switch.c 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2015 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

18
#include <linux/types.h>
19
#include <linux/jump_label.h>
20
#include <uapi/linux/psci.h>
21

22 23
#include <kvm/arm_psci.h>

24
#include <asm/kvm_asm.h>
25
#include <asm/kvm_emulate.h>
26
#include <asm/kvm_hyp.h>
27
#include <asm/kvm_mmu.h>
28
#include <asm/fpsimd.h>
29
#include <asm/debug-monitors.h>
30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
static bool __hyp_text __fpsimd_enabled_nvhe(void)
{
	return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP);
}

static bool __hyp_text __fpsimd_enabled_vhe(void)
{
	return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN);
}

static hyp_alternate_select(__fpsimd_is_enabled,
			    __fpsimd_enabled_nvhe, __fpsimd_enabled_vhe,
			    ARM64_HAS_VIRT_HOST_EXTN);

bool __hyp_text __fpsimd_enabled(void)
{
	return __fpsimd_is_enabled()();
}

50 51 52 53 54 55
static void __hyp_text __activate_traps_vhe(void)
{
	u64 val;

	val = read_sysreg(cpacr_el1);
	val |= CPACR_EL1_TTA;
56
	val &= ~(CPACR_EL1_FPEN | CPACR_EL1_ZEN);
57 58
	write_sysreg(val, cpacr_el1);

59
	write_sysreg(kvm_get_hyp_vector(), vbar_el1);
60 61 62 63 64 65 66
}

static void __hyp_text __activate_traps_nvhe(void)
{
	u64 val;

	val = CPTR_EL2_DEFAULT;
67
	val |= CPTR_EL2_TTA | CPTR_EL2_TFP | CPTR_EL2_TZ;
68 69 70 71 72 73 74
	write_sysreg(val, cptr_el2);
}

static hyp_alternate_select(__activate_traps_arch,
			    __activate_traps_nvhe, __activate_traps_vhe,
			    ARM64_HAS_VIRT_HOST_EXTN);

75 76 77 78 79 80 81 82 83 84
static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
{
	u64 val;

	/*
	 * We are about to set CPTR_EL2.TFP to trap all floating point
	 * register accesses to EL2, however, the ARM ARM clearly states that
	 * traps are only taken to EL2 if the operation would not otherwise
	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
85 86
	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
	 * it will cause an exception.
87 88
	 */
	val = vcpu->arch.hcr_el2;
89

90
	if (!(val & HCR_RW) && system_supports_fpsimd()) {
91 92 93 94
		write_sysreg(1 << 30, fpexc32_el2);
		isb();
	}
	write_sysreg(val, hcr_el2);
95

96 97 98
	if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (val & HCR_VSE))
		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);

99 100
	/* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */
	write_sysreg(1 << 15, hstr_el2);
101 102 103 104 105 106 107
	/*
	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
	 * PMSELR_EL0 to make sure it never contains the cycle
	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
	 * EL1 instead of being trapped to EL2.
	 */
	write_sysreg(0, pmselr_el0);
108
	write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
109 110 111
	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
	__activate_traps_arch()();
}
112

113 114 115
static void __hyp_text __deactivate_traps_vhe(void)
{
	extern char vectors[];	/* kernel exception vectors */
116
	u64 mdcr_el2 = read_sysreg(mdcr_el2);
117

118 119 120 121 122
	mdcr_el2 &= MDCR_EL2_HPMN_MASK |
		    MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
		    MDCR_EL2_TPMS;

	write_sysreg(mdcr_el2, mdcr_el2);
123
	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
124
	write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
125
	write_sysreg(vectors, vbar_el1);
126 127
}

128
static void __hyp_text __deactivate_traps_nvhe(void)
129
{
130 131 132 133 134 135
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

	mdcr_el2 &= MDCR_EL2_HPMN_MASK;
	mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;

	write_sysreg(mdcr_el2, mdcr_el2);
136
	write_sysreg(HCR_RW, hcr_el2);
137 138 139 140 141 142 143 144 145
	write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
}

static hyp_alternate_select(__deactivate_traps_arch,
			    __deactivate_traps_nvhe, __deactivate_traps_vhe,
			    ARM64_HAS_VIRT_HOST_EXTN);

static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
{
146 147 148 149 150 151 152 153 154
	/*
	 * If we pended a virtual abort, preserve it until it gets
	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
	 * the crucial bit is "On taking a vSError interrupt,
	 * HCR_EL2.VSE is cleared to 0."
	 */
	if (vcpu->arch.hcr_el2 & HCR_VSE)
		vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);

155
	__deactivate_traps_arch()();
156
	write_sysreg(0, hstr_el2);
157
	write_sysreg(0, pmuserenr_el0);
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
}

static void __hyp_text __activate_vm(struct kvm_vcpu *vcpu)
{
	struct kvm *kvm = kern_hyp_va(vcpu->kvm);
	write_sysreg(kvm->arch.vttbr, vttbr_el2);
}

static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
{
	write_sysreg(0, vttbr_el2);
}

static void __hyp_text __vgic_save_state(struct kvm_vcpu *vcpu)
{
173 174 175 176
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
		__vgic_v3_save_state(vcpu);
	else
		__vgic_v2_save_state(vcpu);
177 178 179 180 181 182 183 184 185 186
}

static void __hyp_text __vgic_restore_state(struct kvm_vcpu *vcpu)
{
	u64 val;

	val = read_sysreg(hcr_el2);
	val |= vcpu->arch.irq_lines;
	write_sysreg(val, hcr_el2);

187 188 189 190
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
		__vgic_v3_restore_state(vcpu);
	else
		__vgic_v2_restore_state(vcpu);
191 192
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
static bool __hyp_text __true_value(void)
{
	return true;
}

static bool __hyp_text __false_value(void)
{
	return false;
}

static hyp_alternate_select(__check_arm_834220,
			    __false_value, __true_value,
			    ARM64_WORKAROUND_834220);

static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
{
	u64 par, tmp;

	/*
	 * Resolve the IPA the hard way using the guest VA.
	 *
	 * Stage-1 translation already validated the memory access
	 * rights. As such, we can use the EL1 translation regime, and
	 * don't have to distinguish between EL0 and EL1 access.
	 *
	 * We do need to save/restore PAR_EL1 though, as we haven't
	 * saved the guest context yet, and we may return early...
	 */
	par = read_sysreg(par_el1);
	asm volatile("at s1e1r, %0" : : "r" (far));
	isb();

	tmp = read_sysreg(par_el1);
	write_sysreg(par, par_el1);

	if (unlikely(tmp & 1))
		return false; /* Translation failed, back to guest */

	/* Convert PAR to HPFAR format */
	*hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
	return true;
}

static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
{
238 239
	u8 ec;
	u64 esr;
240 241
	u64 hpfar, far;

242 243
	esr = vcpu->arch.fault.esr_el2;
	ec = ESR_ELx_EC(esr);
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

	if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
		return true;

	far = read_sysreg_el2(far);

	/*
	 * The HPFAR can be invalid if the stage 2 fault did not
	 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
	 * bit is clear) and one of the two following cases are true:
	 *   1. The fault was due to a permission fault
	 *   2. The processor carries errata 834220
	 *
	 * Therefore, for all non S1PTW faults where we either have a
	 * permission fault or the errata workaround is enabled, we
	 * resolve the IPA using the AT instruction.
	 */
	if (!(esr & ESR_ELx_S1PTW) &&
	    (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
		if (!__translate_far_to_hpfar(far, &hpfar))
			return false;
	} else {
		hpfar = read_sysreg(hpfar_el2);
	}

	vcpu->arch.fault.far_el2 = far;
	vcpu->arch.fault.hpfar_el2 = hpfar;
	return true;
}

274 275 276 277 278
/* Skip an instruction which has been emulated. Returns true if
 * execution can continue or false if we need to exit hyp mode because
 * single-step was in effect.
 */
static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
279 280 281 282 283 284 285 286 287 288 289 290
{
	*vcpu_pc(vcpu) = read_sysreg_el2(elr);

	if (vcpu_mode_is_32bit(vcpu)) {
		vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
		kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
		write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
	} else {
		*vcpu_pc(vcpu) += 4;
	}

	write_sysreg_el2(*vcpu_pc(vcpu), elr);
291 292 293 294 295 296 297 298

	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		vcpu->arch.fault.esr_el2 =
			(ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22;
		return false;
	} else {
		return true;
	}
299 300
}

301
int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
302 303 304
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
305
	bool fp_enabled;
306 307 308 309 310
	u64 exit_code;

	vcpu = kern_hyp_va(vcpu);

	host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
311
	host_ctxt->__hyp_running_vcpu = vcpu;
312 313
	guest_ctxt = &vcpu->arch.ctxt;

314
	__sysreg_save_host_state(host_ctxt);
315 316 317 318 319 320
	__debug_cond_save_host_state(vcpu);

	__activate_traps(vcpu);
	__activate_vm(vcpu);

	__vgic_restore_state(vcpu);
321
	__timer_enable_traps(vcpu);
322 323 324

	/*
	 * We must restore the 32-bit state before the sysregs, thanks
325
	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
326 327
	 */
	__sysreg32_restore_state(vcpu);
328
	__sysreg_restore_guest_state(guest_ctxt);
329 330 331
	__debug_restore_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);

	/* Jump in the fire! */
332
again:
333 334 335
	exit_code = __guest_enter(vcpu, host_ctxt);
	/* And we're baaack! */

336 337
	if (ARM_EXCEPTION_CODE(exit_code) != ARM_EXCEPTION_IRQ)
		vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
338 339 340 341 342 343
	/*
	 * We're using the raw exception code in order to only process
	 * the trap if no SError is pending. We will come back to the
	 * same PC once the SError has been injected, and replay the
	 * trapping instruction.
	 */
344 345 346
	if (exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
		goto again;

347 348 349 350 351 352 353 354 355 356
	if (static_branch_unlikely(&vgic_v2_cpuif_trap) &&
	    exit_code == ARM_EXCEPTION_TRAP) {
		bool valid;

		valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
			kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
			kvm_vcpu_dabt_isvalid(vcpu) &&
			!kvm_vcpu_dabt_isextabt(vcpu) &&
			!kvm_vcpu_dabt_iss1tw(vcpu);

357 358 359 360
		if (valid) {
			int ret = __vgic_v2_perform_cpuif_access(vcpu);

			if (ret == 1) {
361 362 363 364
				if (__skip_instr(vcpu))
					goto again;
				else
					exit_code = ARM_EXCEPTION_TRAP;
365 366 367
			}

			if (ret == -1) {
368 369 370 371 372 373 374 375
				/* Promote an illegal access to an
				 * SError. If we would be returning
				 * due to single-step clear the SS
				 * bit so handle_exit knows what to
				 * do after dealing with the error.
				 */
				if (!__skip_instr(vcpu))
					*vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
376 377 378 379
				exit_code = ARM_EXCEPTION_EL1_SERROR;
			}

			/* 0 falls through to be handler out of EL2 */
380 381 382
		}
	}

383 384 385 386 387 388 389
	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
	    exit_code == ARM_EXCEPTION_TRAP &&
	    (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
	     kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
		int ret = __vgic_v3_perform_cpuif_access(vcpu);

		if (ret == 1) {
390 391 392 393
			if (__skip_instr(vcpu))
				goto again;
			else
				exit_code = ARM_EXCEPTION_TRAP;
394 395 396 397 398
		}

		/* 0 falls through to be handled out of EL2 */
	}

399 400 401 402
	if (cpus_have_const_cap(ARM64_HARDEN_BP_POST_GUEST_EXIT)) {
		u32 midr = read_cpuid_id();

		/* Apply BTAC predictors mitigation to all Falkor chips */
403 404
		if (((midr & MIDR_CPU_MODEL_MASK) == MIDR_QCOM_FALKOR) ||
		    ((midr & MIDR_CPU_MODEL_MASK) == MIDR_QCOM_FALKOR_V1)) {
405
			__qcom_hyp_sanitize_btac_predictors();
406
		}
407 408
	}

409 410
	fp_enabled = __fpsimd_enabled();

411
	__sysreg_save_guest_state(guest_ctxt);
412
	__sysreg32_save_state(vcpu);
413
	__timer_disable_traps(vcpu);
414 415 416 417 418
	__vgic_save_state(vcpu);

	__deactivate_traps(vcpu);
	__deactivate_vm(vcpu);

419
	__sysreg_restore_host_state(host_ctxt);
420

421 422 423 424 425
	if (fp_enabled) {
		__fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
		__fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
	}

426
	__debug_save_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
427 428 429 430
	/*
	 * This must come after restoring the host sysregs, since a non-VHE
	 * system may enable SPE here and make use of the TTBRs.
	 */
431 432 433 434
	__debug_cond_restore_host_state(vcpu);

	return exit_code;
}
M
Marc Zyngier 已提交
435 436 437

static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";

438
static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
439
					     struct kvm_cpu_context *__host_ctxt)
M
Marc Zyngier 已提交
440
{
441
	struct kvm_vcpu *vcpu;
442
	unsigned long str_va;
443

444 445 446 447 448 449 450 451 452
	vcpu = __host_ctxt->__hyp_running_vcpu;

	if (read_sysreg(vttbr_el2)) {
		__timer_disable_traps(vcpu);
		__deactivate_traps(vcpu);
		__deactivate_vm(vcpu);
		__sysreg_restore_host_state(__host_ctxt);
	}

453 454 455 456 457 458 459 460
	/*
	 * Force the panic string to be loaded from the literal pool,
	 * making sure it is a kernel address and not a PC-relative
	 * reference.
	 */
	asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));

	__hyp_do_panic(str_va,
461 462
		       spsr,  elr,
		       read_sysreg(esr_el2),   read_sysreg_el2(far),
463
		       read_sysreg(hpfar_el2), par, vcpu);
464 465
}

466 467
static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
				 struct kvm_cpu_context *host_ctxt)
468
{
469 470 471 472 473 474
	struct kvm_vcpu *vcpu;
	vcpu = host_ctxt->__hyp_running_vcpu;

	__deactivate_traps(vcpu);
	__sysreg_restore_host_state(host_ctxt);

475 476 477
	panic(__hyp_panic_string,
	      spsr,  elr,
	      read_sysreg_el2(esr),   read_sysreg_el2(far),
478
	      read_sysreg(hpfar_el2), par, vcpu);
479 480
}

481
void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
482 483 484
{
	u64 spsr = read_sysreg_el2(spsr);
	u64 elr = read_sysreg_el2(elr);
M
Marc Zyngier 已提交
485 486
	u64 par = read_sysreg(par_el1);

487 488 489 490
	if (!has_vhe())
		__hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
	else
		__hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
M
Marc Zyngier 已提交
491 492 493

	unreachable();
}