rcar_du_crtc.c 19.3 KB
Newer Older
1 2 3
/*
 * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
 *
4
 * Copyright (C) 2013-2014 Renesas Electronics Corporation
5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/clk.h>
#include <linux/mutex.h>

#include <drm/drmP.h>
18 19
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
20 21 22 23
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_gem_cma_helper.h>
24
#include <drm/drm_plane_helper.h>
25 26 27 28 29 30 31 32 33

#include "rcar_du_crtc.h"
#include "rcar_du_drv.h"
#include "rcar_du_kms.h"
#include "rcar_du_plane.h"
#include "rcar_du_regs.h"

static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
{
34
	struct rcar_du_device *rcdu = rcrtc->group->dev;
35 36 37 38 39 40

	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
}

static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
{
41
	struct rcar_du_device *rcdu = rcrtc->group->dev;
42 43 44 45 46 47

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
}

static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
{
48
	struct rcar_du_device *rcdu = rcrtc->group->dev;
49 50 51 52 53 54 55

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
}

static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
{
56
	struct rcar_du_device *rcdu = rcrtc->group->dev;
57 58 59 60 61 62 63 64

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
}

static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
				 u32 clr, u32 set)
{
65
	struct rcar_du_device *rcdu = rcrtc->group->dev;
66 67 68 69 70
	u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
}

71 72 73 74 75 76 77 78
static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
{
	int ret;

	ret = clk_prepare_enable(rcrtc->clock);
	if (ret < 0)
		return ret;

79 80 81 82
	ret = clk_prepare_enable(rcrtc->extclock);
	if (ret < 0)
		goto error_clock;

83
	ret = rcar_du_group_get(rcrtc->group);
84
	if (ret < 0)
85 86 87
		goto error_group;

	return 0;
88

89 90 91 92
error_group:
	clk_disable_unprepare(rcrtc->extclock);
error_clock:
	clk_disable_unprepare(rcrtc->clock);
93 94 95 96 97
	return ret;
}

static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
{
98
	rcar_du_group_put(rcrtc->group);
99 100

	clk_disable_unprepare(rcrtc->extclock);
101 102 103
	clk_disable_unprepare(rcrtc->clock);
}

104 105 106 107
/* -----------------------------------------------------------------------------
 * Hardware Setup
 */

108 109
static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
{
110
	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
111
	unsigned long mode_clock = mode->clock * 1000;
112 113
	unsigned long clk;
	u32 value;
114
	u32 escr;
115 116
	u32 div;

117 118 119
	/* Compute the clock divisor and select the internal or external dot
	 * clock based on the requested frequency.
	 */
120
	clk = clk_get_rate(rcrtc->clock);
121
	div = DIV_ROUND_CLOSEST(clk, mode_clock);
122
	div = clamp(div, 1U, 64U) - 1;
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
	escr = div | ESCR_DCLKSEL_CLKS;

	if (rcrtc->extclock) {
		unsigned long extclk;
		unsigned long extrate;
		unsigned long rate;
		u32 extdiv;

		extclk = clk_get_rate(rcrtc->extclock);
		extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock);
		extdiv = clamp(extdiv, 1U, 64U) - 1;

		rate = clk / (div + 1);
		extrate = extclk / (extdiv + 1);

		if (abs((long)extrate - (long)mode_clock) <
		    abs((long)rate - (long)mode_clock)) {
			dev_dbg(rcrtc->group->dev->dev,
				"crtc%u: using external clock\n", rcrtc->index);
			escr = extdiv | ESCR_DCLKSEL_DCLKIN;
		}
	}
145

146
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
147
			    escr);
148
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
149 150 151 152

	/* Signal polarities */
	value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? 0 : DSMR_VSL)
	      | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? 0 : DSMR_HSL)
153
	      | DSMR_DIPM_DE | DSMR_CSPM;
154 155 156 157 158 159 160 161 162 163
	rcar_du_crtc_write(rcrtc, DSMR, value);

	/* Display timings */
	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
					mode->hdisplay - 19);
	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
					mode->hsync_start - 1);
	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);

164 165 166 167 168 169 170 171 172
	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
					mode->crtc_vsync_end - 2);
	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vdisplay - 2);
	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vsync_start - 1);
	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
173 174 175 176 177

	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start);
	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
}

178 179
void rcar_du_crtc_route_output(struct drm_crtc *crtc,
			       enum rcar_du_output output)
180 181
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
182
	struct rcar_du_device *rcdu = rcrtc->group->dev;
183 184 185 186

	/* Store the route from the CRTC output to the DU output. The DU will be
	 * configured when starting the CRTC.
	 */
187
	rcrtc->outputs |= BIT(output);
188

189 190 191 192
	/* Store RGB routing to DPAD0, the hardware will be configured when
	 * starting the CRTC.
	 */
	if (output == RCAR_DU_OUTPUT_DPAD0)
193
		rcdu->dpad0_source = rcrtc->index;
194 195 196 197 198 199 200 201 202 203 204 205
}

void rcar_du_crtc_update_planes(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
	unsigned int num_planes = 0;
	unsigned int prio = 0;
	unsigned int i;
	u32 dptsr = 0;
	u32 dspr = 0;

206 207
	for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
		struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
		unsigned int j;

		if (plane->crtc != &rcrtc->crtc || !plane->enabled)
			continue;

		/* Insert the plane in the sorted planes array. */
		for (j = num_planes++; j > 0; --j) {
			if (planes[j-1]->zpos <= plane->zpos)
				break;
			planes[j] = planes[j-1];
		}

		planes[j] = plane;
		prio += plane->format->planes * 4;
	}

	for (i = 0; i < num_planes; ++i) {
		struct rcar_du_plane *plane = planes[i];
		unsigned int index = plane->hwindex;

		prio -= 4;
		dspr |= (index + 1) << prio;
		dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);

		if (plane->format->planes == 2) {
			index = (index + 1) % 8;

			prio -= 4;
			dspr |= (index + 1) << prio;
			dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);
		}
	}

	/* Select display timing and dot clock generator 2 for planes associated
	 * with superposition controller 2.
	 */
244 245
	if (rcrtc->index % 2) {
		u32 value = rcar_du_group_read(rcrtc->group, DPTSR);
246 247 248 249 250 251 252 253 254

		/* The DPTSR register is updated when the display controller is
		 * stopped. We thus need to restart the DU. Once again, sorry
		 * for the flicker. One way to mitigate the issue would be to
		 * pre-associate planes with CRTCs (either with a fixed 4/4
		 * split, or through a module parameter). Flicker would then
		 * occur only if we need to break the pre-association.
		 */
		if (value != dptsr) {
255
			rcar_du_group_write(rcrtc->group, DPTSR, dptsr);
256 257
			if (rcrtc->group->used_crtcs)
				rcar_du_group_restart(rcrtc->group);
258 259 260
		}
	}

261 262
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
			    dspr);
263 264
}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
/* -----------------------------------------------------------------------------
 * Page Flip
 */

void rcar_du_crtc_cancel_page_flip(struct rcar_du_crtc *rcrtc,
				   struct drm_file *file)
{
	struct drm_pending_vblank_event *event;
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;

	/* Destroy the pending vertical blanking event associated with the
	 * pending page flip, if any, and disable vertical blanking interrupts.
	 */
	spin_lock_irqsave(&dev->event_lock, flags);
	event = rcrtc->event;
	if (event && event->base.file_priv == file) {
		rcrtc->event = NULL;
		event->base.destroy(&event->base);
284
		drm_crtc_vblank_put(&rcrtc->crtc);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	}
	spin_unlock_irqrestore(&dev->event_lock, flags);
}

static void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
{
	struct drm_pending_vblank_event *event;
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	event = rcrtc->event;
	rcrtc->event = NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	if (event == NULL)
		return;

	spin_lock_irqsave(&dev->event_lock, flags);
	drm_send_vblank_event(dev, rcrtc->index, event);
305
	wake_up(&rcrtc->flip_wait);
306 307
	spin_unlock_irqrestore(&dev->event_lock, flags);

308
	drm_crtc_vblank_put(&rcrtc->crtc);
309 310
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
{
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;
	bool pending;

	spin_lock_irqsave(&dev->event_lock, flags);
	pending = rcrtc->event != NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	return pending;
}

static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_device *rcdu = rcrtc->group->dev;

	if (wait_event_timeout(rcrtc->flip_wait,
			       !rcar_du_crtc_page_flip_pending(rcrtc),
			       msecs_to_jiffies(50)))
		return;

	dev_warn(rcdu->dev, "page flip timeout\n");

	rcar_du_crtc_finish_page_flip(rcrtc);
}

338 339 340 341
/* -----------------------------------------------------------------------------
 * Start/Stop and Suspend/Resume
 */

342 343 344
static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
{
	struct drm_crtc *crtc = &rcrtc->crtc;
345
	bool interlaced;
346 347 348 349 350 351 352 353 354 355 356 357 358 359
	unsigned int i;

	if (rcrtc->started)
		return;

	if (WARN_ON(rcrtc->plane->format == NULL))
		return;

	/* Set display off and background to black */
	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));

	/* Configure display timings and output routing */
	rcar_du_crtc_set_display_timing(rcrtc);
360
	rcar_du_group_set_routing(rcrtc->group);
361

362 363 364 365 366 367 368 369 370 371
	/* FIXME: Commit the planes state. This is required here as the CRTC can
	 * be started from the DPMS and system resume handler, which don't go
	 * through .atomic_plane_update() and .atomic_flush() to commit plane
	 * state. Similarly a mode set operation without any update to planes
	 * will not go through atomic plane configuration either. Additionally,
	 * given that the plane state atomic commit occurs between CRTC disable
	 * and enable, the hardware state could also be lost due to runtime PM,
	 * requiring a full commit here. This will be fixed later after
	 * switching to atomic updates completely.
	 */
372
	mutex_lock(&rcrtc->group->planes.lock);
373
	rcar_du_crtc_update_planes(crtc);
374
	mutex_unlock(&rcrtc->group->planes.lock);
375

376 377
	for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
		struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
378 379 380 381 382 383 384 385 386 387 388

		if (plane->crtc != crtc || !plane->enabled)
			continue;

		rcar_du_plane_setup(plane);
	}

	/* Select master sync mode. This enables display operation in master
	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
	 * actively driven).
	 */
389 390 391 392
	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
	rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
			     (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
			     DSYSR_TVM_MASTER);
393

394
	rcar_du_group_start_stop(rcrtc->group, true);
395

396 397 398
	/* Turn vertical blanking interrupt reporting back on. */
	drm_crtc_vblank_on(crtc);

399 400 401 402 403 404 405 406 407 408
	rcrtc->started = true;
}

static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
{
	struct drm_crtc *crtc = &rcrtc->crtc;

	if (!rcrtc->started)
		return;

409 410 411
	/* Disable vertical blanking interrupt reporting. We first need to wait
	 * for page flip completion before stopping the CRTC as userspace
	 * expects page flips to eventually complete.
412 413
	 */
	rcar_du_crtc_wait_page_flip(rcrtc);
414
	drm_crtc_vblank_off(crtc);
415

416 417 418 419 420
	/* Select switch sync mode. This stops display operation and configures
	 * the HSYNC and VSYNC signals as inputs.
	 */
	rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);

421
	rcar_du_group_start_stop(rcrtc->group, false);
422 423 424 425 426 427 428

	rcrtc->started = false;
}

void rcar_du_crtc_suspend(struct rcar_du_crtc *rcrtc)
{
	rcar_du_crtc_stop(rcrtc);
429
	rcar_du_crtc_put(rcrtc);
430 431 432 433
}

void rcar_du_crtc_resume(struct rcar_du_crtc *rcrtc)
{
434
	if (!rcrtc->enabled)
435 436
		return;

437
	rcar_du_crtc_get(rcrtc);
438 439 440 441 442 443 444
	rcar_du_crtc_start(rcrtc);
}

static void rcar_du_crtc_update_base(struct rcar_du_crtc *rcrtc)
{
	struct drm_crtc *crtc = &rcrtc->crtc;

445
	rcar_du_plane_compute_base(rcrtc->plane, crtc->primary->fb);
446 447 448
	rcar_du_plane_update_base(rcrtc->plane);
}

449 450 451 452
/* -----------------------------------------------------------------------------
 * CRTC Functions
 */

453
static void rcar_du_crtc_enable(struct drm_crtc *crtc)
454 455 456
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

457 458 459 460 461 462 463 464 465 466 467 468
	if (rcrtc->enabled)
		return;

	rcar_du_crtc_get(rcrtc);
	rcar_du_crtc_start(rcrtc);

	rcrtc->enabled = true;
}

static void rcar_du_crtc_disable(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
469

470
	if (!rcrtc->enabled)
471 472
		return;

473 474
	rcar_du_crtc_stop(rcrtc);
	rcar_du_crtc_put(rcrtc);
475

476 477 478 479 480 481 482 483 484
	rcrtc->enabled = false;
}

static void rcar_du_crtc_dpms(struct drm_crtc *crtc, int mode)
{
	if (mode == DRM_MODE_DPMS_ON)
		rcar_du_crtc_enable(crtc);
	else
		rcar_du_crtc_disable(crtc);
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
}

static bool rcar_du_crtc_mode_fixup(struct drm_crtc *crtc,
				    const struct drm_display_mode *mode,
				    struct drm_display_mode *adjusted_mode)
{
	/* TODO Fixup modes */
	return true;
}

static void rcar_du_crtc_mode_prepare(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	/* We need to access the hardware during mode set, acquire a reference
500
	 * to the CRTC.
501
	 */
502
	rcar_du_crtc_get(rcrtc);
503

504
	/* Stop the CRTC, force enabled to false as a result. */
505 506
	rcar_du_crtc_stop(rcrtc);

507
	rcrtc->enabled = false;
508
	rcrtc->outputs = 0;
509 510
}

511
static void rcar_du_crtc_mode_set_nofb(struct drm_crtc *crtc)
512
{
513 514 515 516
	/* No-op. We should configure the display timings here, but as we're
	 * called with the CRTC disabled clocks might be off, and we thus can't
	 * access the hardware. Let's just configure everything when enabling
	 * the CRTC.
517 518 519 520 521 522 523
	 */
}

static void rcar_du_crtc_mode_commit(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

524 525 526
	/* We're done, restart the CRTC and set enabled to true. The reference
	 * to the DU acquired at prepare() time will thus be released by the
	 * disable() handler.
527 528
	 */
	rcar_du_crtc_start(rcrtc);
529
	rcrtc->enabled = true;
530 531
}

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	/* We need to access the hardware during atomic update, acquire a
	 * reference to the CRTC.
	 */
	rcar_du_crtc_get(rcrtc);
}

static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	/* We're done, apply the configuration and drop the reference acquired
	 * in .atomic_begin().
	 */
	mutex_lock(&rcrtc->group->planes.lock);
	rcar_du_crtc_update_planes(crtc);
	mutex_unlock(&rcrtc->group->planes.lock);

	rcar_du_crtc_put(rcrtc);
}

556 557 558 559 560
static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
	.dpms = rcar_du_crtc_dpms,
	.mode_fixup = rcar_du_crtc_mode_fixup,
	.prepare = rcar_du_crtc_mode_prepare,
	.commit = rcar_du_crtc_mode_commit,
561 562 563
	.mode_set = drm_helper_crtc_mode_set,
	.mode_set_nofb = rcar_du_crtc_mode_set_nofb,
	.mode_set_base = drm_helper_crtc_mode_set_base,
564
	.disable = rcar_du_crtc_disable,
565
	.enable = rcar_du_crtc_enable,
566 567
	.atomic_begin = rcar_du_crtc_atomic_begin,
	.atomic_flush = rcar_du_crtc_atomic_flush,
568 569 570 571
};

static int rcar_du_crtc_page_flip(struct drm_crtc *crtc,
				  struct drm_framebuffer *fb,
572 573
				  struct drm_pending_vblank_event *event,
				  uint32_t page_flip_flags)
574 575 576 577 578 579 580 581 582 583 584 585
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	if (rcrtc->event != NULL) {
		spin_unlock_irqrestore(&dev->event_lock, flags);
		return -EBUSY;
	}
	spin_unlock_irqrestore(&dev->event_lock, flags);

586 587
	drm_atomic_set_fb_for_plane(crtc->primary->state, fb);

588
	crtc->primary->fb = fb;
589 590 591 592
	rcar_du_crtc_update_base(rcrtc);

	if (event) {
		event->pipe = rcrtc->index;
593
		drm_crtc_vblank_get(crtc);
594 595 596 597 598 599 600 601 602
		spin_lock_irqsave(&dev->event_lock, flags);
		rcrtc->event = event;
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}

	return 0;
}

static const struct drm_crtc_funcs crtc_funcs = {
603
	.reset = drm_atomic_helper_crtc_reset,
604 605 606
	.destroy = drm_crtc_cleanup,
	.set_config = drm_crtc_helper_set_config,
	.page_flip = rcar_du_crtc_page_flip,
607 608
	.atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
	.atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
609 610
};

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
/* -----------------------------------------------------------------------------
 * Interrupt Handling
 */

static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
{
	struct rcar_du_crtc *rcrtc = arg;
	irqreturn_t ret = IRQ_NONE;
	u32 status;

	status = rcar_du_crtc_read(rcrtc, DSSR);
	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);

	if (status & DSSR_FRM) {
		drm_handle_vblank(rcrtc->crtc.dev, rcrtc->index);
		rcar_du_crtc_finish_page_flip(rcrtc);
		ret = IRQ_HANDLED;
	}

	return ret;
}

/* -----------------------------------------------------------------------------
 * Initialization
 */

637
int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int index)
638
{
639 640 641 642
	static const unsigned int mmio_offsets[] = {
		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET
	};

643
	struct rcar_du_device *rcdu = rgrp->dev;
644
	struct platform_device *pdev = to_platform_device(rcdu->dev);
645 646
	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[index];
	struct drm_crtc *crtc = &rcrtc->crtc;
647
	unsigned int irqflags;
648 649
	struct clk *clk;
	char clk_name[9];
650 651
	char *name;
	int irq;
652 653
	int ret;

654
	/* Get the CRTC clock and the optional external clock. */
655 656 657 658 659 660 661 662 663 664 665 666 667
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
		sprintf(clk_name, "du.%u", index);
		name = clk_name;
	} else {
		name = NULL;
	}

	rcrtc->clock = devm_clk_get(rcdu->dev, name);
	if (IS_ERR(rcrtc->clock)) {
		dev_err(rcdu->dev, "no clock for CRTC %u\n", index);
		return PTR_ERR(rcrtc->clock);
	}

668 669 670 671 672 673 674 675 676
	sprintf(clk_name, "dclkin.%u", index);
	clk = devm_clk_get(rcdu->dev, clk_name);
	if (!IS_ERR(clk)) {
		rcrtc->extclock = clk;
	} else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
		dev_info(rcdu->dev, "can't get external clock %u\n", index);
		return -EPROBE_DEFER;
	}

677 678
	init_waitqueue_head(&rcrtc->flip_wait);

679
	rcrtc->group = rgrp;
680
	rcrtc->mmio_offset = mmio_offsets[index];
681
	rcrtc->index = index;
682
	rcrtc->enabled = false;
683
	rcrtc->plane = &rgrp->planes.planes[index % 2];
684 685 686

	rcrtc->plane->crtc = crtc;

687 688
	ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, &rcrtc->plane->plane,
					NULL, &crtc_funcs);
689 690 691 692 693
	if (ret < 0)
		return ret;

	drm_crtc_helper_add(crtc, &crtc_helper_funcs);

694 695 696
	/* Start with vertical blanking interrupt reporting disabled. */
	drm_crtc_vblank_off(crtc);

697 698 699 700 701 702 703 704 705 706 707
	/* Register the interrupt handler. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
		irq = platform_get_irq(pdev, index);
		irqflags = 0;
	} else {
		irq = platform_get_irq(pdev, 0);
		irqflags = IRQF_SHARED;
	}

	if (irq < 0) {
		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", index);
J
Julia Lawall 已提交
708
		return irq;
709 710 711 712 713 714 715 716 717 718
	}

	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
			       dev_name(rcdu->dev), rcrtc);
	if (ret < 0) {
		dev_err(rcdu->dev,
			"failed to register IRQ for CRTC %u\n", index);
		return ret;
	}

719 720 721 722 723 724 725 726 727 728 729 730
	return 0;
}

void rcar_du_crtc_enable_vblank(struct rcar_du_crtc *rcrtc, bool enable)
{
	if (enable) {
		rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
		rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
	} else {
		rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
	}
}