cpuset.c 79.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
7
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
L
Linus Torvalds 已提交
8 9 10 11
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
12
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
13
 *  2003-10-22 Updates by Stephen Hemminger.
14
 *  2004 May-July Rework by Paul Jackson.
L
Linus Torvalds 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
33
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
34 35 36 37 38 39
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
40
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
41 42
#include <linux/sched.h>
#include <linux/seq_file.h>
43
#include <linux/security.h>
L
Linus Torvalds 已提交
44 45 46 47 48 49 50 51 52 53
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
54
#include <linux/mutex.h>
L
Linus Torvalds 已提交
55

56
#define CPUSET_SUPER_MAGIC		0x27e0eb
L
Linus Torvalds 已提交
57

58 59 60 61 62
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
63
int number_of_cpusets __read_mostly;
64

65 66 67 68 69 70 71 72 73
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
74 75 76 77 78
struct cpuset {
	unsigned long flags;		/* "unsigned long" so bitops work */
	cpumask_t cpus_allowed;		/* CPUs allowed to tasks in cpuset */
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

79 80 81
	/*
	 * Count is atomic so can incr (fork) or decr (exit) without a lock.
	 */
L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
	atomic_t count;			/* count tasks using this cpuset */

	/*
	 * We link our 'sibling' struct into our parents 'children'.
	 * Our children link their 'sibling' into our 'children'.
	 */
	struct list_head sibling;	/* my parents children */
	struct list_head children;	/* my children */

	struct cpuset *parent;		/* my parent */
	struct dentry *dentry;		/* cpuset fs entry */

	/*
	 * Copy of global cpuset_mems_generation as of the most
	 * recent time this cpuset changed its mems_allowed.
	 */
98 99 100
	int mems_generation;

	struct fmeter fmeter;		/* memory_pressure filter */
L
Linus Torvalds 已提交
101 102 103 104 105 106
};

/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
107
	CS_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
108
	CS_REMOVED,
109 110 111
	CS_NOTIFY_ON_RELEASE,
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
112 113 114 115 116
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
117
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
118 119 120 121
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
122
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
123 124 125 126
}

static inline int is_removed(const struct cpuset *cs)
{
127
	return test_bit(CS_REMOVED, &cs->flags);
L
Linus Torvalds 已提交
128 129 130 131
}

static inline int notify_on_release(const struct cpuset *cs)
{
132
	return test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
L
Linus Torvalds 已提交
133 134
}

135 136
static inline int is_memory_migrate(const struct cpuset *cs)
{
137
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
138 139
}

140 141 142 143 144 145 146 147 148 149
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
150
/*
151
 * Increment this integer everytime any cpuset changes its
L
Linus Torvalds 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164
 * mems_allowed value.  Users of cpusets can track this generation
 * number, and avoid having to lock and reload mems_allowed unless
 * the cpuset they're using changes generation.
 *
 * A single, global generation is needed because attach_task() could
 * reattach a task to a different cpuset, which must not have its
 * generation numbers aliased with those of that tasks previous cpuset.
 *
 * Generations are needed for mems_allowed because one task cannot
 * modify anothers memory placement.  So we must enable every task,
 * on every visit to __alloc_pages(), to efficiently check whether
 * its current->cpuset->mems_allowed has changed, requiring an update
 * of its current->mems_allowed.
165 166 167
 *
 * Since cpuset_mems_generation is guarded by manage_mutex,
 * there is no need to mark it atomic.
L
Linus Torvalds 已提交
168
 */
169
static int cpuset_mems_generation;
L
Linus Torvalds 已提交
170 171 172 173 174 175 176 177 178 179 180

static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
	.cpus_allowed = CPU_MASK_ALL,
	.mems_allowed = NODE_MASK_ALL,
	.count = ATOMIC_INIT(0),
	.sibling = LIST_HEAD_INIT(top_cpuset.sibling),
	.children = LIST_HEAD_INIT(top_cpuset.children),
};

static struct vfsmount *cpuset_mount;
181
static struct super_block *cpuset_sb;
L
Linus Torvalds 已提交
182 183

/*
184 185
 * We have two global cpuset mutexes below.  They can nest.
 * It is ok to first take manage_mutex, then nest callback_mutex.  We also
186 187 188
 * require taking task_lock() when dereferencing a tasks cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
189 190 191
 * A task must hold both mutexes to modify cpusets.  If a task
 * holds manage_mutex, then it blocks others wanting that mutex,
 * ensuring that it is the only task able to also acquire callback_mutex
192 193
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
194
 * also allocate memory while just holding manage_mutex.  While it is
195
 * performing these checks, various callback routines can briefly
196 197
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
198 199
 *
 * Calls to the kernel memory allocator can not be made while holding
200
 * callback_mutex, as that would risk double tripping on callback_mutex
201 202 203
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
204
 * If a task is only holding callback_mutex, then it has read-only
205 206 207 208 209 210
 * access to cpusets.
 *
 * The task_struct fields mems_allowed and mems_generation may only
 * be accessed in the context of that task, so require no locks.
 *
 * Any task can increment and decrement the count field without lock.
211
 * So in general, code holding manage_mutex or callback_mutex can't rely
212
 * on the count field not changing.  However, if the count goes to
213
 * zero, then only attach_task(), which holds both mutexes, can
214 215 216
 * increment it again.  Because a count of zero means that no tasks
 * are currently attached, therefore there is no way a task attached
 * to that cpuset can fork (the other way to increment the count).
217
 * So code holding manage_mutex or callback_mutex can safely assume that
218
 * if the count is zero, it will stay zero.  Similarly, if a task
219
 * holds manage_mutex or callback_mutex on a cpuset with zero count, it
220
 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
221
 * both of those mutexes.
222 223
 *
 * The cpuset_common_file_write handler for operations that modify
224
 * the cpuset hierarchy holds manage_mutex across the entire operation,
225 226
 * single threading all such cpuset modifications across the system.
 *
227
 * The cpuset_common_file_read() handlers only hold callback_mutex across
228 229 230 231
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
232
 * (usually) take either mutex.  These are the two most performance
233
 * critical pieces of code here.  The exception occurs on cpuset_exit(),
234
 * when a task in a notify_on_release cpuset exits.  Then manage_mutex
235
 * is taken, and if the cpuset count is zero, a usermode call made
L
Linus Torvalds 已提交
236 237 238
 * to /sbin/cpuset_release_agent with the name of the cpuset (path
 * relative to the root of cpuset file system) as the argument.
 *
239 240 241
 * A cpuset can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cpusets is empty.  Since all
 * tasks in the system use _some_ cpuset, and since there is always at
242
 * least one task in the system (init), therefore, top_cpuset
243 244 245 246 247 248 249 250 251
 * always has either children cpusets and/or using tasks.  So we don't
 * need a special hack to ensure that top_cpuset cannot be deleted.
 *
 * The above "Tale of Two Semaphores" would be complete, but for:
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of attach_task(),
 * which overwrites one tasks cpuset pointer with another.  It does
252
 * so using both mutexes, however there are several performance
253
 * critical places that need to reference task->cpuset without the
254
 * expense of grabbing a system global mutex.  Therefore except as
255 256 257 258
 * noted below, when dereferencing or, as in attach_task(), modifying
 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
 * (task->alloc_lock) already in the task_struct routinely used for
 * such matters.
259 260 261 262 263
 *
 * P.S.  One more locking exception.  RCU is used to guard the
 * update of a tasks cpuset pointer by attach_task() and the
 * access of task->cpuset->mems_generation via that pointer in
 * the routine cpuset_update_task_memory_state().
L
Linus Torvalds 已提交
264 265
 */

266 267
static DEFINE_MUTEX(manage_mutex);
static DEFINE_MUTEX(callback_mutex);
268

L
Linus Torvalds 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/*
 * A couple of forward declarations required, due to cyclic reference loop:
 *  cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
 *  -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
 */

static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);

static struct backing_dev_info cpuset_backing_dev_info = {
	.ra_pages = 0,		/* No readahead */
	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
};

static struct inode *cpuset_new_inode(mode_t mode)
{
	struct inode *inode = new_inode(cpuset_sb);

	if (inode) {
		inode->i_mode = mode;
		inode->i_uid = current->fsuid;
		inode->i_gid = current->fsgid;
		inode->i_blocks = 0;
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
	}
	return inode;
}

static void cpuset_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cpuset */
	if (S_ISDIR(inode->i_mode)) {
		struct cpuset *cs = dentry->d_fsdata;
		BUG_ON(!(is_removed(cs)));
		kfree(cs);
	}
	iput(inode);
}

static struct dentry_operations cpuset_dops = {
	.d_iput = cpuset_diput,
};

static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
{
315
	struct dentry *d = lookup_one_len(name, parent, strlen(name));
L
Linus Torvalds 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
	if (!IS_ERR(d))
		d->d_op = &cpuset_dops;
	return d;
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cpuset_d_remove_dir(struct dentry *dentry)
{
	struct list_head *node;

	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
E
Eric Dumazet 已提交
340
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
L
Linus Torvalds 已提交
341 342 343 344 345 346 347 348 349 350 351
		list_del_init(node);
		if (d->d_inode) {
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
E
Eric Dumazet 已提交
352
	list_del_init(&dentry->d_u.d_child);
L
Linus Torvalds 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static struct super_operations cpuset_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
};

static int cpuset_fill_super(struct super_block *sb, void *unused_data,
							int unused_silent)
{
	struct inode *inode;
	struct dentry *root;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CPUSET_SUPER_MAGIC;
	sb->s_op = &cpuset_ops;
	cpuset_sb = sb;

	inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
	if (inode) {
		inode->i_op = &simple_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;
		/* directories start off with i_nlink == 2 (for "." entry) */
379
		inc_nlink(inode);
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392
	} else {
		return -ENOMEM;
	}

	root = d_alloc_root(inode);
	if (!root) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = root;
	return 0;
}

393 394 395
static int cpuset_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
L
Linus Torvalds 已提交
396
{
397
	return get_sb_single(fs_type, flags, data, cpuset_fill_super, mnt);
L
Linus Torvalds 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
	.kill_sb = kill_litter_super,
};

/* struct cftype:
 *
 * The files in the cpuset filesystem mostly have a very simple read/write
 * handling, some common function will take care of it. Nevertheless some cases
 * (read tasks) are special and therefore I define this structure for every
 * kind of file.
 *
 *
 * When reading/writing to a file:
J
Josef Sipek 已提交
415 416
 *	- the cpuset to use in file->f_path.dentry->d_parent->d_fsdata
 *	- the 'cftype' of the file is file->f_path.dentry->d_fsdata
L
Linus Torvalds 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
 */

struct cftype {
	char *name;
	int private;
	int (*open) (struct inode *inode, struct file *file);
	ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
							loff_t *ppos);
	int (*write) (struct file *file, const char __user *buf, size_t nbytes,
							loff_t *ppos);
	int (*release) (struct inode *inode, struct file *file);
};

static inline struct cpuset *__d_cs(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

/*
441
 * Call with manage_mutex held.  Writes path of cpuset into buf.
L
Linus Torvalds 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
 * Returns 0 on success, -errno on error.
 */

static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
{
	char *start;

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
		int len = cs->dentry->d_name.len;
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
		memcpy(start, cs->dentry->d_name.name, len);
		cs = cs->parent;
		if (!cs)
			break;
		if (!cs->parent)
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

/*
 * Notify userspace when a cpuset is released, by running
 * /sbin/cpuset_release_agent with the name of the cpuset (path
 * relative to the root of cpuset file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cpuset.
 *
 * This races with the possibility that some other task will be
 * attached to this cpuset before it is removed, or that some other
 * user task will 'mkdir' a child cpuset of this cpuset.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
 * unused, and this cpuset will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
485 486 487 488 489 490 491 492
 * The final arg to call_usermodehelper() is 0, which means don't
 * wait.  The separate /sbin/cpuset_release_agent task is forked by
 * call_usermodehelper(), then control in this thread returns here,
 * without waiting for the release agent task.  We don't bother to
 * wait because the caller of this routine has no use for the exit
 * status of the /sbin/cpuset_release_agent task, so no sense holding
 * our caller up for that.
 *
493
 * When we had only one cpuset mutex, we had to call this
494 495
 * without holding it, to avoid deadlock when call_usermodehelper()
 * allocated memory.  With two locks, we could now call this while
496 497
 * holding manage_mutex, but we still don't, so as to minimize
 * the time manage_mutex is held.
L
Linus Torvalds 已提交
498 499
 */

500
static void cpuset_release_agent(const char *pathbuf)
L
Linus Torvalds 已提交
501 502 503 504
{
	char *argv[3], *envp[3];
	int i;

505 506 507
	if (!pathbuf)
		return;

L
Linus Torvalds 已提交
508 509
	i = 0;
	argv[i++] = "/sbin/cpuset_release_agent";
510
	argv[i++] = (char *)pathbuf;
L
Linus Torvalds 已提交
511 512 513 514 515 516 517 518
	argv[i] = NULL;

	i = 0;
	/* minimal command environment */
	envp[i++] = "HOME=/";
	envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
	envp[i] = NULL;

519
	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
520
	kfree(pathbuf);
L
Linus Torvalds 已提交
521 522 523 524 525 526
}

/*
 * Either cs->count of using tasks transitioned to zero, or the
 * cs->children list of child cpusets just became empty.  If this
 * cs is notify_on_release() and now both the user count is zero and
527 528
 * the list of children is empty, prepare cpuset path in a kmalloc'd
 * buffer, to be returned via ppathbuf, so that the caller can invoke
529 530
 * cpuset_release_agent() with it later on, once manage_mutex is dropped.
 * Call here with manage_mutex held.
531 532 533 534 535
 *
 * This check_for_release() routine is responsible for kmalloc'ing
 * pathbuf.  The above cpuset_release_agent() is responsible for
 * kfree'ing pathbuf.  The caller of these routines is responsible
 * for providing a pathbuf pointer, initialized to NULL, then
536 537
 * calling check_for_release() with manage_mutex held and the address
 * of the pathbuf pointer, then dropping manage_mutex, then calling
538
 * cpuset_release_agent() with pathbuf, as set by check_for_release().
L
Linus Torvalds 已提交
539 540
 */

541
static void check_for_release(struct cpuset *cs, char **ppathbuf)
L
Linus Torvalds 已提交
542 543 544 545 546 547 548 549 550
{
	if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
	    list_empty(&cs->children)) {
		char *buf;

		buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
		if (!buf)
			return;
		if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
551 552 553
			kfree(buf);
		else
			*ppathbuf = buf;
L
Linus Torvalds 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567
	}
}

/*
 * Return in *pmask the portion of a cpusets's cpus_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
568
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
 */

static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
{
	while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
		cs = cs->parent;
	if (cs)
		cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
	else
		*pmask = cpu_online_map;
	BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
584 585 586 587
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  If we get all the way to the top and still haven't
 * found any online mems, return node_states[N_HIGH_MEMORY].
L
Linus Torvalds 已提交
588 589
 *
 * One way or another, we guarantee to return some non-empty subset
590
 * of node_states[N_HIGH_MEMORY].
L
Linus Torvalds 已提交
591
 *
592
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
593 594 595 596
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
597 598
	while (cs && !nodes_intersects(cs->mems_allowed,
					node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
599 600
		cs = cs->parent;
	if (cs)
601 602
		nodes_and(*pmask, cs->mems_allowed,
					node_states[N_HIGH_MEMORY]);
L
Linus Torvalds 已提交
603
	else
604 605
		*pmask = node_states[N_HIGH_MEMORY];
	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
L
Linus Torvalds 已提交
606 607
}

608 609 610 611 612 613
/**
 * cpuset_update_task_memory_state - update task memory placement
 *
 * If the current tasks cpusets mems_allowed changed behind our
 * backs, update current->mems_allowed, mems_generation and task NUMA
 * mempolicy to the new value.
614
 *
615 616 617 618
 * Task mempolicy is updated by rebinding it relative to the
 * current->cpuset if a task has its memory placement changed.
 * Do not call this routine if in_interrupt().
 *
619 620 621 622
 * Call without callback_mutex or task_lock() held.  May be
 * called with or without manage_mutex held.  Thanks in part to
 * 'the_top_cpuset_hack', the tasks cpuset pointer will never
 * be NULL.  This routine also might acquire callback_mutex and
623
 * current->mm->mmap_sem during call.
624
 *
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
 * Reading current->cpuset->mems_generation doesn't need task_lock
 * to guard the current->cpuset derefence, because it is guarded
 * from concurrent freeing of current->cpuset by attach_task(),
 * using RCU.
 *
 * The rcu_dereference() is technically probably not needed,
 * as I don't actually mind if I see a new cpuset pointer but
 * an old value of mems_generation.  However this really only
 * matters on alpha systems using cpusets heavily.  If I dropped
 * that rcu_dereference(), it would save them a memory barrier.
 * For all other arch's, rcu_dereference is a no-op anyway, and for
 * alpha systems not using cpusets, another planned optimization,
 * avoiding the rcu critical section for tasks in the root cpuset
 * which is statically allocated, so can't vanish, will make this
 * irrelevant.  Better to use RCU as intended, than to engage in
 * some cute trick to save a memory barrier that is impossible to
 * test, for alpha systems using cpusets heavily, which might not
 * even exist.
643 644 645 646 647
 *
 * This routine is needed to update the per-task mems_allowed data,
 * within the tasks context, when it is trying to allocate memory
 * (in various mm/mempolicy.c routines) and notices that some other
 * task has been modifying its cpuset.
L
Linus Torvalds 已提交
648 649
 */

650
void cpuset_update_task_memory_state(void)
L
Linus Torvalds 已提交
651
{
652
	int my_cpusets_mem_gen;
653
	struct task_struct *tsk = current;
654
	struct cpuset *cs;
655

656 657 658 659 660 661 662 663 664
	if (tsk->cpuset == &top_cpuset) {
		/* Don't need rcu for top_cpuset.  It's never freed. */
		my_cpusets_mem_gen = top_cpuset.mems_generation;
	} else {
		rcu_read_lock();
		cs = rcu_dereference(tsk->cpuset);
		my_cpusets_mem_gen = cs->mems_generation;
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
665

666
	if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
667
		mutex_lock(&callback_mutex);
668 669 670 671
		task_lock(tsk);
		cs = tsk->cpuset;	/* Maybe changed when task not locked */
		guarantee_online_mems(cs, &tsk->mems_allowed);
		tsk->cpuset_mems_generation = cs->mems_generation;
672 673 674 675 676 677 678 679
		if (is_spread_page(cs))
			tsk->flags |= PF_SPREAD_PAGE;
		else
			tsk->flags &= ~PF_SPREAD_PAGE;
		if (is_spread_slab(cs))
			tsk->flags |= PF_SPREAD_SLAB;
		else
			tsk->flags &= ~PF_SPREAD_SLAB;
680
		task_unlock(tsk);
681
		mutex_unlock(&callback_mutex);
682
		mpol_rebind_task(tsk, &tsk->mems_allowed);
L
Linus Torvalds 已提交
683 684 685 686 687 688 689 690
	}
}

/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
691
 * are only set if the other's are set.  Call holding manage_mutex.
L
Linus Torvalds 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
	return	cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
709
 * manage_mutex held.
L
Linus Torvalds 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
	list_for_each_entry(c, &cur->children, sibling) {
		if (!is_cpuset_subset(c, trial))
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
733
	if (cur == &top_cpuset)
L
Linus Torvalds 已提交
734 735
		return 0;

736 737
	par = cur->parent;

L
Linus Torvalds 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

	/* If either I or some sibling (!= me) is exclusive, we can't overlap */
	list_for_each_entry(c, &par->children, sibling) {
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
		    cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

	return 0;
}

757 758 759 760 761 762 763 764
/*
 * For a given cpuset cur, partition the system as follows
 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
 *    exclusive child cpusets
 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
 *    exclusive child cpusets
 * Build these two partitions by calling partition_sched_domains
 *
765
 * Call with manage_mutex held.  May nest a call to the
766
 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
767 768
 * Must not be called holding callback_mutex, because we must
 * not call lock_cpu_hotplug() while holding callback_mutex.
769
 */
770

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
static void update_cpu_domains(struct cpuset *cur)
{
	struct cpuset *c, *par = cur->parent;
	cpumask_t pspan, cspan;

	if (par == NULL || cpus_empty(cur->cpus_allowed))
		return;

	/*
	 * Get all cpus from parent's cpus_allowed not part of exclusive
	 * children
	 */
	pspan = par->cpus_allowed;
	list_for_each_entry(c, &par->children, sibling) {
		if (is_cpu_exclusive(c))
			cpus_andnot(pspan, pspan, c->cpus_allowed);
	}
788
	if (!is_cpu_exclusive(cur)) {
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		cpus_or(pspan, pspan, cur->cpus_allowed);
		if (cpus_equal(pspan, cur->cpus_allowed))
			return;
		cspan = CPU_MASK_NONE;
	} else {
		if (cpus_empty(pspan))
			return;
		cspan = cur->cpus_allowed;
		/*
		 * Get all cpus from current cpuset's cpus_allowed not part
		 * of exclusive children
		 */
		list_for_each_entry(c, &cur->children, sibling) {
			if (is_cpu_exclusive(c))
				cpus_andnot(cspan, cspan, c->cpus_allowed);
		}
	}

	lock_cpu_hotplug();
	partition_sched_domains(&pspan, &cspan);
	unlock_cpu_hotplug();
}

812
/*
813
 * Call with manage_mutex held.  May take callback_mutex during call.
814 815
 */

L
Linus Torvalds 已提交
816 817 818
static int update_cpumask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
819
	int retval, cpus_unchanged;
L
Linus Torvalds 已提交
820

821 822 823 824
	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

L
Linus Torvalds 已提交
825
	trialcs = *cs;
826 827 828 829 830 831 832 833 834 835 836 837 838

	/*
	 * We allow a cpuset's cpus_allowed to be empty; if it has attached
	 * tasks, we'll catch it later when we validate the change and return
	 * -ENOSPC.
	 */
	if (!buf[0] || (buf[0] == '\n' && !buf[1])) {
		cpus_clear(trialcs.cpus_allowed);
	} else {
		retval = cpulist_parse(buf, trialcs.cpus_allowed);
		if (retval < 0)
			return retval;
	}
L
Linus Torvalds 已提交
839
	cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
840 841
	/* cpus_allowed cannot be empty for a cpuset with attached tasks. */
	if (atomic_read(&cs->count) && cpus_empty(trialcs.cpus_allowed))
L
Linus Torvalds 已提交
842 843
		return -ENOSPC;
	retval = validate_change(cs, &trialcs);
844 845 846
	if (retval < 0)
		return retval;
	cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
847
	mutex_lock(&callback_mutex);
848
	cs->cpus_allowed = trialcs.cpus_allowed;
849
	mutex_unlock(&callback_mutex);
850 851 852
	if (is_cpu_exclusive(cs) && !cpus_unchanged)
		update_cpu_domains(cs);
	return 0;
L
Linus Torvalds 已提交
853 854
}

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
 *    Call holding manage_mutex, so our current->cpuset won't change
 *    during this call, as manage_mutex holds off any attach_task()
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
 *    our tasks cpuset.
 *
 *    Hold callback_mutex around the two modifications of our tasks
 *    mems_allowed to synchronize with cpuset_mems_allowed().
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 *
 *    We call cpuset_update_task_memory_state() before hacking
 *    our tasks mems_allowed, so that we are assured of being in
 *    sync with our tasks cpuset, and in particular, callbacks to
 *    cpuset_update_task_memory_state() from nested page allocations
 *    won't see any mismatch of our cpuset and task mems_generation
 *    values, so won't overwrite our hacked tasks mems_allowed
 *    nodemask.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	cpuset_update_task_memory_state();

	mutex_lock(&callback_mutex);
	tsk->mems_allowed = *to;
	mutex_unlock(&callback_mutex);

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

	mutex_lock(&callback_mutex);
	guarantee_online_mems(tsk->cpuset, &tsk->mems_allowed);
	mutex_unlock(&callback_mutex);
}

904
/*
905 906 907
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
 * cpusets mems_allowed and mems_generation, and for each
908 909 910
 * task in the cpuset, rebind any vma mempolicies and if
 * the cpuset is marked 'memory_migrate', migrate the tasks
 * pages to the new memory.
911
 *
912
 * Call with manage_mutex held.  May take callback_mutex during call.
913 914 915
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
916 917
 */

L
Linus Torvalds 已提交
918 919 920
static int update_nodemask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
921
	nodemask_t oldmem;
922 923 924
	struct task_struct *g, *p;
	struct mm_struct **mmarray;
	int i, n, ntasks;
925
	int migrate;
926
	int fudge;
L
Linus Torvalds 已提交
927 928
	int retval;

929 930 931 932
	/*
	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
	 * it's read-only
	 */
933 934 935
	if (cs == &top_cpuset)
		return -EACCES;

L
Linus Torvalds 已提交
936
	trialcs = *cs;
937 938 939 940 941 942 943 944 945 946 947 948

	/*
	 * We allow a cpuset's mems_allowed to be empty; if it has attached
	 * tasks, we'll catch it later when we validate the change and return
	 * -ENOSPC.
	 */
	if (!buf[0] || (buf[0] == '\n' && !buf[1])) {
		nodes_clear(trialcs.mems_allowed);
	} else {
		retval = nodelist_parse(buf, trialcs.mems_allowed);
		if (retval < 0)
			goto done;
949 950 951 952 953 954 955 956
		if (!nodes_intersects(trialcs.mems_allowed,
						node_states[N_HIGH_MEMORY])) {
			/*
			 * error if only memoryless nodes specified.
			 */
			retval = -ENOSPC;
			goto done;
		}
957
	}
958 959 960 961 962 963
	/*
	 * Exclude memoryless nodes.  We know that trialcs.mems_allowed
	 * contains at least one node with memory.
	 */
	nodes_and(trialcs.mems_allowed, trialcs.mems_allowed,
						node_states[N_HIGH_MEMORY]);
964 965 966 967 968
	oldmem = cs->mems_allowed;
	if (nodes_equal(oldmem, trialcs.mems_allowed)) {
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
969 970
	/* mems_allowed cannot be empty for a cpuset with attached tasks. */
	if (atomic_read(&cs->count) && nodes_empty(trialcs.mems_allowed)) {
971 972
		retval = -ENOSPC;
		goto done;
L
Linus Torvalds 已提交
973
	}
974 975 976 977
	retval = validate_change(cs, &trialcs);
	if (retval < 0)
		goto done;

978
	mutex_lock(&callback_mutex);
979
	cs->mems_allowed = trialcs.mems_allowed;
980
	cs->mems_generation = cpuset_mems_generation++;
981
	mutex_unlock(&callback_mutex);
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	set_cpuset_being_rebound(cs);		/* causes mpol_copy() rebind */

	fudge = 10;				/* spare mmarray[] slots */
	fudge += cpus_weight(cs->cpus_allowed);	/* imagine one fork-bomb/cpu */
	retval = -ENOMEM;

	/*
	 * Allocate mmarray[] to hold mm reference for each task
	 * in cpuset cs.  Can't kmalloc GFP_KERNEL while holding
	 * tasklist_lock.  We could use GFP_ATOMIC, but with a
	 * few more lines of code, we can retry until we get a big
	 * enough mmarray[] w/o using GFP_ATOMIC.
	 */
	while (1) {
		ntasks = atomic_read(&cs->count);	/* guess */
		ntasks += fudge;
		mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
		if (!mmarray)
			goto done;
1002
		read_lock(&tasklist_lock);		/* block fork */
1003 1004
		if (atomic_read(&cs->count) <= ntasks)
			break;				/* got enough */
1005
		read_unlock(&tasklist_lock);		/* try again */
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		kfree(mmarray);
	}

	n = 0;

	/* Load up mmarray[] with mm reference for each task in cpuset. */
	do_each_thread(g, p) {
		struct mm_struct *mm;

		if (n >= ntasks) {
			printk(KERN_WARNING
				"Cpuset mempolicy rebind incomplete.\n");
			continue;
		}
		if (p->cpuset != cs)
			continue;
		mm = get_task_mm(p);
		if (!mm)
			continue;
		mmarray[n++] = mm;
	} while_each_thread(g, p);
1027
	read_unlock(&tasklist_lock);
1028 1029 1030 1031 1032 1033 1034 1035 1036

	/*
	 * Now that we've dropped the tasklist spinlock, we can
	 * rebind the vma mempolicies of each mm in mmarray[] to their
	 * new cpuset, and release that mm.  The mpol_rebind_mm()
	 * call takes mmap_sem, which we couldn't take while holding
	 * tasklist_lock.  Forks can happen again now - the mpol_copy()
	 * cpuset_being_rebound check will catch such forks, and rebind
	 * their vma mempolicies too.  Because we still hold the global
1037
	 * cpuset manage_mutex, we know that no other rebind effort will
1038 1039
	 * be contending for the global variable cpuset_being_rebound.
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1040
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1041
	 */
1042
	migrate = is_memory_migrate(cs);
1043 1044 1045 1046
	for (i = 0; i < n; i++) {
		struct mm_struct *mm = mmarray[i];

		mpol_rebind_mm(mm, &cs->mems_allowed);
1047 1048
		if (migrate)
			cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
1049 1050 1051 1052 1053 1054 1055
		mmput(mm);
	}

	/* We're done rebinding vma's to this cpusets new mems_allowed. */
	kfree(mmarray);
	set_cpuset_being_rebound(NULL);
	retval = 0;
1056
done:
L
Linus Torvalds 已提交
1057 1058 1059
	return retval;
}

1060
/*
1061
 * Call with manage_mutex held.
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
 */

static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
{
	if (simple_strtoul(buf, NULL, 10) != 0)
		cpuset_memory_pressure_enabled = 1;
	else
		cpuset_memory_pressure_enabled = 0;
	return 0;
}

L
Linus Torvalds 已提交
1073 1074 1075
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
 * bit:	the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
1076 1077
 *				CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
 *				CS_SPREAD_PAGE, CS_SPREAD_SLAB)
L
Linus Torvalds 已提交
1078 1079
 * cs:	the cpuset to update
 * buf:	the buffer where we read the 0 or 1
1080
 *
1081
 * Call with manage_mutex held.
L
Linus Torvalds 已提交
1082 1083 1084 1085 1086 1087
 */

static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
{
	int turning_on;
	struct cpuset trialcs;
1088
	int err, cpu_exclusive_changed;
L
Linus Torvalds 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

	turning_on = (simple_strtoul(buf, NULL, 10) != 0);

	trialcs = *cs;
	if (turning_on)
		set_bit(bit, &trialcs.flags);
	else
		clear_bit(bit, &trialcs.flags);

	err = validate_change(cs, &trialcs);
1099 1100 1101 1102
	if (err < 0)
		return err;
	cpu_exclusive_changed =
		(is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
1103
	mutex_lock(&callback_mutex);
1104
	cs->flags = trialcs.flags;
1105
	mutex_unlock(&callback_mutex);
1106 1107 1108 1109

	if (cpu_exclusive_changed)
                update_cpu_domains(cs);
	return 0;
L
Linus Torvalds 已提交
1110 1111
}

1112
/*
A
Adrian Bunk 已提交
1113
 * Frequency meter - How fast is some event occurring?
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1210 1211 1212 1213 1214
/*
 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
 * notified on release.
 *
1215
 * Call holding manage_mutex.  May take callback_mutex and task_lock of
1216 1217 1218
 * the task 'pid' during call.
 */

1219
static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
L
Linus Torvalds 已提交
1220 1221 1222 1223 1224
{
	pid_t pid;
	struct task_struct *tsk;
	struct cpuset *oldcs;
	cpumask_t cpus;
1225
	nodemask_t from, to;
1226
	struct mm_struct *mm;
1227
	int retval;
L
Linus Torvalds 已提交
1228

1229
	if (sscanf(pidbuf, "%d", &pid) != 1)
L
Linus Torvalds 已提交
1230 1231 1232 1233 1234 1235 1236 1237
		return -EIO;
	if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		return -ENOSPC;

	if (pid) {
		read_lock(&tasklist_lock);

		tsk = find_task_by_pid(pid);
1238
		if (!tsk || tsk->flags & PF_EXITING) {
L
Linus Torvalds 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
			read_unlock(&tasklist_lock);
			return -ESRCH;
		}

		get_task_struct(tsk);
		read_unlock(&tasklist_lock);

		if ((current->euid) && (current->euid != tsk->uid)
		    && (current->euid != tsk->suid)) {
			put_task_struct(tsk);
			return -EACCES;
		}
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1256 1257 1258 1259 1260 1261
	retval = security_task_setscheduler(tsk, 0, NULL);
	if (retval) {
		put_task_struct(tsk);
		return retval;
	}

1262
	mutex_lock(&callback_mutex);
1263

L
Linus Torvalds 已提交
1264 1265
	task_lock(tsk);
	oldcs = tsk->cpuset;
1266 1267 1268 1269 1270 1271
	/*
	 * After getting 'oldcs' cpuset ptr, be sure still not exiting.
	 * If 'oldcs' might be the top_cpuset due to the_top_cpuset_hack
	 * then fail this attach_task(), to avoid breaking top_cpuset.count.
	 */
	if (tsk->flags & PF_EXITING) {
L
Linus Torvalds 已提交
1272
		task_unlock(tsk);
1273
		mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1274 1275 1276 1277
		put_task_struct(tsk);
		return -ESRCH;
	}
	atomic_inc(&cs->count);
1278
	rcu_assign_pointer(tsk->cpuset, cs);
L
Linus Torvalds 已提交
1279 1280 1281 1282 1283
	task_unlock(tsk);

	guarantee_online_cpus(cs, &cpus);
	set_cpus_allowed(tsk, cpus);

1284 1285 1286
	from = oldcs->mems_allowed;
	to = cs->mems_allowed;

1287
	mutex_unlock(&callback_mutex);
1288 1289 1290 1291

	mm = get_task_mm(tsk);
	if (mm) {
		mpol_rebind_mm(mm, &to);
1292
		if (is_memory_migrate(cs))
1293
			cpuset_migrate_mm(mm, &from, &to);
1294 1295 1296
		mmput(mm);
	}

L
Linus Torvalds 已提交
1297
	put_task_struct(tsk);
1298
	synchronize_rcu();
L
Linus Torvalds 已提交
1299
	if (atomic_dec_and_test(&oldcs->count))
1300
		check_for_release(oldcs, ppathbuf);
L
Linus Torvalds 已提交
1301 1302 1303 1304 1305 1306 1307 1308
	return 0;
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
	FILE_ROOT,
	FILE_DIR,
1309
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1310 1311 1312 1313 1314
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
	FILE_NOTIFY_ON_RELEASE,
1315 1316
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1317 1318
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1319 1320 1321
	FILE_TASKLIST,
} cpuset_filetype_t;

1322 1323
static ssize_t cpuset_common_file_write(struct file *file,
					const char __user *userbuf,
L
Linus Torvalds 已提交
1324 1325
					size_t nbytes, loff_t *unused_ppos)
{
J
Josef Sipek 已提交
1326 1327
	struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
	struct cftype *cft = __d_cft(file->f_path.dentry);
L
Linus Torvalds 已提交
1328 1329
	cpuset_filetype_t type = cft->private;
	char *buffer;
1330
	char *pathbuf = NULL;
L
Linus Torvalds 已提交
1331 1332 1333
	int retval = 0;

	/* Crude upper limit on largest legitimate cpulist user might write. */
1334
	if (nbytes > 100 + 6 * max(NR_CPUS, MAX_NUMNODES))
L
Linus Torvalds 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		return -E2BIG;

	/* +1 for nul-terminator */
	if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
		return -ENOMEM;

	if (copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out1;
	}
	buffer[nbytes] = 0;	/* nul-terminate */

1347
	mutex_lock(&manage_mutex);
L
Linus Torvalds 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

	if (is_removed(cs)) {
		retval = -ENODEV;
		goto out2;
	}

	switch (type) {
	case FILE_CPULIST:
		retval = update_cpumask(cs, buffer);
		break;
	case FILE_MEMLIST:
		retval = update_nodemask(cs, buffer);
		break;
	case FILE_CPU_EXCLUSIVE:
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
		break;
	case FILE_MEM_EXCLUSIVE:
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
		break;
	case FILE_NOTIFY_ON_RELEASE:
		retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
		break;
1370 1371 1372
	case FILE_MEMORY_MIGRATE:
		retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
		break;
1373 1374 1375 1376 1377 1378
	case FILE_MEMORY_PRESSURE_ENABLED:
		retval = update_memory_pressure_enabled(cs, buffer);
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1379 1380
	case FILE_SPREAD_PAGE:
		retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
1381
		cs->mems_generation = cpuset_mems_generation++;
1382 1383 1384
		break;
	case FILE_SPREAD_SLAB:
		retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
1385
		cs->mems_generation = cpuset_mems_generation++;
1386
		break;
L
Linus Torvalds 已提交
1387
	case FILE_TASKLIST:
1388
		retval = attach_task(cs, buffer, &pathbuf);
L
Linus Torvalds 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397
		break;
	default:
		retval = -EINVAL;
		goto out2;
	}

	if (retval == 0)
		retval = nbytes;
out2:
1398
	mutex_unlock(&manage_mutex);
1399
	cpuset_release_agent(pathbuf);
L
Linus Torvalds 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408
out1:
	kfree(buffer);
	return retval;
}

static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	ssize_t retval = 0;
J
Josef Sipek 已提交
1409
	struct cftype *cft = __d_cft(file->f_path.dentry);
L
Linus Torvalds 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	if (!cft)
		return -ENODEV;

	/* special function ? */
	if (cft->write)
		retval = cft->write(file, buf, nbytes, ppos);
	else
		retval = cpuset_common_file_write(file, buf, nbytes, ppos);

	return retval;
}

/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
{
	cpumask_t mask;

1438
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1439
	mask = cs->cpus_allowed;
1440
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1441 1442 1443 1444 1445 1446 1447 1448

	return cpulist_scnprintf(page, PAGE_SIZE, mask);
}

static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
{
	nodemask_t mask;

1449
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1450
	mask = cs->mems_allowed;
1451
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1452 1453 1454 1455 1456 1457 1458

	return nodelist_scnprintf(page, PAGE_SIZE, mask);
}

static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
				size_t nbytes, loff_t *ppos)
{
J
Josef Sipek 已提交
1459 1460
	struct cftype *cft = __d_cft(file->f_path.dentry);
	struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
L
Linus Torvalds 已提交
1461 1462 1463 1464 1465
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

1466
	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
L
Linus Torvalds 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	case FILE_CPU_EXCLUSIVE:
		*s++ = is_cpu_exclusive(cs) ? '1' : '0';
		break;
	case FILE_MEM_EXCLUSIVE:
		*s++ = is_mem_exclusive(cs) ? '1' : '0';
		break;
	case FILE_NOTIFY_ON_RELEASE:
		*s++ = notify_on_release(cs) ? '1' : '0';
		break;
1487 1488 1489
	case FILE_MEMORY_MIGRATE:
		*s++ = is_memory_migrate(cs) ? '1' : '0';
		break;
1490 1491 1492 1493 1494 1495
	case FILE_MEMORY_PRESSURE_ENABLED:
		*s++ = cpuset_memory_pressure_enabled ? '1' : '0';
		break;
	case FILE_MEMORY_PRESSURE:
		s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
		break;
1496 1497 1498 1499 1500 1501
	case FILE_SPREAD_PAGE:
		*s++ = is_spread_page(cs) ? '1' : '0';
		break;
	case FILE_SPREAD_SLAB:
		*s++ = is_spread_slab(cs) ? '1' : '0';
		break;
L
Linus Torvalds 已提交
1502 1503 1504 1505 1506 1507
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

A
Al Viro 已提交
1508
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
L
Linus Torvalds 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517
out:
	free_page((unsigned long)page);
	return retval;
}

static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
								loff_t *ppos)
{
	ssize_t retval = 0;
J
Josef Sipek 已提交
1518
	struct cftype *cft = __d_cft(file->f_path.dentry);
L
Linus Torvalds 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	if (!cft)
		return -ENODEV;

	/* special function ? */
	if (cft->read)
		retval = cft->read(file, buf, nbytes, ppos);
	else
		retval = cpuset_common_file_read(file, buf, nbytes, ppos);

	return retval;
}

static int cpuset_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;

J
Josef Sipek 已提交
1540
	cft = __d_cft(file->f_path.dentry);
L
Linus Torvalds 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
	if (!cft)
		return -ENODEV;
	if (cft->open)
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cpuset_file_release(struct inode *inode, struct file *file)
{
J
Josef Sipek 已提交
1553
	struct cftype *cft = __d_cft(file->f_path.dentry);
L
Linus Torvalds 已提交
1554 1555 1556 1557 1558
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

P
Paul Jackson 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
/*
 * cpuset_rename - Only allow simple rename of directories in place.
 */
static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
                  struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

1574
static const struct file_operations cpuset_file_operations = {
L
Linus Torvalds 已提交
1575 1576 1577 1578 1579 1580 1581
	.read = cpuset_file_read,
	.write = cpuset_file_write,
	.llseek = generic_file_llseek,
	.open = cpuset_file_open,
	.release = cpuset_file_release,
};

1582
static const struct inode_operations cpuset_dir_inode_operations = {
L
Linus Torvalds 已提交
1583 1584 1585
	.lookup = simple_lookup,
	.mkdir = cpuset_mkdir,
	.rmdir = cpuset_rmdir,
P
Paul Jackson 已提交
1586
	.rename = cpuset_rename,
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
};

static int cpuset_create_file(struct dentry *dentry, int mode)
{
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cpuset_new_inode(mode);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cpuset_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
1607
		inc_nlink(inode);
L
Linus Torvalds 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cpuset_file_operations;
	}

	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
 *	cpuset_create_dir - create a directory for an object.
1620
 *	cs:	the cpuset we create the directory for.
L
Linus Torvalds 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
 *		It must have a valid ->parent field
 *		And we are going to fill its ->dentry field.
 *	name:	The name to give to the cpuset directory. Will be copied.
 *	mode:	mode to set on new directory.
 */

static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
{
	struct dentry *dentry = NULL;
	struct dentry *parent;
	int error = 0;

	parent = cs->parent->dentry;
	dentry = cpuset_get_dentry(parent, name);
	if (IS_ERR(dentry))
		return PTR_ERR(dentry);
	error = cpuset_create_file(dentry, S_IFDIR | mode);
	if (!error) {
		dentry->d_fsdata = cs;
1640
		inc_nlink(parent->d_inode);
L
Linus Torvalds 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
		cs->dentry = dentry;
	}
	dput(dentry);

	return error;
}

static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
{
	struct dentry *dentry;
	int error;

1653
	mutex_lock(&dir->d_inode->i_mutex);
L
Linus Torvalds 已提交
1654 1655 1656 1657 1658 1659 1660 1661
	dentry = cpuset_get_dentry(dir, cft->name);
	if (!IS_ERR(dentry)) {
		error = cpuset_create_file(dentry, 0644 | S_IFREG);
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
1662
	mutex_unlock(&dir->d_inode->i_mutex);
L
Linus Torvalds 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	return error;
}

/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cpuset has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 * Upon tasks file open(), a struct ctr_struct is allocated, that
 * will have a pointer to an array (also allocated here).  The struct
 * ctr_struct * is stored in file->private_data.  Its resources will
 * be freed by release() when the file is closed.  The array is used
 * to sprintf the PIDs and then used by read().
 */

/* cpusets_tasks_read array */

struct ctr_struct {
	char *buf;
	int bufsz;
};

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1690 1691 1692
 * Return actual number of pids loaded.  No need to task_lock(p)
 * when reading out p->cpuset, as we don't really care if it changes
 * on the next cycle, and we are not going to try to dereference it.
L
Linus Torvalds 已提交
1693
 */
1694
static int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
L
Linus Torvalds 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
{
	int n = 0;
	struct task_struct *g, *p;

	read_lock(&tasklist_lock);

	do_each_thread(g, p) {
		if (p->cpuset == cs) {
			if (unlikely(n == npids))
				goto array_full;
1705
			pidarray[n++] = p->pid;
L
Linus Torvalds 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
		}
	} while_each_thread(g, p);

array_full:
	read_unlock(&tasklist_lock);
	return n;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

/*
 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
 * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return
 * count 'cnt' of how many chars would be written if buf were large enough.
 */
static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
{
	int cnt = 0;
	int i;

	for (i = 0; i < npids; i++)
		cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
	return cnt;
}

1734 1735 1736 1737
/*
 * Handle an open on 'tasks' file.  Prepare a buffer listing the
 * process id's of tasks currently attached to the cpuset being opened.
 *
1738
 * Does not require any specific cpuset mutexes, and does not take any.
1739
 */
L
Linus Torvalds 已提交
1740 1741
static int cpuset_tasks_open(struct inode *unused, struct file *file)
{
J
Josef Sipek 已提交
1742
	struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
L
Linus Torvalds 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	struct ctr_struct *ctr;
	pid_t *pidarray;
	int npids;
	char c;

	if (!(file->f_mode & FMODE_READ))
		return 0;

	ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
	if (!ctr)
		goto err0;

	/*
	 * If cpuset gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cpuset users didn't
	 * show up until sometime later on.
	 */
	npids = atomic_read(&cs->count);
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		goto err1;

	npids = pid_array_load(pidarray, npids, cs);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);

	/* Call pid_array_to_buf() twice, first just to get bufsz */
	ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
	ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
	if (!ctr->buf)
		goto err2;
	ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);

	kfree(pidarray);
	file->private_data = ctr;
	return 0;

err2:
	kfree(pidarray);
err1:
	kfree(ctr);
err0:
	return -ENOMEM;
}

static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct ctr_struct *ctr = file->private_data;

1793
	return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
L
Linus Torvalds 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
}

static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
{
	struct ctr_struct *ctr;

	if (file->f_mode & FMODE_READ) {
		ctr = file->private_data;
		kfree(ctr->buf);
		kfree(ctr);
	}
	return 0;
}

/*
 * for the common functions, 'private' gives the type of file
 */

static struct cftype cft_tasks = {
	.name = "tasks",
	.open = cpuset_tasks_open,
	.read = cpuset_tasks_read,
	.release = cpuset_tasks_release,
	.private = FILE_TASKLIST,
};

static struct cftype cft_cpus = {
	.name = "cpus",
	.private = FILE_CPULIST,
};

static struct cftype cft_mems = {
	.name = "mems",
	.private = FILE_MEMLIST,
};

static struct cftype cft_cpu_exclusive = {
	.name = "cpu_exclusive",
	.private = FILE_CPU_EXCLUSIVE,
};

static struct cftype cft_mem_exclusive = {
	.name = "mem_exclusive",
	.private = FILE_MEM_EXCLUSIVE,
};

static struct cftype cft_notify_on_release = {
	.name = "notify_on_release",
	.private = FILE_NOTIFY_ON_RELEASE,
};

1845 1846 1847 1848 1849
static struct cftype cft_memory_migrate = {
	.name = "memory_migrate",
	.private = FILE_MEMORY_MIGRATE,
};

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
static struct cftype cft_memory_pressure_enabled = {
	.name = "memory_pressure_enabled",
	.private = FILE_MEMORY_PRESSURE_ENABLED,
};

static struct cftype cft_memory_pressure = {
	.name = "memory_pressure",
	.private = FILE_MEMORY_PRESSURE,
};

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
static struct cftype cft_spread_page = {
	.name = "memory_spread_page",
	.private = FILE_SPREAD_PAGE,
};

static struct cftype cft_spread_slab = {
	.name = "memory_spread_slab",
	.private = FILE_SPREAD_SLAB,
};

L
Linus Torvalds 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
static int cpuset_populate_dir(struct dentry *cs_dentry)
{
	int err;

	if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
		return err;
1884 1885
	if ((err = cpuset_add_file(cs_dentry, &cft_memory_migrate)) < 0)
		return err;
1886 1887
	if ((err = cpuset_add_file(cs_dentry, &cft_memory_pressure)) < 0)
		return err;
1888 1889 1890 1891
	if ((err = cpuset_add_file(cs_dentry, &cft_spread_page)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_spread_slab)) < 0)
		return err;
L
Linus Torvalds 已提交
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
		return err;
	return 0;
}

/*
 *	cpuset_create - create a cpuset
 *	parent:	cpuset that will be parent of the new cpuset.
 *	name:		name of the new cpuset. Will be strcpy'ed.
 *	mode:		mode to set on new inode
 *
1903
 *	Must be called with the mutex on the parent inode held
L
Linus Torvalds 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
 */

static long cpuset_create(struct cpuset *parent, const char *name, int mode)
{
	struct cpuset *cs;
	int err;

	cs = kmalloc(sizeof(*cs), GFP_KERNEL);
	if (!cs)
		return -ENOMEM;

1915
	mutex_lock(&manage_mutex);
1916
	cpuset_update_task_memory_state();
L
Linus Torvalds 已提交
1917 1918 1919
	cs->flags = 0;
	if (notify_on_release(parent))
		set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1920 1921 1922 1923
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1924 1925 1926 1927 1928
	cs->cpus_allowed = CPU_MASK_NONE;
	cs->mems_allowed = NODE_MASK_NONE;
	atomic_set(&cs->count, 0);
	INIT_LIST_HEAD(&cs->sibling);
	INIT_LIST_HEAD(&cs->children);
1929
	cs->mems_generation = cpuset_mems_generation++;
1930
	fmeter_init(&cs->fmeter);
L
Linus Torvalds 已提交
1931 1932 1933

	cs->parent = parent;

1934
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1935
	list_add(&cs->sibling, &cs->parent->children);
1936
	number_of_cpusets++;
1937
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1938 1939 1940 1941 1942 1943

	err = cpuset_create_dir(cs, name, mode);
	if (err < 0)
		goto err;

	/*
1944
	 * Release manage_mutex before cpuset_populate_dir() because it
1945
	 * will down() this new directory's i_mutex and if we race with
L
Linus Torvalds 已提交
1946 1947
	 * another mkdir, we might deadlock.
	 */
1948
	mutex_unlock(&manage_mutex);
L
Linus Torvalds 已提交
1949 1950 1951 1952 1953 1954

	err = cpuset_populate_dir(cs->dentry);
	/* If err < 0, we have a half-filled directory - oh well ;) */
	return 0;
err:
	list_del(&cs->sibling);
1955
	mutex_unlock(&manage_mutex);
L
Linus Torvalds 已提交
1956 1957 1958 1959 1960 1961 1962 1963
	kfree(cs);
	return err;
}

static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cpuset *c_parent = dentry->d_parent->d_fsdata;

1964
	/* the vfs holds inode->i_mutex already */
L
Linus Torvalds 已提交
1965 1966 1967
	return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
}

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
/*
 * Locking note on the strange update_flag() call below:
 *
 * If the cpuset being removed is marked cpu_exclusive, then simulate
 * turning cpu_exclusive off, which will call update_cpu_domains().
 * The lock_cpu_hotplug() call in update_cpu_domains() must not be
 * made while holding callback_mutex.  Elsewhere the kernel nests
 * callback_mutex inside lock_cpu_hotplug() calls.  So the reverse
 * nesting would risk an ABBA deadlock.
 */

L
Linus Torvalds 已提交
1979 1980 1981 1982 1983
static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
	struct cpuset *cs = dentry->d_fsdata;
	struct dentry *d;
	struct cpuset *parent;
1984
	char *pathbuf = NULL;
L
Linus Torvalds 已提交
1985

1986
	/* the vfs holds both inode->i_mutex already */
L
Linus Torvalds 已提交
1987

1988
	mutex_lock(&manage_mutex);
1989
	cpuset_update_task_memory_state();
L
Linus Torvalds 已提交
1990
	if (atomic_read(&cs->count) > 0) {
1991
		mutex_unlock(&manage_mutex);
L
Linus Torvalds 已提交
1992 1993 1994
		return -EBUSY;
	}
	if (!list_empty(&cs->children)) {
1995
		mutex_unlock(&manage_mutex);
L
Linus Torvalds 已提交
1996 1997
		return -EBUSY;
	}
1998 1999 2000 2001 2002 2003 2004
	if (is_cpu_exclusive(cs)) {
		int retval = update_flag(CS_CPU_EXCLUSIVE, cs, "0");
		if (retval < 0) {
			mutex_unlock(&manage_mutex);
			return retval;
		}
	}
L
Linus Torvalds 已提交
2005
	parent = cs->parent;
2006
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
2007 2008
	set_bit(CS_REMOVED, &cs->flags);
	list_del(&cs->sibling);	/* delete my sibling from parent->children */
2009
	spin_lock(&cs->dentry->d_lock);
L
Linus Torvalds 已提交
2010 2011 2012 2013 2014
	d = dget(cs->dentry);
	cs->dentry = NULL;
	spin_unlock(&d->d_lock);
	cpuset_d_remove_dir(d);
	dput(d);
2015
	number_of_cpusets--;
2016
	mutex_unlock(&callback_mutex);
2017 2018
	if (list_empty(&parent->children))
		check_for_release(parent, &pathbuf);
2019
	mutex_unlock(&manage_mutex);
2020
	cpuset_release_agent(pathbuf);
L
Linus Torvalds 已提交
2021 2022 2023
	return 0;
}

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
/*
 * cpuset_init_early - just enough so that the calls to
 * cpuset_update_task_memory_state() in early init code
 * are harmless.
 */

int __init cpuset_init_early(void)
{
	struct task_struct *tsk = current;

	tsk->cpuset = &top_cpuset;
2035
	tsk->cpuset->mems_generation = cpuset_mems_generation++;
2036 2037 2038
	return 0;
}

L
Linus Torvalds 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
	struct dentry *root;
	int err;

	top_cpuset.cpus_allowed = CPU_MASK_ALL;
	top_cpuset.mems_allowed = NODE_MASK_ALL;

2053
	fmeter_init(&top_cpuset.fmeter);
2054
	top_cpuset.mems_generation = cpuset_mems_generation++;
L
Linus Torvalds 已提交
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

	init_task.cpuset = &top_cpuset;

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
		goto out;
	cpuset_mount = kern_mount(&cpuset_fs_type);
	if (IS_ERR(cpuset_mount)) {
		printk(KERN_ERR "cpuset: could not mount!\n");
		err = PTR_ERR(cpuset_mount);
		cpuset_mount = NULL;
		goto out;
	}
	root = cpuset_mount->mnt_sb->s_root;
	root->d_fsdata = &top_cpuset;
2070
	inc_nlink(root->d_inode);
L
Linus Torvalds 已提交
2071 2072
	top_cpuset.dentry = root;
	root->d_inode->i_op = &cpuset_dir_inode_operations;
2073
	number_of_cpusets = 1;
L
Linus Torvalds 已提交
2074
	err = cpuset_populate_dir(root);
2075 2076 2077
	/* memory_pressure_enabled is in root cpuset only */
	if (err == 0)
		err = cpuset_add_file(root, &cft_memory_pressure_enabled);
L
Linus Torvalds 已提交
2078 2079 2080 2081
out:
	return err;
}

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
/*
 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
 * last CPU or node from a cpuset, then the guarantee_online_cpus()
 * or guarantee_online_mems() code will use that emptied cpusets
 * parent online CPUs or nodes.  Cpusets that were already empty of
 * CPUs or nodes are left empty.
 *
 * This routine is intentionally inefficient in a couple of regards.
 * It will check all cpusets in a subtree even if the top cpuset of
 * the subtree has no offline CPUs or nodes.  It checks both CPUs and
 * nodes, even though the caller could have been coded to know that
 * only one of CPUs or nodes needed to be checked on a given call.
 * This was done to minimize text size rather than cpu cycles.
 *
 * Call with both manage_mutex and callback_mutex held.
 *
 * Recursive, on depth of cpuset subtree.
 */

static void guarantee_online_cpus_mems_in_subtree(const struct cpuset *cur)
{
	struct cpuset *c;

	/* Each of our child cpusets mems must be online */
	list_for_each_entry(c, &cur->children, sibling) {
		guarantee_online_cpus_mems_in_subtree(c);
		if (!cpus_empty(c->cpus_allowed))
			guarantee_online_cpus(c, &c->cpus_allowed);
		if (!nodes_empty(c->mems_allowed))
			guarantee_online_mems(c, &c->mems_allowed);
	}
}

/*
 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
2119 2120 2121
 * cpu_online_map and node_states[N_HIGH_MEMORY].  Force the top cpuset to
 * track what's online after any CPU or memory node hotplug or unplug
 * event.
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
 *
 * To ensure that we don't remove a CPU or node from the top cpuset
 * that is currently in use by a child cpuset (which would violate
 * the rule that cpusets must be subsets of their parent), we first
 * call the recursive routine guarantee_online_cpus_mems_in_subtree().
 *
 * Since there are two callers of this routine, one for CPU hotplug
 * events and one for memory node hotplug events, we could have coded
 * two separate routines here.  We code it as a single common routine
 * in order to minimize text size.
 */

static void common_cpu_mem_hotplug_unplug(void)
{
	mutex_lock(&manage_mutex);
	mutex_lock(&callback_mutex);

	guarantee_online_cpus_mems_in_subtree(&top_cpuset);
	top_cpuset.cpus_allowed = cpu_online_map;
2141
	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2142 2143 2144 2145 2146

	mutex_unlock(&callback_mutex);
	mutex_unlock(&manage_mutex);
}

2147 2148 2149 2150 2151 2152
/*
 * The top_cpuset tracks what CPUs and Memory Nodes are online,
 * period.  This is necessary in order to make cpusets transparent
 * (of no affect) on systems that are actively using CPU hotplug
 * but making no active use of cpusets.
 *
2153 2154
 * This routine ensures that top_cpuset.cpus_allowed tracks
 * cpu_online_map on each CPU hotplug (cpuhp) event.
2155 2156 2157 2158 2159
 */

static int cpuset_handle_cpuhp(struct notifier_block *nb,
				unsigned long phase, void *cpu)
{
2160 2161 2162
	if (phase == CPU_DYING || phase == CPU_DYING_FROZEN)
		return NOTIFY_DONE;

2163
	common_cpu_mem_hotplug_unplug();
2164 2165 2166
	return 0;
}

2167
#ifdef CONFIG_MEMORY_HOTPLUG
2168
/*
2169 2170 2171
 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
 * Call this routine anytime after you change
 * node_states[N_HIGH_MEMORY].
2172 2173 2174
 * See also the previous routine cpuset_handle_cpuhp().
 */

A
Al Viro 已提交
2175
void cpuset_track_online_nodes(void)
2176
{
2177
	common_cpu_mem_hotplug_unplug();
2178 2179 2180
}
#endif

L
Linus Torvalds 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
 **/

void __init cpuset_init_smp(void)
{
	top_cpuset.cpus_allowed = cpu_online_map;
2190
	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2191 2192

	hotcpu_notifier(cpuset_handle_cpuhp, 0);
L
Linus Torvalds 已提交
2193 2194 2195 2196
}

/**
 * cpuset_fork - attach newly forked task to its parents cpuset.
2197
 * @tsk: pointer to task_struct of forking parent process.
L
Linus Torvalds 已提交
2198
 *
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
 * Description: A task inherits its parent's cpuset at fork().
 *
 * A pointer to the shared cpuset was automatically copied in fork.c
 * by dup_task_struct().  However, we ignore that copy, since it was
 * not made under the protection of task_lock(), so might no longer be
 * a valid cpuset pointer.  attach_task() might have already changed
 * current->cpuset, allowing the previously referenced cpuset to
 * be removed and freed.  Instead, we task_lock(current) and copy
 * its present value of current->cpuset for our freshly forked child.
 *
 * At the point that cpuset_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
L
Linus Torvalds 已提交
2211 2212
 **/

2213
void cpuset_fork(struct task_struct *child)
L
Linus Torvalds 已提交
2214
{
2215 2216 2217 2218
	task_lock(current);
	child->cpuset = current->cpuset;
	atomic_inc(&child->cpuset->count);
	task_unlock(current);
L
Linus Torvalds 已提交
2219 2220 2221 2222 2223 2224 2225 2226
}

/**
 * cpuset_exit - detach cpuset from exiting task
 * @tsk: pointer to task_struct of exiting process
 *
 * Description: Detach cpuset from @tsk and release it.
 *
2227
 * Note that cpusets marked notify_on_release force every task in
2228
 * them to take the global manage_mutex mutex when exiting.
2229 2230 2231 2232 2233
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cpusets where very high task exit scaling
 * is required on large systems.
 *
 * Don't even think about derefencing 'cs' after the cpuset use count
2234 2235
 * goes to zero, except inside a critical section guarded by manage_mutex
 * or callback_mutex.   Otherwise a zero cpuset use count is a license to
2236 2237
 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
 *
2238 2239 2240
 * This routine has to take manage_mutex, not callback_mutex, because
 * it is holding that mutex while calling check_for_release(),
 * which calls kmalloc(), so can't be called holding callback_mutex().
2241
 *
2242
 * the_top_cpuset_hack:
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
 *
 *    Set the exiting tasks cpuset to the root cpuset (top_cpuset).
 *
 *    Don't leave a task unable to allocate memory, as that is an
 *    accident waiting to happen should someone add a callout in
 *    do_exit() after the cpuset_exit() call that might allocate.
 *    If a task tries to allocate memory with an invalid cpuset,
 *    it will oops in cpuset_update_task_memory_state().
 *
 *    We call cpuset_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to
 *    the root cpuset (top_cpuset) for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cpuset, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cpuset function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cpuset reference count, to no avail.
 *
 *    Normally, holding a reference to a cpuset without bumping its
 *    count is unsafe.   The cpuset could go away, or someone could
 *    attach us to a different cpuset, decrementing the count on
 *    the first cpuset that we never incremented.  But in this case,
 *    top_cpuset isn't going away, and either task has PF_EXITING set,
 *    which wards off any attach_task() attempts, or task is a failed
 *    fork, never visible to attach_task.
 *
 *    Another way to do this would be to set the cpuset pointer
 *    to NULL here, and check in cpuset_update_task_memory_state()
 *    for a NULL pointer.  This hack avoids that NULL check, for no
 *    cost (other than this way too long comment ;).
L
Linus Torvalds 已提交
2274 2275 2276 2277 2278 2279
 **/

void cpuset_exit(struct task_struct *tsk)
{
	struct cpuset *cs;

2280
	task_lock(current);
L
Linus Torvalds 已提交
2281
	cs = tsk->cpuset;
2282
	tsk->cpuset = &top_cpuset;	/* the_top_cpuset_hack - see above */
2283
	task_unlock(current);
L
Linus Torvalds 已提交
2284

2285
	if (notify_on_release(cs)) {
2286 2287
		char *pathbuf = NULL;

2288
		mutex_lock(&manage_mutex);
2289
		if (atomic_dec_and_test(&cs->count))
2290
			check_for_release(cs, &pathbuf);
2291
		mutex_unlock(&manage_mutex);
2292
		cpuset_release_agent(pathbuf);
2293 2294
	} else {
		atomic_dec(&cs->count);
L
Linus Torvalds 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
	}
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
 *
 * Description: Returns the cpumask_t cpus_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
 * subset of cpu_online_map, even if this means going outside the
 * tasks cpuset.
 **/

2308
cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
L
Linus Torvalds 已提交
2309 2310 2311
{
	cpumask_t mask;

2312
	mutex_lock(&callback_mutex);
2313
	task_lock(tsk);
L
Linus Torvalds 已提交
2314
	guarantee_online_cpus(tsk->cpuset, &mask);
2315
	task_unlock(tsk);
2316
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2317 2318 2319 2320 2321 2322 2323 2324 2325

	return mask;
}

void cpuset_init_current_mems_allowed(void)
{
	current->mems_allowed = NODE_MASK_ALL;
}

2326 2327 2328 2329 2330 2331
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2332
 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2333 2334 2335 2336 2337 2338 2339
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;

2340
	mutex_lock(&callback_mutex);
2341 2342 2343
	task_lock(tsk);
	guarantee_online_mems(tsk->cpuset, &mask);
	task_unlock(tsk);
2344
	mutex_unlock(&callback_mutex);
2345 2346 2347 2348

	return mask;
}

2349 2350 2351 2352
/**
 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
 * @zl: the zonelist to be checked
 *
L
Linus Torvalds 已提交
2353 2354 2355 2356 2357 2358 2359
 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
 */
int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
{
	int i;

	for (i = 0; zl->zones[i]; i++) {
2360
		int nid = zone_to_nid(zl->zones[i]);
L
Linus Torvalds 已提交
2361 2362 2363 2364 2365 2366 2367

		if (node_isset(nid, current->mems_allowed))
			return 1;
	}
	return 0;
}

2368 2369
/*
 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
2370
 * ancestor to the specified cpuset.  Call holding callback_mutex.
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
 * If no ancestor is mem_exclusive (an unusual configuration), then
 * returns the root cpuset.
 */
static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
{
	while (!is_mem_exclusive(cs) && cs->parent)
		cs = cs->parent;
	return cs;
}

2381
/**
2382
 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
2383
 * @z: is this zone on an allowed node?
2384
 * @gfp_mask: memory allocation flags
2385
 *
2386 2387
 * If we're in interrupt, yes, we can always allocate.  If
 * __GFP_THISNODE is set, yes, we can always allocate.  If zone
2388 2389 2390
 * z's node is in our tasks mems_allowed, yes.  If it's not a
 * __GFP_HARDWALL request and this zone's nodes is in the nearest
 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
2391 2392
 * If the task has been OOM killed and has access to memory reserves
 * as specified by the TIF_MEMDIE flag, yes.
2393 2394
 * Otherwise, no.
 *
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
 * reduces to cpuset_zone_allowed_hardwall().  Otherwise,
 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
 * from an enclosing cpuset.
 *
 * cpuset_zone_allowed_hardwall() only handles the simpler case of
 * hardwall cpusets, and never sleeps.
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2409
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2410 2411
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2412
 * GFP_KERNEL allocations are not so marked, so can escape to the
2413
 * nearest enclosing mem_exclusive ancestor cpuset.
2414
 *
2415 2416 2417 2418 2419 2420 2421
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2422
 *
2423
 * The first call here from mm/page_alloc:get_page_from_freelist()
2424 2425 2426
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2427 2428 2429 2430 2431 2432
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2433 2434
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2435
 *	TIF_MEMDIE   - any node ok
2436 2437
 *	GFP_KERNEL   - any node in enclosing mem_exclusive cpuset ok
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2438 2439
 *
 * Rule:
2440
 *    Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
2441 2442
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2443
 */
2444

2445
int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2446
{
2447 2448
	int node;			/* node that zone z is on */
	const struct cpuset *cs;	/* current cpuset ancestors */
2449
	int allowed;			/* is allocation in zone z allowed? */
2450

2451
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2452
		return 1;
2453
	node = zone_to_nid(z);
2454
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2455 2456
	if (node_isset(node, current->mems_allowed))
		return 1;
2457 2458 2459 2460 2461 2462
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2463 2464 2465
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2466 2467 2468
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2469
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2470
	mutex_lock(&callback_mutex);
2471 2472 2473 2474 2475

	task_lock(current);
	cs = nearest_exclusive_ancestor(current->cpuset);
	task_unlock(current);

2476
	allowed = node_isset(node, cs->mems_allowed);
2477
	mutex_unlock(&callback_mutex);
2478
	return allowed;
L
Linus Torvalds 已提交
2479 2480
}

2481 2482 2483 2484 2485 2486 2487
/*
 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
 * @z: is this zone on an allowed node?
 * @gfp_mask: memory allocation flags
 *
 * If we're in interrupt, yes, we can always allocate.
 * If __GFP_THISNODE is set, yes, we can always allocate.  If zone
2488 2489 2490
 * z's node is in our tasks mems_allowed, yes.   If the task has been
 * OOM killed and has access to memory reserves as specified by the
 * TIF_MEMDIE flag, yes.  Otherwise, no.
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
 * Unlike the cpuset_zone_allowed_softwall() variant, above,
 * this variant requires that the zone be in the current tasks
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */

int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
{
	int node;			/* node that zone z is on */

	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	node = zone_to_nid(z);
	if (node_isset(node, current->mems_allowed))
		return 1;
2514 2515 2516 2517 2518 2519
        /*
         * Allow tasks that have access to memory reserves because they have
         * been OOM killed to get memory anywhere.
         */
        if (unlikely(test_thread_flag(TIF_MEMDIE)))
                return 1;
2520 2521 2522
	return 0;
}

P
Paul Jackson 已提交
2523 2524 2525
/**
 * cpuset_lock - lock out any changes to cpuset structures
 *
2526
 * The out of memory (oom) code needs to mutex_lock cpusets
P
Paul Jackson 已提交
2527
 * from being changed while it scans the tasklist looking for a
2528
 * task in an overlapping cpuset.  Expose callback_mutex via this
P
Paul Jackson 已提交
2529 2530
 * cpuset_lock() routine, so the oom code can lock it, before
 * locking the task list.  The tasklist_lock is a spinlock, so
2531
 * must be taken inside callback_mutex.
P
Paul Jackson 已提交
2532 2533 2534 2535
 */

void cpuset_lock(void)
{
2536
	mutex_lock(&callback_mutex);
P
Paul Jackson 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
}

/**
 * cpuset_unlock - release lock on cpuset changes
 *
 * Undo the lock taken in a previous cpuset_lock() call.
 */

void cpuset_unlock(void)
{
2547
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
2548 2549
}

2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
/**
 * cpuset_mem_spread_node() - On which node to begin search for a page
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

int cpuset_mem_spread_node(void)
{
	int node;

	node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
	current->cpuset_mem_spread_rotor = node;
	return node;
}
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2588 2589 2590 2591 2592 2593 2594 2595 2596
/**
 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
 * @p: pointer to task_struct of some other task.
 *
 * Description: Return true if the nearest mem_exclusive ancestor
 * cpusets of tasks @p and current overlap.  Used by oom killer to
 * determine if task @p's memory usage might impact the memory
 * available to the current task.
 *
2597
 * Call while holding callback_mutex.
2598 2599 2600 2601 2602
 **/

int cpuset_excl_nodes_overlap(const struct task_struct *p)
{
	const struct cpuset *cs1, *cs2;	/* my and p's cpuset ancestors */
N
Nick Piggin 已提交
2603
	int overlap = 1;		/* do cpusets overlap? */
2604

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
	task_lock(current);
	if (current->flags & PF_EXITING) {
		task_unlock(current);
		goto done;
	}
	cs1 = nearest_exclusive_ancestor(current->cpuset);
	task_unlock(current);

	task_lock((struct task_struct *)p);
	if (p->flags & PF_EXITING) {
		task_unlock((struct task_struct *)p);
		goto done;
	}
	cs2 = nearest_exclusive_ancestor(p->cpuset);
	task_unlock((struct task_struct *)p);

2621 2622 2623 2624 2625
	overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
done:
	return overlap;
}

2626 2627 2628 2629 2630 2631
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2632
int cpuset_memory_pressure_enabled __read_mostly;
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	struct cpuset *cs;

	task_lock(current);
	cs = current->cpuset;
	fmeter_markevent(&cs->fmeter);
	task_unlock(current);
}

L
Linus Torvalds 已提交
2662 2663 2664 2665
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2666 2667
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2668
 *    and we take manage_mutex, keeping attach_task() from changing it
2669 2670 2671
 *    anyway.  No need to check that tsk->cpuset != NULL, thanks to
 *    the_top_cpuset_hack in cpuset_exit(), which sets an exiting tasks
 *    cpuset to top_cpuset.
L
Linus Torvalds 已提交
2672 2673 2674
 */
static int proc_cpuset_show(struct seq_file *m, void *v)
{
2675
	struct pid *pid;
L
Linus Torvalds 已提交
2676 2677
	struct task_struct *tsk;
	char *buf;
2678
	int retval;
L
Linus Torvalds 已提交
2679

2680
	retval = -ENOMEM;
L
Linus Torvalds 已提交
2681 2682
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
2683 2684 2685
		goto out;

	retval = -ESRCH;
2686 2687
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2688 2689
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2690

2691
	retval = -EINVAL;
2692
	mutex_lock(&manage_mutex);
2693

2694
	retval = cpuset_path(tsk->cpuset, buf, PAGE_SIZE);
L
Linus Torvalds 已提交
2695
	if (retval < 0)
2696
		goto out_unlock;
L
Linus Torvalds 已提交
2697 2698
	seq_puts(m, buf);
	seq_putc(m, '\n');
2699
out_unlock:
2700
	mutex_unlock(&manage_mutex);
2701 2702
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2703
	kfree(buf);
2704
out:
L
Linus Torvalds 已提交
2705 2706 2707 2708 2709
	return retval;
}

static int cpuset_open(struct inode *inode, struct file *file)
{
2710 2711
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cpuset_show, pid);
L
Linus Torvalds 已提交
2712 2713
}

2714
const struct file_operations proc_cpuset_operations = {
L
Linus Torvalds 已提交
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
	.open		= cpuset_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
{
	buffer += sprintf(buffer, "Cpus_allowed:\t");
	buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
	buffer += sprintf(buffer, "\n");
	buffer += sprintf(buffer, "Mems_allowed:\t");
	buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
	buffer += sprintf(buffer, "\n");
	return buffer;
}