    cpu_to_le64 (VLANTagInsert) |
		    (cpu_to_le64 (np->vlan) << 32) |
		    (cpu_to_le64 (skb->priority) << 45);
	}
	txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
							skb->len,
							PCI_DMA_TODEVICE));
	txdesc->fraginfo |= cpu_to_le64 (skb->len) << 48;

	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
	 * Work around: Always use 1 descriptor in 10Mbps mode */
	if (entry % np->tx_coalesce == 0 || np->speed == 10)
		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
					      WordAlignDisable | 
					      TxDMAIndicate |
					      (1 << FragCountShift));
	else
		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
					      WordAlignDisable | 
					      (1 << FragCountShift));

	/* TxDMAPollNow */
	writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl);
	/* Schedule ISR */
	writel(10000, ioaddr + CountDown);
	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
			< TX_QUEUE_LEN - 1 && np->speed != 10) {
		/* do nothing */
	} else if (!netif_queue_stopped(dev)) {
		netif_stop_queue (dev);
	}

	/* The first TFDListPtr */
	if (readl (dev->base_addr + TFDListPtr0) == 0) {
		writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc),
			dev->base_addr + TFDListPtr0);
		writel (0, dev->base_addr + TFDListPtr1);
	}
	
	/* NETDEV WATCHDOG timer */
	dev->trans_start = jiffies;
	return 0;
}

static irqreturn_t
rio_interrupt (int irq, void *dev_instance, struct pt_regs *rgs)
{
	struct net_device *dev = dev_instance;
	struct netdev_private *np;
	unsigned int_status;
	long ioaddr;
	int cnt = max_intrloop;
	int handled = 0;

	ioaddr = dev->base_addr;
	np = netdev_priv(dev);
	while (1) {
		int_status = readw (ioaddr + IntStatus); 
		writew (int_status, ioaddr + IntStatus);
		int_status &= DEFAULT_INTR;
		if (int_status == 0 || --cnt < 0)
			break;
		handled = 1;
		/* Processing received packets */
		if (int_status & RxDMAComplete)
			receive_packet (dev);
		/* TxDMAComplete interrupt */
		if ((int_status & (TxDMAComplete|IntRequested))) {
			int tx_status;
			tx_status = readl (ioaddr + TxStatus);
			if (tx_status & 0x01)
				tx_error (dev, tx_status);
			/* Free used tx skbuffs */
			rio_free_tx (dev, 1);		
		}

		/* Handle uncommon events */
		if (int_status &
		    (HostError | LinkEvent | UpdateStats))
			rio_error (dev, int_status);
	}
	if (np->cur_tx != np->old_tx)
		writel (100, ioaddr + CountDown);
	return IRQ_RETVAL(handled);
}

static void 
rio_free_tx (struct net_device *dev, int irq) 
{
	struct netdev_private *np = netdev_priv(dev);
	int entry = np->old_tx % TX_RING_SIZE;
	int tx_use = 0;
	unsigned long flag = 0;
	
	if (irq)
		spin_lock(&np->tx_lock);
	else
		spin_lock_irqsave(&np->tx_lock, flag);
			
	/* Free used tx skbuffs */
	while (entry != np->cur_tx) {
		struct sk_buff *skb;

		if (!(np->tx_ring[entry].status & TFDDone))
			break;
		skb = np->tx_skbuff[entry];
		pci_unmap_single (np->pdev,
769
				  np->tx_ring[entry].fraginfo & DMA_48BIT_MASK,
L
Linus Torvalds 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
				  skb->len, PCI_DMA_TODEVICE);
		if (irq)
			dev_kfree_skb_irq (skb);
		else
			dev_kfree_skb (skb);

		np->tx_skbuff[entry] = NULL;
		entry = (entry + 1) % TX_RING_SIZE;
		tx_use++;
	}
	if (irq)
		spin_unlock(&np->tx_lock);
	else
		spin_unlock_irqrestore(&np->tx_lock, flag);
	np->old_tx = entry;

	/* If the ring is no longer full, clear tx_full and 
	   call netif_wake_queue() */

	if (netif_queue_stopped(dev) &&
	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE 
	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
		netif_wake_queue (dev);
	}
}

static void
tx_error (struct net_device *dev, int tx_status)
{
	struct netdev_private *np;
	long ioaddr = dev->base_addr;
	int frame_id;
	int i;

	np = netdev_priv(dev);

	frame_id = (tx_status & 0xffff0000);
	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
		dev->name, tx_status, frame_id);
	np->stats.tx_errors++;
	/* Ttransmit Underrun */
	if (tx_status & 0x10) {
		np->stats.tx_fifo_errors++;
		writew (readw (ioaddr + TxStartThresh) + 0x10,
			ioaddr + TxStartThresh);
		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
		writew (TxReset | DMAReset | FIFOReset | NetworkReset,
			ioaddr + ASICCtrl + 2);
		/* Wait for ResetBusy bit clear */
		for (i = 50; i > 0; i--) {
			if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
				break;
			mdelay (1);
		}
		rio_free_tx (dev, 1);
		/* Reset TFDListPtr */
		writel (np->tx_ring_dma +
			np->old_tx * sizeof (struct netdev_desc),
			dev->base_addr + TFDListPtr0);
		writel (0, dev->base_addr + TFDListPtr1);

		/* Let TxStartThresh stay default value */
	}
	/* Late Collision */
	if (tx_status & 0x04) {
		np->stats.tx_fifo_errors++;
		/* TxReset and clear FIFO */
		writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2);
		/* Wait reset done */
		for (i = 50; i > 0; i--) {
			if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
				break;
			mdelay (1);
		}
		/* Let TxStartThresh stay default value */
	}
	/* Maximum Collisions */
#ifdef ETHER_STATS	
	if (tx_status & 0x08) 
		np->stats.collisions16++;
#else
	if (tx_status & 0x08) 
		np->stats.collisions++;
#endif
	/* Restart the Tx */
	writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl);
}

static int
receive_packet (struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	int entry = np->cur_rx % RX_RING_SIZE;
	int cnt = 30;

	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
	while (1) {
		struct netdev_desc *desc = &np->rx_ring[entry];
		int pkt_len;
		u64 frame_status;

		if (!(desc->status & RFDDone) ||
		    !(desc->status & FrameStart) || !(desc->status & FrameEnd))
			break;

		/* Chip omits the CRC. */
		pkt_len = le64_to_cpu (desc->status & 0xffff);
		frame_status = le64_to_cpu (desc->status);
		if (--cnt < 0)
			break;
		/* Update rx error statistics, drop packet. */
		if (frame_status & RFS_Errors) {
			np->stats.rx_errors++;
			if (frame_status & (RxRuntFrame | RxLengthError))
				np->stats.rx_length_errors++;
			if (frame_status & RxFCSError)
				np->stats.rx_crc_errors++;
			if (frame_status & RxAlignmentError && np->speed != 1000)
				np->stats.rx_frame_errors++;
			if (frame_status & RxFIFOOverrun)
	 			np->stats.rx_fifo_errors++;
		} else {
			struct sk_buff *skb;

			/* Small skbuffs for short packets */
			if (pkt_len > copy_thresh) {
J
Jon Mason 已提交
896
				pci_unmap_single (np->pdev,
897
						  desc->fraginfo & DMA_48BIT_MASK,
L
Linus Torvalds 已提交
898 899 900 901 902 903
						  np->rx_buf_sz,
						  PCI_DMA_FROMDEVICE);
				skb_put (skb = np->rx_skbuff[entry], pkt_len);
				np->rx_skbuff[entry] = NULL;
			} else if ((skb = dev_alloc_skb (pkt_len + 2)) != NULL) {
				pci_dma_sync_single_for_cpu(np->pdev,
J
Jon Mason 已提交
904
				  			    desc->fraginfo & 
905
							    	DMA_48BIT_MASK,
L
Linus Torvalds 已提交
906 907 908 909 910 911
							    np->rx_buf_sz,
							    PCI_DMA_FROMDEVICE);
				skb->dev = dev;
				/* 16 byte align the IP header */
				skb_reserve (skb, 2);
				eth_copy_and_sum (skb,
912
						  np->rx_skbuff[entry]->data,
L
Linus Torvalds 已提交
913 914 915
						  pkt_len, 0);
				skb_put (skb, pkt_len);
				pci_dma_sync_single_for_device(np->pdev,
J
Jon Mason 已提交
916
				  			       desc->fraginfo &
917
							       	 DMA_48BIT_MASK,
L
Linus Torvalds 已提交
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
							       np->rx_buf_sz,
							       PCI_DMA_FROMDEVICE);
			}
			skb->protocol = eth_type_trans (skb, dev);
#if 0			
			/* Checksum done by hw, but csum value unavailable. */
			if (np->pci_rev_id >= 0x0c && 
				!(frame_status & (TCPError | UDPError | IPError))) {
				skb->ip_summed = CHECKSUM_UNNECESSARY;
			} 
#endif
			netif_rx (skb);
			dev->last_rx = jiffies;
		}
		entry = (entry + 1) % RX_RING_SIZE;
	}
	spin_lock(&np->rx_lock);
	np->cur_rx = entry;
	/* Re-allocate skbuffs to fill the descriptor ring */
	entry = np->old_rx;
	while (entry != np->cur_rx) {
		struct sk_buff *skb;
		/* Dropped packets don't need to re-allocate */
		if (np->rx_skbuff[entry] == NULL) {
			skb = dev_alloc_skb (np->rx_buf_sz);
			if (skb == NULL) {
				np->rx_ring[entry].fraginfo = 0;
				printk (KERN_INFO
					"%s: receive_packet: "
					"Unable to re-allocate Rx skbuff.#%d\n",
					dev->name, entry);
				break;
			}
			np->rx_skbuff[entry] = skb;
			skb->dev = dev;
			/* 16 byte align the IP header */
			skb_reserve (skb, 2);
			np->rx_ring[entry].fraginfo =
			    cpu_to_le64 (pci_map_single
957
					 (np->pdev, skb->data, np->rx_buf_sz,
L
Linus Torvalds 已提交
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
					  PCI_DMA_FROMDEVICE));
		}
		np->rx_ring[entry].fraginfo |=
		    cpu_to_le64 (np->rx_buf_sz) << 48;
		np->rx_ring[entry].status = 0;
		entry = (entry + 1) % RX_RING_SIZE;
	}
	np->old_rx = entry;
	spin_unlock(&np->rx_lock);
	return 0;
}

static void
rio_error (struct net_device *dev, int int_status)
{
	long ioaddr = dev->base_addr;
	struct netdev_private *np = netdev_priv(dev);
	u16 macctrl;

	/* Link change event */
	if (int_status & LinkEvent) {
		if (mii_wait_link (dev, 10) == 0) {
			printk (KERN_INFO "%s: Link up\n", dev->name);
			if (np->phy_media)
				mii_get_media_pcs (dev);
			else
				mii_get_media (dev);
			if (np->speed == 1000)
				np->tx_coalesce = tx_coalesce;
			else 
				np->tx_coalesce = 1;
			macctrl = 0;
			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
			macctrl |= (np->tx_flow) ? 
				TxFlowControlEnable : 0;
			macctrl |= (np->rx_flow) ? 
				RxFlowControlEnable : 0;
			writew(macctrl,	ioaddr + MACCtrl);
			np->link_status = 1;
			netif_carrier_on(dev);
		} else {
			printk (KERN_INFO "%s: Link off\n", dev->name);
			np->link_status = 0;
			netif_carrier_off(dev);
		}
	}

	/* UpdateStats statistics registers */
	if (int_status & UpdateStats) {
		get_stats (dev);
	}

	/* PCI Error, a catastronphic error related to the bus interface 
	   occurs, set GlobalReset and HostReset to reset. */
	if (int_status & HostError) {
		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
			dev->name, int_status);
		writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2);
		mdelay (500);
	}
}

static struct net_device_stats *
get_stats (struct net_device *dev)
{
	long ioaddr = dev->base_addr;
	struct netdev_private *np = netdev_priv(dev);
#ifdef MEM_MAPPING
	int i;
#endif
	unsigned int stat_reg;

	/* All statistics registers need to be acknowledged,
	   else statistic overflow could cause problems */
	
	np->stats.rx_packets += readl (ioaddr + FramesRcvOk);
	np->stats.tx_packets += readl (ioaddr + FramesXmtOk);
	np->stats.rx_bytes += readl (ioaddr + OctetRcvOk);
	np->stats.tx_bytes += readl (ioaddr + OctetXmtOk);

	np->stats.multicast = readl (ioaddr + McstFramesRcvdOk);
	np->stats.collisions += readl (ioaddr + SingleColFrames) 
			     +  readl (ioaddr + MultiColFrames); 
	
	/* detailed tx errors */
	stat_reg = readw (ioaddr + FramesAbortXSColls);
	np->stats.tx_aborted_errors += stat_reg;
	np->stats.tx_errors += stat_reg;

	stat_reg = readw (ioaddr + CarrierSenseErrors);
	np->stats.tx_carrier_errors += stat_reg;
	np->stats.tx_errors += stat_reg;

	/* Clear all other statistic register. */
	readl (ioaddr + McstOctetXmtOk);
	readw (ioaddr + BcstFramesXmtdOk);
	readl (ioaddr + McstFramesXmtdOk);
	readw (ioaddr + BcstFramesRcvdOk);
	readw (ioaddr + MacControlFramesRcvd);
	readw (ioaddr + FrameTooLongErrors);
	readw (ioaddr + InRangeLengthErrors);
	readw (ioaddr + FramesCheckSeqErrors);
	readw (ioaddr + FramesLostRxErrors);
	readl (ioaddr + McstOctetXmtOk);
	readl (ioaddr + BcstOctetXmtOk);
	readl (ioaddr + McstFramesXmtdOk);
	readl (ioaddr + FramesWDeferredXmt);
	readl (ioaddr + LateCollisions);
	readw (ioaddr + BcstFramesXmtdOk);
	readw (ioaddr + MacControlFramesXmtd);
	readw (ioaddr + FramesWEXDeferal);

#ifdef MEM_MAPPING
	for (i = 0x100; i <= 0x150; i += 4)
		readl (ioaddr + i);
#endif
	readw (ioaddr + TxJumboFrames);
	readw (ioaddr + RxJumboFrames);
	readw (ioaddr + TCPCheckSumErrors);
	readw (ioaddr + UDPCheckSumErrors);
	readw (ioaddr + IPCheckSumErrors);
	return &np->stats;
}

static int
clear_stats (struct net_device *dev)
{
	long ioaddr = dev->base_addr;
#ifdef MEM_MAPPING
	int i;
#endif 

	/* All statistics registers need to be acknowledged,
	   else statistic overflow could cause problems */
	readl (ioaddr + FramesRcvOk);
	readl (ioaddr + FramesXmtOk);
	readl (ioaddr + OctetRcvOk);
	readl (ioaddr + OctetXmtOk);

	readl (ioaddr + McstFramesRcvdOk);
	readl (ioaddr + SingleColFrames);
	readl (ioaddr + MultiColFrames);
	readl (ioaddr + LateCollisions);
	/* detailed rx errors */		
	readw (ioaddr + FrameTooLongErrors);
	readw (ioaddr + InRangeLengthErrors);
	readw (ioaddr + FramesCheckSeqErrors);
	readw (ioaddr + FramesLostRxErrors);

	/* detailed tx errors */
	readw (ioaddr + FramesAbortXSColls);
	readw (ioaddr + CarrierSenseErrors);

	/* Clear all other statistic register. */
	readl (ioaddr + McstOctetXmtOk);
	readw (ioaddr + BcstFramesXmtdOk);
	readl (ioaddr + McstFramesXmtdOk);
	readw (ioaddr + BcstFramesRcvdOk);
	readw (ioaddr + MacControlFramesRcvd);
	readl (ioaddr + McstOctetXmtOk);
	readl (ioaddr + BcstOctetXmtOk);
	readl (ioaddr + McstFramesXmtdOk);
	readl (ioaddr + FramesWDeferredXmt);
	readw (ioaddr + BcstFramesXmtdOk);
	readw (ioaddr + MacControlFramesXmtd);
	readw (ioaddr + FramesWEXDeferal);
#ifdef MEM_MAPPING
	for (i = 0x100; i <= 0x150; i += 4)
		readl (ioaddr + i);
#endif 
	readw (ioaddr + TxJumboFrames);
	readw (ioaddr + RxJumboFrames);
	readw (ioaddr + TCPCheckSumErrors);
	readw (ioaddr + UDPCheckSumErrors);
	readw (ioaddr + IPCheckSumErrors);
	return 0;
}


int
change_mtu (struct net_device *dev, int new_mtu)
{
	struct netdev_private *np = netdev_priv(dev);
	int max = (np->jumbo) ? MAX_JUMBO : 1536;

	if ((new_mtu < 68) || (new_mtu > max)) {
		return -EINVAL;
	}

	dev->mtu = new_mtu;

	return 0;
}

static void
set_multicast (struct net_device *dev)
{
	long ioaddr = dev->base_addr;
	u32 hash_table[2];
	u16 rx_mode = 0;
	struct netdev_private *np = netdev_priv(dev);
	
	hash_table[0] = hash_table[1] = 0;
	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
	hash_table[1] |= cpu_to_le32(0x02000000);
	if (dev->flags & IFF_PROMISC) {
		/* Receive all frames promiscuously. */
		rx_mode = ReceiveAllFrames;
	} else if ((dev->flags & IFF_ALLMULTI) || 
			(dev->mc_count > multicast_filter_limit)) {
		/* Receive broadcast and multicast frames */
		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
	} else if (dev->mc_count > 0) {
		int i;
		struct dev_mc_list *mclist;
		/* Receive broadcast frames and multicast frames filtering 
		   by Hashtable */
		rx_mode =
		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
		for (i=0, mclist = dev->mc_list; mclist && i < dev->mc_count; 
				i++, mclist=mclist->next) 
		{
			int bit, index = 0;
			int crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
			/* The inverted high significant 6 bits of CRC are
			   used as an index to hashtable */
			for (bit = 0; bit < 6; bit++)
				if (crc & (1 << (31 - bit)))
					index |= (1 << bit);
			hash_table[index / 32] |= (1 << (index % 32));
		}
	} else {
		rx_mode = ReceiveBroadcast | ReceiveUnicast;
	}
	if (np->vlan) {
		/* ReceiveVLANMatch field in ReceiveMode */
		rx_mode |= ReceiveVLANMatch;
	}

	writel (hash_table[0], ioaddr + HashTable0);
	writel (hash_table[1], ioaddr + HashTable1);
	writew (rx_mode, ioaddr + ReceiveMode);
}

static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct netdev_private *np = netdev_priv(dev);
	strcpy(info->driver, "dl2k");
	strcpy(info->version, DRV_VERSION);
	strcpy(info->bus_info, pci_name(np->pdev));
}	

static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct netdev_private *np = netdev_priv(dev);
	if (np->phy_media) {
		/* fiber device */
		cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
		cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
		cmd->port = PORT_FIBRE;
		cmd->transceiver = XCVR_INTERNAL;	
	} else {
		/* copper device */
		cmd->supported = SUPPORTED_10baseT_Half | 
			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
			SUPPORTED_Autoneg | SUPPORTED_MII;
		cmd->advertising = ADVERTISED_10baseT_Half |
			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
			ADVERTISED_Autoneg | ADVERTISED_MII;
		cmd->port = PORT_MII;
		cmd->transceiver = XCVR_INTERNAL;
	}
	if ( np->link_status ) { 
		cmd->speed = np->speed;
		cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
	} else {
		cmd->speed = -1;
		cmd->duplex = -1;
	}
	if ( np->an_enable)
		cmd->autoneg = AUTONEG_ENABLE;
	else
		cmd->autoneg = AUTONEG_DISABLE;
	
	cmd->phy_address = np->phy_addr;
	return 0;				   
}

static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct netdev_private *np = netdev_priv(dev);
	netif_carrier_off(dev);
	if (cmd->autoneg == AUTONEG_ENABLE) {
		if (np->an_enable)
			return 0;
		else {
			np->an_enable = 1;
			mii_set_media(dev);
			return 0;	
		}	
	} else {
		np->an_enable = 0;
		if (np->speed == 1000) {
			cmd->speed = SPEED_100;			
			cmd->duplex = DUPLEX_FULL;
			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
		}
		switch(cmd->speed + cmd->duplex) {
		
		case SPEED_10 + DUPLEX_HALF:
			np->speed = 10;
			np->full_duplex = 0;
			break;
		
		case SPEED_10 + DUPLEX_FULL:
			np->speed = 10;
			np->full_duplex = 1;
			break;
		case SPEED_100 + DUPLEX_HALF:
			np->speed = 100;
			np->full_duplex = 0;
			break;
		case SPEED_100 + DUPLEX_FULL:
			np->speed = 100;
			np->full_duplex = 1;
			break;
		case SPEED_1000 + DUPLEX_HALF:/* not supported */
		case SPEED_1000 + DUPLEX_FULL:/* not supported */
		default:
			return -EINVAL;	
		}
		mii_set_media(dev);
	}
	return 0;
}

static u32 rio_get_link(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	return np->link_status;
}

static struct ethtool_ops ethtool_ops = {
	.get_drvinfo = rio_get_drvinfo,
	.get_settings = rio_get_settings,
	.set_settings = rio_set_settings,
	.get_link = rio_get_link,
};

static int
rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
{
	int phy_addr;
	struct netdev_private *np = netdev_priv(dev);
	struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru;
	
	struct netdev_desc *desc;
	int i;

	phy_addr = np->phy_addr;
	switch (cmd) {
	case SIOCDEVPRIVATE:
		break;
	
	case SIOCDEVPRIVATE + 1:
		miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num);
		break;
	case SIOCDEVPRIVATE + 2:
		mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value);
		break;
	case SIOCDEVPRIVATE + 3:
		break;
	case SIOCDEVPRIVATE + 4:
		break;
	case SIOCDEVPRIVATE + 5:
		netif_stop_queue (dev);
		break;
	case SIOCDEVPRIVATE + 6:
		netif_wake_queue (dev);
		break;
	case SIOCDEVPRIVATE + 7:
		printk
		    ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
		     netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx,
		     np->old_rx);
		break;
	case SIOCDEVPRIVATE + 8:
		printk("TX ring:\n");
		for (i = 0; i < TX_RING_SIZE; i++) {
			desc = &np->tx_ring[i];
			printk
			    ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
			     i,
			     (u32) (np->tx_ring_dma + i * sizeof (*desc)),
			     (u32) desc->next_desc,
			     (u32) desc->status, (u32) (desc->fraginfo >> 32),
			     (u32) desc->fraginfo);
			printk ("\n");
		}
		printk ("\n");
		break;

	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

#define EEP_READ 0x0200
#define EEP_BUSY 0x8000
/* Read the EEPROM word */
/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
int
read_eeprom (long ioaddr, int eep_addr)
{
	int i = 1000;
	outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl);
	while (i-- > 0) {
		if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) {
			return inw (ioaddr + EepromData);
		}
	}
	return 0;
}

enum phy_ctrl_bits {
	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
	MII_DUPLEX = 0x08,
};

#define mii_delay() readb(ioaddr)
static void
mii_sendbit (struct net_device *dev, u32 data)
{
	long ioaddr = dev->base_addr + PhyCtrl;
	data = (data) ? MII_DATA1 : 0;
	data |= MII_WRITE;
	data |= (readb (ioaddr) & 0xf8) | MII_WRITE;
	writeb (data, ioaddr);
	mii_delay ();
	writeb (data | MII_CLK, ioaddr);
	mii_delay ();
}

static int
mii_getbit (struct net_device *dev)
{
	long ioaddr = dev->base_addr + PhyCtrl;
	u8 data;

	data = (readb (ioaddr) & 0xf8) | MII_READ;
	writeb (data, ioaddr);
	mii_delay ();
	writeb (data | MII_CLK, ioaddr);
	mii_delay ();
	return ((readb (ioaddr) >> 1) & 1);
}

static void
mii_send_bits (struct net_device *dev, u32 data, int len)
{
	int i;
	for (i = len - 1; i >= 0; i--) {
		mii_sendbit (dev, data & (1 << i));
	}
}

static int
mii_read (struct net_device *dev, int phy_addr, int reg_num)
{
	u32 cmd;
	int i;
	u32 retval = 0;

	/* Preamble */
	mii_send_bits (dev, 0xffffffff, 32);
	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
	/* ST,OP = 0110'b for read operation */
	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
	mii_send_bits (dev, cmd, 14);
	/* Turnaround */
	if (mii_getbit (dev))
		goto err_out;
	/* Read data */
	for (i = 0; i < 16; i++) {
		retval |= mii_getbit (dev);
		retval <<= 1;
	}
	/* End cycle */
	mii_getbit (dev);
	return (retval >> 1) & 0xffff;

      err_out:
	return 0;
}
static int
mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
{
	u32 cmd;

	/* Preamble */
	mii_send_bits (dev, 0xffffffff, 32);
	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
	mii_send_bits (dev, cmd, 32);
	/* End cycle */
	mii_getbit (dev);
	return 0;
}
static int
mii_wait_link (struct net_device *dev, int wait)
{
	BMSR_t bmsr;
	int phy_addr;
	struct netdev_private *np;

	np = netdev_priv(dev);
	phy_addr = np->phy_addr;

	do {
		bmsr.image = mii_read (dev, phy_addr, MII_BMSR);
		if (bmsr.bits.link_status)
			return 0;
		mdelay (1);
	} while (--wait > 0);
	return -1;
}
static int
mii_get_media (struct net_device *dev)
{
	ANAR_t negotiate;
	BMSR_t bmsr;
	BMCR_t bmcr;
	MSCR_t mscr;
	MSSR_t mssr;
	int phy_addr;
	struct netdev_private *np;

	np = netdev_priv(dev);
	phy_addr = np->phy_addr;

	bmsr.image = mii_read (dev, phy_addr, MII_BMSR);
	if (np->an_enable) {
		if (!bmsr.bits.an_complete) {
			/* Auto-Negotiation not completed */
			return -1;
		}
		negotiate.image = mii_read (dev, phy_addr, MII_ANAR) & 
			mii_read (dev, phy_addr, MII_ANLPAR);
		mscr.image = mii_read (dev, phy_addr, MII_MSCR);
		mssr.image = mii_read (dev, phy_addr, MII_MSSR);
		if (mscr.bits.media_1000BT_FD & mssr.bits.lp_1000BT_FD) {
			np->speed = 1000;
			np->full_duplex = 1;
			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
		} else if (mscr.bits.media_1000BT_HD & mssr.bits.lp_1000BT_HD) {
			np->speed = 1000;
			np->full_duplex = 0;
			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
		} else if (negotiate.bits.media_100BX_FD) {
			np->speed = 100;
			np->full_duplex = 1;
			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
		} else if (negotiate.bits.media_100BX_HD) {
			np->speed = 100;
			np->full_duplex = 0;
			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
		} else if (negotiate.bits.media_10BT_FD) {
			np->speed = 10;
			np->full_duplex = 1;
			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
		} else if (negotiate.bits.media_10BT_HD) {
			np->speed = 10;
			np->full_duplex = 0;
			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
		}
		if (negotiate.bits.pause) {
			np->tx_flow &= 1;
			np->rx_flow &= 1;
		} else if (negotiate.bits.asymmetric) {
			np->tx_flow = 0;
			np->rx_flow &= 1;
		}
		/* else tx_flow, rx_flow = user select  */
	} else {
		bmcr.image = mii_read (dev, phy_addr, MII_BMCR);
		if (bmcr.bits.speed100 == 1 && bmcr.bits.speed1000 == 0) {
			printk (KERN_INFO "Operating at 100 Mbps, ");
		} else if (bmcr.bits.speed100 == 0 && bmcr.bits.speed1000 == 0) {
			printk (KERN_INFO "Operating at 10 Mbps, ");
		} else if (bmcr.bits.speed100 == 0 && bmcr.bits.speed1000 == 1) {
			printk (KERN_INFO "Operating at 1000 Mbps, ");
		}
		if (bmcr.bits.duplex_mode) {
			printk ("Full duplex\n");
		} else {
			printk ("Half duplex\n");
		}
	}
	if (np->tx_flow) 
		printk(KERN_INFO "Enable Tx Flow Control\n");
	else	
		printk(KERN_INFO "Disable Tx Flow Control\n");
	if (np->rx_flow)
		printk(KERN_INFO "Enable Rx Flow Control\n");
	else
		printk(KERN_INFO "Disable Rx Flow Control\n");

	return 0;
}

static int
mii_set_media (struct net_device *dev)
{
	PHY_SCR_t pscr;
	BMCR_t bmcr;
	BMSR_t bmsr;
	ANAR_t anar;
	int phy_addr;
	struct netdev_private *np;
	np = netdev_priv(dev);
	phy_addr = np->phy_addr;

	/* Does user set speed? */
	if (np->an_enable) {
		/* Advertise capabilities */
		bmsr.image = mii_read (dev, phy_addr, MII_BMSR);
		anar.image = mii_read (dev, phy_addr, MII_ANAR);
		anar.bits.media_100BX_FD = bmsr.bits.media_100BX_FD;
		anar.bits.media_100BX_HD = bmsr.bits.media_100BX_HD;
		anar.bits.media_100BT4 = bmsr.bits.media_100BT4;
		anar.bits.media_10BT_FD = bmsr.bits.media_10BT_FD;
		anar.bits.media_10BT_HD = bmsr.bits.media_10BT_HD;
		anar.bits.pause = 1;
		anar.bits.asymmetric = 1;
		mii_write (dev, phy_addr, MII_ANAR, anar.image);

		/* Enable Auto crossover */
		pscr.image = mii_read (dev, phy_addr, MII_PHY_SCR);
		pscr.bits.mdi_crossover_mode = 3;	/* 11'b */
		mii_write (dev, phy_addr, MII_PHY_SCR, pscr.image);
		
		/* Soft reset PHY */
		mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
		bmcr.image = 0;
		bmcr.bits.an_enable = 1;
		bmcr.bits.restart_an = 1;
		bmcr.bits.reset = 1;
		mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
		mdelay(1);
	} else {
		/* Force speed setting */
		/* 1) Disable Auto crossover */
		pscr.image = mii_read (dev, phy_addr, MII_PHY_SCR);
		pscr.bits.mdi_crossover_mode = 0;
		mii_write (dev, phy_addr, MII_PHY_SCR, pscr.image);

		/* 2) PHY Reset */
		bmcr.image = mii_read (dev, phy_addr, MII_BMCR);
		bmcr.bits.reset = 1;
		mii_write (dev, phy_addr, MII_BMCR, bmcr.image);

		/* 3) Power Down */
		bmcr.image = 0x1940;	/* must be 0x1940 */
		mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
		mdelay (100);	/* wait a certain time */

		/* 4) Advertise nothing */
		mii_write (dev, phy_addr, MII_ANAR, 0);

		/* 5) Set media and Power Up */
		bmcr.image = 0;
		bmcr.bits.power_down = 1;
		if (np->speed == 100) {
			bmcr.bits.speed100 = 1;
			bmcr.bits.speed1000 = 0;
			printk (KERN_INFO "Manual 100 Mbps, ");
		} else if (np->speed == 10) {
			bmcr.bits.speed100 = 0;
			bmcr.bits.speed1000 = 0;
			printk (KERN_INFO "Manual 10 Mbps, ");
		}
		if (np->full_duplex) {
			bmcr.bits.duplex_mode = 1;
			printk ("Full duplex\n");
		} else {
			bmcr.bits.duplex_mode = 0;
			printk ("Half duplex\n");
		}
#if 0
		/* Set 1000BaseT Master/Slave setting */
		mscr.image = mii_read (dev, phy_addr, MII_MSCR);
		mscr.bits.cfg_enable = 1;
		mscr.bits.cfg_value = 0;
#endif
		mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
		mdelay(10);
	}
	return 0;
}

static int
mii_get_media_pcs (struct net_device *dev)
{
	ANAR_PCS_t negotiate;
	BMSR_t bmsr;
	BMCR_t bmcr;
	int phy_addr;
	struct netdev_private *np;

	np = netdev_priv(dev);
	phy_addr = np->phy_addr;

	bmsr.image = mii_read (dev, phy_addr, PCS_BMSR);
	if (np->an_enable) {
		if (!bmsr.bits.an_complete) {
			/* Auto-Negotiation not completed */
			return -1;
		}
		negotiate.image = mii_read (dev, phy_addr, PCS_ANAR) & 
			mii_read (dev, phy_addr, PCS_ANLPAR);
		np->speed = 1000;
		if (negotiate.bits.full_duplex) {
			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
			np->full_duplex = 1;
		} else {
			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
			np->full_duplex = 0;
		}
		if (negotiate.bits.pause) {
			np->tx_flow &= 1;
			np->rx_flow &= 1;
		} else if (negotiate.bits.asymmetric) {
			np->tx_flow = 0;
			np->rx_flow &= 1;
		}
		/* else tx_flow, rx_flow = user select  */
	} else {
		bmcr.image = mii_read (dev, phy_addr, PCS_BMCR);
		printk (KERN_INFO "Operating at 1000 Mbps, ");
		if (bmcr.bits.duplex_mode) {
			printk ("Full duplex\n");
		} else {
			printk ("Half duplex\n");
		}
	}
	if (np->tx_flow) 
		printk(KERN_INFO "Enable Tx Flow Control\n");
	else	
		printk(KERN_INFO "Disable Tx Flow Control\n");
	if (np->rx_flow)
		printk(KERN_INFO "Enable Rx Flow Control\n");
	else
		printk(KERN_INFO "Disable Rx Flow Control\n");

	return 0;
}

static int
mii_set_media_pcs (struct net_device *dev)
{
	BMCR_t bmcr;
	ESR_t esr;
	ANAR_PCS_t anar;
	int phy_addr;
	struct netdev_private *np;
	np = netdev_priv(dev);
	phy_addr = np->phy_addr;

	/* Auto-Negotiation? */
	if (np->an_enable) {
		/* Advertise capabilities */
		esr.image = mii_read (dev, phy_addr, PCS_ESR);
		anar.image = mii_read (dev, phy_addr, MII_ANAR);
		anar.bits.half_duplex = 
			esr.bits.media_1000BT_HD | esr.bits.media_1000BX_HD;
		anar.bits.full_duplex = 
			esr.bits.media_1000BT_FD | esr.bits.media_1000BX_FD;
		anar.bits.pause = 1;
		anar.bits.asymmetric = 1;
		mii_write (dev, phy_addr, MII_ANAR, anar.image);

		/* Soft reset PHY */
		mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
		bmcr.image = 0;
		bmcr.bits.an_enable = 1;
		bmcr.bits.restart_an = 1;
		bmcr.bits.reset = 1;
		mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
		mdelay(1);
	} else {
		/* Force speed setting */
		/* PHY Reset */
		bmcr.image = 0;
		bmcr.bits.reset = 1;
		mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
		mdelay(10);
		bmcr.image = 0;
		bmcr.bits.an_enable = 0;
		if (np->full_duplex) {
			bmcr.bits.duplex_mode = 1;
			printk (KERN_INFO "Manual full duplex\n");
		} else {
			bmcr.bits.duplex_mode = 0;
			printk (KERN_INFO "Manual half duplex\n");
		}
		mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
		mdelay(10);

		/*  Advertise nothing */
		mii_write (dev, phy_addr, MII_ANAR, 0);
	}
	return 0;
}


static int
rio_close (struct net_device *dev)
{
	long ioaddr = dev->base_addr;
	struct netdev_private *np = netdev_priv(dev);
	struct sk_buff *skb;
	int i;

	netif_stop_queue (dev);

	/* Disable interrupts */
	writew (0, ioaddr + IntEnable);

	/* Stop Tx and Rx logics */
	writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl);
	synchronize_irq (dev->irq);
	free_irq (dev->irq, dev);
	del_timer_sync (&np->timer);
	
	/* Free all the skbuffs in the queue. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		np->rx_ring[i].status = 0;
		np->rx_ring[i].fraginfo = 0;
		skb = np->rx_skbuff[i];
		if (skb) {
J
Jon Mason 已提交
1803
			pci_unmap_single(np->pdev, 
1804
					 np->rx_ring[i].fraginfo & DMA_48BIT_MASK,
J
Jon Mason 已提交
1805
					 skb->len, PCI_DMA_FROMDEVICE);
L
Linus Torvalds 已提交
1806 1807 1808 1809 1810 1811 1812
			dev_kfree_skb (skb);
			np->rx_skbuff[i] = NULL;
		}
	}
	for (i = 0; i < TX_RING_SIZE; i++) {
		skb = np->tx_skbuff[i];
		if (skb) {
J
Jon Mason 已提交
1813
			pci_unmap_single(np->pdev, 
1814
					 np->tx_ring[i].fraginfo & DMA_48BIT_MASK,
J
Jon Mason 已提交
1815
					 skb->len, PCI_DMA_TODEVICE);
L
Linus Torvalds 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
			dev_kfree_skb (skb);
			np->tx_skbuff[i] = NULL;
		}
	}

	return 0;
}

static void __devexit
rio_remove1 (struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata (pdev);

	if (dev) {
		struct netdev_private *np = netdev_priv(dev);

		unregister_netdev (dev);
		pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
				     np->rx_ring_dma);
		pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
				     np->tx_ring_dma);
#ifdef MEM_MAPPING
		iounmap ((char *) (dev->base_addr));
#endif
		free_netdev (dev);
		pci_release_regions (pdev);
		pci_disable_device (pdev);
	}
	pci_set_drvdata (pdev, NULL);
}

static struct pci_driver rio_driver = {
	.name		= "dl2k",
	.id_table	= rio_pci_tbl,
	.probe		= rio_probe1,
	.remove		= __devexit_p(rio_remove1),
};

static int __init
rio_init (void)
{
	return pci_module_init (&rio_driver);
}

static void __exit
rio_exit (void)
{
	pci_unregister_driver (&rio_driver);
}

module_init (rio_init);
module_exit (rio_exit);

/*
 
Compile command: 
 
gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c

Read Documentation/networking/dl2k.txt for details.

*/