alarmtimer.c 19.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Alarmtimer interface
 *
 * This interface provides a timer which is similarto hrtimers,
 * but triggers a RTC alarm if the box is suspend.
 *
 * This interface is influenced by the Android RTC Alarm timer
 * interface.
 *
 * Copyright (C) 2010 IBM Corperation
 *
 * Author: John Stultz <john.stultz@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/time.h>
#include <linux/hrtimer.h>
#include <linux/timerqueue.h>
#include <linux/rtc.h>
#include <linux/alarmtimer.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/posix-timers.h>
#include <linux/workqueue.h>
#include <linux/freezer.h>

29 30 31 32 33 34 35 36
/**
 * struct alarm_base - Alarm timer bases
 * @lock:		Lock for syncrhonized access to the base
 * @timerqueue:		Timerqueue head managing the list of events
 * @timer: 		hrtimer used to schedule events while running
 * @gettime:		Function to read the time correlating to the base
 * @base_clockid:	clockid for the base
 */
37 38 39 40 41 42 43
static struct alarm_base {
	spinlock_t		lock;
	struct timerqueue_head	timerqueue;
	ktime_t			(*gettime)(void);
	clockid_t		base_clockid;
} alarm_bases[ALARM_NUMTYPE];

44 45 46 47
/* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
static ktime_t freezer_delta;
static DEFINE_SPINLOCK(freezer_delta_lock);

48 49
static struct wakeup_source *ws;

50
#ifdef CONFIG_RTC_CLASS
51
/* rtc timer and device for setting alarm wakeups at suspend */
52
static struct rtc_timer		rtctimer;
53
static struct rtc_device	*rtcdev;
54
static DEFINE_SPINLOCK(rtcdev_lock);
55

56 57 58 59 60 61 62
/**
 * alarmtimer_get_rtcdev - Return selected rtcdevice
 *
 * This function returns the rtc device to use for wakealarms.
 * If one has not already been chosen, it checks to see if a
 * functional rtc device is available.
 */
63
struct rtc_device *alarmtimer_get_rtcdev(void)
64 65 66 67 68 69 70 71 72 73
{
	unsigned long flags;
	struct rtc_device *ret;

	spin_lock_irqsave(&rtcdev_lock, flags);
	ret = rtcdev;
	spin_unlock_irqrestore(&rtcdev_lock, flags);

	return ret;
}
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99


static int alarmtimer_rtc_add_device(struct device *dev,
				struct class_interface *class_intf)
{
	unsigned long flags;
	struct rtc_device *rtc = to_rtc_device(dev);

	if (rtcdev)
		return -EBUSY;

	if (!rtc->ops->set_alarm)
		return -1;
	if (!device_may_wakeup(rtc->dev.parent))
		return -1;

	spin_lock_irqsave(&rtcdev_lock, flags);
	if (!rtcdev) {
		rtcdev = rtc;
		/* hold a reference so it doesn't go away */
		get_device(dev);
	}
	spin_unlock_irqrestore(&rtcdev_lock, flags);
	return 0;
}

100 101 102 103 104
static inline void alarmtimer_rtc_timer_init(void)
{
	rtc_timer_init(&rtctimer, NULL, NULL);
}

105 106 107 108
static struct class_interface alarmtimer_rtc_interface = {
	.add_dev = &alarmtimer_rtc_add_device,
};

109
static int alarmtimer_rtc_interface_setup(void)
110 111
{
	alarmtimer_rtc_interface.class = rtc_class;
112 113 114 115 116
	return class_interface_register(&alarmtimer_rtc_interface);
}
static void alarmtimer_rtc_interface_remove(void)
{
	class_interface_unregister(&alarmtimer_rtc_interface);
117
}
118
#else
119
struct rtc_device *alarmtimer_get_rtcdev(void)
120 121 122 123 124 125
{
	return NULL;
}
#define rtcdev (NULL)
static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
static inline void alarmtimer_rtc_interface_remove(void) { }
126
static inline void alarmtimer_rtc_timer_init(void) { }
127
#endif
128

129
/**
130 131 132 133
 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
 * @base: pointer to the base where the timer is being run
 * @alarm: pointer to alarm being enqueued.
 *
134
 * Adds alarm to a alarm_base timerqueue
135 136 137 138 139
 *
 * Must hold base->lock when calling.
 */
static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
{
140 141 142
	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
		timerqueue_del(&base->timerqueue, &alarm->node);

143
	timerqueue_add(&base->timerqueue, &alarm->node);
144
	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
145 146
}

147
/**
148
 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
149 150 151
 * @base: pointer to the base where the timer is running
 * @alarm: pointer to alarm being removed
 *
152
 * Removes alarm to a alarm_base timerqueue
153 154 155
 *
 * Must hold base->lock when calling.
 */
156
static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
157
{
158 159 160
	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
		return;

161
	timerqueue_del(&base->timerqueue, &alarm->node);
162
	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
163 164
}

165

166
/**
167 168
 * alarmtimer_fired - Handles alarm hrtimer being fired.
 * @timer: pointer to hrtimer being run
169
 *
170 171 172 173
 * When a alarm timer fires, this runs through the timerqueue to
 * see which alarms expired, and runs those. If there are more alarm
 * timers queued for the future, we set the hrtimer to fire when
 * when the next future alarm timer expires.
174
 */
175
static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
176
{
177 178
	struct alarm *alarm = container_of(timer, struct alarm, timer);
	struct alarm_base *base = &alarm_bases[alarm->type];
179
	unsigned long flags;
180
	int ret = HRTIMER_NORESTART;
181
	int restart = ALARMTIMER_NORESTART;
182 183

	spin_lock_irqsave(&base->lock, flags);
184
	alarmtimer_dequeue(base, alarm);
185
	spin_unlock_irqrestore(&base->lock, flags);
186

187 188
	if (alarm->function)
		restart = alarm->function(alarm, base->gettime());
189

190 191 192 193
	spin_lock_irqsave(&base->lock, flags);
	if (restart != ALARMTIMER_NORESTART) {
		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
		alarmtimer_enqueue(base, alarm);
194
		ret = HRTIMER_RESTART;
195 196 197
	}
	spin_unlock_irqrestore(&base->lock, flags);

198
	return ret;
199 200 201

}

202
#ifdef CONFIG_RTC_CLASS
203
/**
204 205 206 207 208 209 210 211 212 213 214 215 216 217
 * alarmtimer_suspend - Suspend time callback
 * @dev: unused
 * @state: unused
 *
 * When we are going into suspend, we look through the bases
 * to see which is the soonest timer to expire. We then
 * set an rtc timer to fire that far into the future, which
 * will wake us from suspend.
 */
static int alarmtimer_suspend(struct device *dev)
{
	struct rtc_time tm;
	ktime_t min, now;
	unsigned long flags;
218
	struct rtc_device *rtc;
219
	int i;
220
	int ret;
221 222 223 224 225 226

	spin_lock_irqsave(&freezer_delta_lock, flags);
	min = freezer_delta;
	freezer_delta = ktime_set(0, 0);
	spin_unlock_irqrestore(&freezer_delta_lock, flags);

227
	rtc = alarmtimer_get_rtcdev();
228
	/* If we have no rtcdev, just return */
229
	if (!rtc)
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
		return 0;

	/* Find the soonest timer to expire*/
	for (i = 0; i < ALARM_NUMTYPE; i++) {
		struct alarm_base *base = &alarm_bases[i];
		struct timerqueue_node *next;
		ktime_t delta;

		spin_lock_irqsave(&base->lock, flags);
		next = timerqueue_getnext(&base->timerqueue);
		spin_unlock_irqrestore(&base->lock, flags);
		if (!next)
			continue;
		delta = ktime_sub(next->expires, base->gettime());
		if (!min.tv64 || (delta.tv64 < min.tv64))
			min = delta;
	}
	if (min.tv64 == 0)
		return 0;

250 251 252 253
	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
		return -EBUSY;
	}
254 255

	/* Setup an rtc timer to fire that far in the future */
256 257
	rtc_timer_cancel(rtc, &rtctimer);
	rtc_read_time(rtc, &tm);
258 259 260
	now = rtc_tm_to_ktime(tm);
	now = ktime_add(now, min);

261 262 263 264 265
	/* Set alarm, if in the past reject suspend briefly to handle */
	ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
	if (ret < 0)
		__pm_wakeup_event(ws, MSEC_PER_SEC);
	return ret;
266
}
267 268 269 270 271 272
#else
static int alarmtimer_suspend(struct device *dev)
{
	return 0;
}
#endif
273

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
{
	ktime_t delta;
	unsigned long flags;
	struct alarm_base *base = &alarm_bases[type];

	delta = ktime_sub(absexp, base->gettime());

	spin_lock_irqsave(&freezer_delta_lock, flags);
	if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
		freezer_delta = delta;
	spin_unlock_irqrestore(&freezer_delta_lock, flags);
}


289
/**
290 291 292 293 294 295
 * alarm_init - Initialize an alarm structure
 * @alarm: ptr to alarm to be initialized
 * @type: the type of the alarm
 * @function: callback that is run when the alarm fires
 */
void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
296
		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
297 298
{
	timerqueue_init(&alarm->node);
299 300 301
	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
			HRTIMER_MODE_ABS);
	alarm->timer.function = alarmtimer_fired;
302 303
	alarm->function = function;
	alarm->type = type;
304
	alarm->state = ALARMTIMER_STATE_INACTIVE;
305 306
}

307
/**
308 309 310 311
 * alarm_start - Sets an alarm to fire
 * @alarm: ptr to alarm to set
 * @start: time to run the alarm
 */
312
int alarm_start(struct alarm *alarm, ktime_t start)
313 314 315
{
	struct alarm_base *base = &alarm_bases[alarm->type];
	unsigned long flags;
316
	int ret;
317 318 319 320

	spin_lock_irqsave(&base->lock, flags);
	alarm->node.expires = start;
	alarmtimer_enqueue(base, alarm);
321 322
	ret = hrtimer_start(&alarm->timer, alarm->node.expires,
				HRTIMER_MODE_ABS);
323
	spin_unlock_irqrestore(&base->lock, flags);
324
	return ret;
325 326
}

327
/**
328
 * alarm_try_to_cancel - Tries to cancel an alarm timer
329
 * @alarm: ptr to alarm to be canceled
330 331 332
 *
 * Returns 1 if the timer was canceled, 0 if it was not running,
 * and -1 if the callback was running
333
 */
334
int alarm_try_to_cancel(struct alarm *alarm)
335 336 337
{
	struct alarm_base *base = &alarm_bases[alarm->type];
	unsigned long flags;
338
	int ret;
339

340 341 342
	spin_lock_irqsave(&base->lock, flags);
	ret = hrtimer_try_to_cancel(&alarm->timer);
	if (ret >= 0)
343
		alarmtimer_dequeue(base, alarm);
344
	spin_unlock_irqrestore(&base->lock, flags);
345
	return ret;
346 347 348
}


349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
/**
 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
 * @alarm: ptr to alarm to be canceled
 *
 * Returns 1 if the timer was canceled, 0 if it was not active.
 */
int alarm_cancel(struct alarm *alarm)
{
	for (;;) {
		int ret = alarm_try_to_cancel(alarm);
		if (ret >= 0)
			return ret;
		cpu_relax();
	}
}

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
{
	u64 overrun = 1;
	ktime_t delta;

	delta = ktime_sub(now, alarm->node.expires);

	if (delta.tv64 < 0)
		return 0;

	if (unlikely(delta.tv64 >= interval.tv64)) {
		s64 incr = ktime_to_ns(interval);

		overrun = ktime_divns(delta, incr);

		alarm->node.expires = ktime_add_ns(alarm->node.expires,
							incr*overrun);

		if (alarm->node.expires.tv64 > now.tv64)
			return overrun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		overrun++;
	}

	alarm->node.expires = ktime_add(alarm->node.expires, interval);
	return overrun;
}




400
/**
401 402 403 404 405 406 407 408 409 410 411 412
 * clock2alarm - helper that converts from clockid to alarmtypes
 * @clockid: clockid.
 */
static enum alarmtimer_type clock2alarm(clockid_t clockid)
{
	if (clockid == CLOCK_REALTIME_ALARM)
		return ALARM_REALTIME;
	if (clockid == CLOCK_BOOTTIME_ALARM)
		return ALARM_BOOTTIME;
	return -1;
}

413
/**
414 415 416 417 418
 * alarm_handle_timer - Callback for posix timers
 * @alarm: alarm that fired
 *
 * Posix timer callback for expired alarm timers.
 */
419 420
static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
							ktime_t now)
421 422
{
	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
423
						it.alarm.alarmtimer);
424 425
	if (posix_timer_event(ptr, 0) != 0)
		ptr->it_overrun++;
426

427
	/* Re-add periodic timers */
428 429 430
	if (ptr->it.alarm.interval.tv64) {
		ptr->it_overrun += alarm_forward(alarm, now,
						ptr->it.alarm.interval);
431 432
		return ALARMTIMER_RESTART;
	}
433
	return ALARMTIMER_NORESTART;
434 435
}

436
/**
437 438 439 440 441 442 443 444 445 446
 * alarm_clock_getres - posix getres interface
 * @which_clock: clockid
 * @tp: timespec to fill
 *
 * Returns the granularity of underlying alarm base clock
 */
static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
{
	clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;

447 448 449
	if (!alarmtimer_get_rtcdev())
		return -ENOTSUPP;

450 451 452 453 454 455 456 457 458 459 460 461 462 463
	return hrtimer_get_res(baseid, tp);
}

/**
 * alarm_clock_get - posix clock_get interface
 * @which_clock: clockid
 * @tp: timespec to fill.
 *
 * Provides the underlying alarm base time.
 */
static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
{
	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];

464 465 466
	if (!alarmtimer_get_rtcdev())
		return -ENOTSUPP;

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	*tp = ktime_to_timespec(base->gettime());
	return 0;
}

/**
 * alarm_timer_create - posix timer_create interface
 * @new_timer: k_itimer pointer to manage
 *
 * Initializes the k_itimer structure.
 */
static int alarm_timer_create(struct k_itimer *new_timer)
{
	enum  alarmtimer_type type;
	struct alarm_base *base;

482 483 484
	if (!alarmtimer_get_rtcdev())
		return -ENOTSUPP;

485 486 487 488 489
	if (!capable(CAP_WAKE_ALARM))
		return -EPERM;

	type = clock2alarm(new_timer->it_clock);
	base = &alarm_bases[type];
490
	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
491 492 493 494 495 496 497 498 499 500 501 502 503
	return 0;
}

/**
 * alarm_timer_get - posix timer_get interface
 * @new_timer: k_itimer pointer
 * @cur_setting: itimerspec data to fill
 *
 * Copies the itimerspec data out from the k_itimer
 */
static void alarm_timer_get(struct k_itimer *timr,
				struct itimerspec *cur_setting)
{
504 505
	memset(cur_setting, 0, sizeof(struct itimerspec));

506
	cur_setting->it_interval =
507
			ktime_to_timespec(timr->it.alarm.interval);
508
	cur_setting->it_value =
509
		ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires);
510 511 512 513 514 515 516 517 518 519 520
	return;
}

/**
 * alarm_timer_del - posix timer_del interface
 * @timr: k_itimer pointer to be deleted
 *
 * Cancels any programmed alarms for the given timer.
 */
static int alarm_timer_del(struct k_itimer *timr)
{
521 522 523
	if (!rtcdev)
		return -ENOTSUPP;

524 525 526
	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
		return TIMER_RETRY;

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	return 0;
}

/**
 * alarm_timer_set - posix timer_set interface
 * @timr: k_itimer pointer to be deleted
 * @flags: timer flags
 * @new_setting: itimerspec to be used
 * @old_setting: itimerspec being replaced
 *
 * Sets the timer to new_setting, and starts the timer.
 */
static int alarm_timer_set(struct k_itimer *timr, int flags,
				struct itimerspec *new_setting,
				struct itimerspec *old_setting)
{
543 544 545
	if (!rtcdev)
		return -ENOTSUPP;

546 547
	if (old_setting)
		alarm_timer_get(timr, old_setting);
548 549

	/* If the timer was already set, cancel it */
550 551
	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
		return TIMER_RETRY;
552 553

	/* start the timer */
554 555 556
	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
	alarm_start(&timr->it.alarm.alarmtimer,
			timespec_to_ktime(new_setting->it_value));
557 558 559 560 561 562 563 564 565
	return 0;
}

/**
 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
 * @alarm: ptr to alarm that fired
 *
 * Wakes up the task that set the alarmtimer
 */
566 567
static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
								ktime_t now)
568 569 570 571 572 573
{
	struct task_struct *task = (struct task_struct *)alarm->data;

	alarm->data = NULL;
	if (task)
		wake_up_process(task);
574
	return ALARMTIMER_NORESTART;
575 576 577 578 579 580 581 582 583 584 585 586 587 588
}

/**
 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
 * @alarm: ptr to alarmtimer
 * @absexp: absolute expiration time
 *
 * Sets the alarm timer and sleeps until it is fired or interrupted.
 */
static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
{
	alarm->data = (void *)current;
	do {
		set_current_state(TASK_INTERRUPTIBLE);
589
		alarm_start(alarm, absexp);
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
		if (likely(alarm->data))
			schedule();

		alarm_cancel(alarm);
	} while (alarm->data && !signal_pending(current));

	__set_current_state(TASK_RUNNING);

	return (alarm->data == NULL);
}


/**
 * update_rmtp - Update remaining timespec value
 * @exp: expiration time
 * @type: timer type
 * @rmtp: user pointer to remaining timepsec value
 *
 * Helper function that fills in rmtp value with time between
 * now and the exp value
 */
static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
			struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

	rem = ktime_sub(exp, alarm_bases[type].gettime());

	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;

}

/**
 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
 * @restart: ptr to restart block
 *
 * Handles restarted clock_nanosleep calls
 */
static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
{
638
	enum  alarmtimer_type type = restart->nanosleep.clockid;
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
	ktime_t exp;
	struct timespec __user  *rmtp;
	struct alarm alarm;
	int ret = 0;

	exp.tv64 = restart->nanosleep.expires;
	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);

	if (alarmtimer_do_nsleep(&alarm, exp))
		goto out;

	if (freezing(current))
		alarmtimer_freezerset(exp, type);

	rmtp = restart->nanosleep.rmtp;
	if (rmtp) {
		ret = update_rmtp(exp, type, rmtp);
		if (ret <= 0)
			goto out;
	}


	/* The other values in restart are already filled in */
	ret = -ERESTART_RESTARTBLOCK;
out:
	return ret;
}

/**
 * alarm_timer_nsleep - alarmtimer nanosleep
 * @which_clock: clockid
 * @flags: determins abstime or relative
 * @tsreq: requested sleep time (abs or rel)
 * @rmtp: remaining sleep time saved
 *
 * Handles clock_nanosleep calls against _ALARM clockids
 */
static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
		     struct timespec *tsreq, struct timespec __user *rmtp)
{
	enum  alarmtimer_type type = clock2alarm(which_clock);
	struct alarm alarm;
	ktime_t exp;
	int ret = 0;
	struct restart_block *restart;

685 686 687
	if (!alarmtimer_get_rtcdev())
		return -ENOTSUPP;

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	if (!capable(CAP_WAKE_ALARM))
		return -EPERM;

	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);

	exp = timespec_to_ktime(*tsreq);
	/* Convert (if necessary) to absolute time */
	if (flags != TIMER_ABSTIME) {
		ktime_t now = alarm_bases[type].gettime();
		exp = ktime_add(now, exp);
	}

	if (alarmtimer_do_nsleep(&alarm, exp))
		goto out;

	if (freezing(current))
		alarmtimer_freezerset(exp, type);

	/* abs timers don't set remaining time or restart */
	if (flags == TIMER_ABSTIME) {
		ret = -ERESTARTNOHAND;
		goto out;
	}

	if (rmtp) {
		ret = update_rmtp(exp, type, rmtp);
		if (ret <= 0)
			goto out;
	}

	restart = &current_thread_info()->restart_block;
	restart->fn = alarm_timer_nsleep_restart;
720
	restart->nanosleep.clockid = type;
721 722 723 724 725 726 727
	restart->nanosleep.expires = exp.tv64;
	restart->nanosleep.rmtp = rmtp;
	ret = -ERESTART_RESTARTBLOCK;

out:
	return ret;
}
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749


/* Suspend hook structures */
static const struct dev_pm_ops alarmtimer_pm_ops = {
	.suspend = alarmtimer_suspend,
};

static struct platform_driver alarmtimer_driver = {
	.driver = {
		.name = "alarmtimer",
		.pm = &alarmtimer_pm_ops,
	}
};

/**
 * alarmtimer_init - Initialize alarm timer code
 *
 * This function initializes the alarm bases and registers
 * the posix clock ids.
 */
static int __init alarmtimer_init(void)
{
750
	struct platform_device *pdev;
751 752
	int error = 0;
	int i;
753 754 755 756 757 758 759 760 761 762
	struct k_clock alarm_clock = {
		.clock_getres	= alarm_clock_getres,
		.clock_get	= alarm_clock_get,
		.timer_create	= alarm_timer_create,
		.timer_set	= alarm_timer_set,
		.timer_del	= alarm_timer_del,
		.timer_get	= alarm_timer_get,
		.nsleep		= alarm_timer_nsleep,
	};

763
	alarmtimer_rtc_timer_init();
764

765 766
	posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
	posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
767 768 769 770 771 772 773 774 775 776

	/* Initialize alarm bases */
	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
	for (i = 0; i < ALARM_NUMTYPE; i++) {
		timerqueue_init_head(&alarm_bases[i].timerqueue);
		spin_lock_init(&alarm_bases[i].lock);
	}
777

778 779 780 781
	error = alarmtimer_rtc_interface_setup();
	if (error)
		return error;

782
	error = platform_driver_register(&alarmtimer_driver);
783 784
	if (error)
		goto out_if;
785

786 787 788 789 790
	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
	if (IS_ERR(pdev)) {
		error = PTR_ERR(pdev);
		goto out_drv;
	}
791
	ws = wakeup_source_register("alarmtimer");
792 793 794 795 796 797
	return 0;

out_drv:
	platform_driver_unregister(&alarmtimer_driver);
out_if:
	alarmtimer_rtc_interface_remove();
798 799 800
	return error;
}
device_initcall(alarmtimer_init);