fpsimd.c 34.5 KB
Newer Older
C
Catalin Marinas 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * FP/SIMD context switching and fault handling
 *
 * Copyright (C) 2012 ARM Ltd.
 * Author: Catalin Marinas <catalin.marinas@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

20
#include <linux/bitmap.h>
21
#include <linux/bottom_half.h>
22
#include <linux/bug.h>
23
#include <linux/cache.h>
24
#include <linux/compat.h>
25
#include <linux/cpu.h>
26
#include <linux/cpu_pm.h>
C
Catalin Marinas 已提交
27
#include <linux/kernel.h>
28
#include <linux/linkage.h>
29
#include <linux/irqflags.h>
C
Catalin Marinas 已提交
30
#include <linux/init.h>
31
#include <linux/percpu.h>
32
#include <linux/prctl.h>
33
#include <linux/preempt.h>
34
#include <linux/prctl.h>
35
#include <linux/ptrace.h>
36
#include <linux/sched/signal.h>
37
#include <linux/sched/task_stack.h>
C
Catalin Marinas 已提交
38
#include <linux/signal.h>
39
#include <linux/slab.h>
40
#include <linux/sysctl.h>
C
Catalin Marinas 已提交
41 42 43

#include <asm/fpsimd.h>
#include <asm/cputype.h>
44
#include <asm/simd.h>
45 46 47
#include <asm/sigcontext.h>
#include <asm/sysreg.h>
#include <asm/traps.h>
C
Catalin Marinas 已提交
48 49 50 51 52 53 54 55

#define FPEXC_IOF	(1 << 0)
#define FPEXC_DZF	(1 << 1)
#define FPEXC_OFF	(1 << 2)
#define FPEXC_UFF	(1 << 3)
#define FPEXC_IXF	(1 << 4)
#define FPEXC_IDF	(1 << 7)

56
/*
57 58
 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
 *
59 60 61 62 63 64 65 66 67
 * In order to reduce the number of times the FPSIMD state is needlessly saved
 * and restored, we need to keep track of two things:
 * (a) for each task, we need to remember which CPU was the last one to have
 *     the task's FPSIMD state loaded into its FPSIMD registers;
 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
 *     been loaded into its FPSIMD registers most recently, or whether it has
 *     been used to perform kernel mode NEON in the meantime.
 *
 * For (a), we add a 'cpu' field to struct fpsimd_state, which gets updated to
68
 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
 * address of the userland FPSIMD state of the task that was loaded onto the CPU
 * the most recently, or NULL if kernel mode NEON has been performed after that.
 *
 * With this in place, we no longer have to restore the next FPSIMD state right
 * when switching between tasks. Instead, we can defer this check to userland
 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
 * task's fpsimd_state.cpu are still mutually in sync. If this is the case, we
 * can omit the FPSIMD restore.
 *
 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
 * indicate whether or not the userland FPSIMD state of the current task is
 * present in the registers. The flag is set unless the FPSIMD registers of this
 * CPU currently contain the most recent userland FPSIMD state of the current
 * task.
 *
85 86 87 88 89 90 91
 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
 * save the task's FPSIMD context back to task_struct from softirq context.
 * To prevent this from racing with the manipulation of the task's FPSIMD state
 * from task context and thereby corrupting the state, it is necessary to
 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
 * flag with local_bh_disable() unless softirqs are already masked.
 *
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
 * For a certain task, the sequence may look something like this:
 * - the task gets scheduled in; if both the task's fpsimd_state.cpu field
 *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
 *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
 *   cleared, otherwise it is set;
 *
 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
 *   userland FPSIMD state is copied from memory to the registers, the task's
 *   fpsimd_state.cpu field is set to the id of the current CPU, the current
 *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
 *   TIF_FOREIGN_FPSTATE flag is cleared;
 *
 * - the task executes an ordinary syscall; upon return to userland, the
 *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
 *   restored;
 *
 * - the task executes a syscall which executes some NEON instructions; this is
 *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
 *   register contents to memory, clears the fpsimd_last_state per-cpu variable
 *   and sets the TIF_FOREIGN_FPSTATE flag;
 *
 * - the task gets preempted after kernel_neon_end() is called; as we have not
 *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
 *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
 */
117 118 119 120 121 122
struct fpsimd_last_state_struct {
	struct fpsimd_state *st;
	bool sve_in_use;
};

static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
123

124
/* Default VL for tasks that don't set it explicitly: */
125
static int sve_default_vl = -1;
126

127 128 129 130 131
#ifdef CONFIG_ARM64_SVE

/* Maximum supported vector length across all CPUs (initially poisoned) */
int __ro_after_init sve_max_vl = -1;
/* Set of available vector lengths, as vq_to_bit(vq): */
132
static __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
133
static void __percpu *efi_sve_state;
134 135 136 137

#else /* ! CONFIG_ARM64_SVE */

/* Dummy declaration for code that will be optimised out: */
138
extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
139
extern void __percpu *efi_sve_state;
140 141 142

#endif /* ! CONFIG_ARM64_SVE */

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
/*
 * Call __sve_free() directly only if you know task can't be scheduled
 * or preempted.
 */
static void __sve_free(struct task_struct *task)
{
	kfree(task->thread.sve_state);
	task->thread.sve_state = NULL;
}

static void sve_free(struct task_struct *task)
{
	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));

	__sve_free(task);
}


/* Offset of FFR in the SVE register dump */
static size_t sve_ffr_offset(int vl)
{
	return SVE_SIG_FFR_OFFSET(sve_vq_from_vl(vl)) - SVE_SIG_REGS_OFFSET;
}

static void *sve_pffr(struct task_struct *task)
{
	return (char *)task->thread.sve_state +
		sve_ffr_offset(task->thread.sve_vl);
}

static void change_cpacr(u64 val, u64 mask)
{
	u64 cpacr = read_sysreg(CPACR_EL1);
	u64 new = (cpacr & ~mask) | val;

	if (new != cpacr)
		write_sysreg(new, CPACR_EL1);
}

static void sve_user_disable(void)
{
	change_cpacr(0, CPACR_EL1_ZEN_EL0EN);
}

static void sve_user_enable(void)
{
	change_cpacr(CPACR_EL1_ZEN_EL0EN, CPACR_EL1_ZEN_EL0EN);
}

/*
 * TIF_SVE controls whether a task can use SVE without trapping while
 * in userspace, and also the way a task's FPSIMD/SVE state is stored
 * in thread_struct.
 *
 * The kernel uses this flag to track whether a user task is actively
 * using SVE, and therefore whether full SVE register state needs to
 * be tracked.  If not, the cheaper FPSIMD context handling code can
 * be used instead of the more costly SVE equivalents.
 *
 *  * TIF_SVE set:
 *
 *    The task can execute SVE instructions while in userspace without
 *    trapping to the kernel.
 *
 *    When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
 *    corresponding Zn), P0-P15 and FFR are encoded in in
 *    task->thread.sve_state, formatted appropriately for vector
 *    length task->thread.sve_vl.
 *
 *    task->thread.sve_state must point to a valid buffer at least
 *    sve_state_size(task) bytes in size.
 *
 *    During any syscall, the kernel may optionally clear TIF_SVE and
 *    discard the vector state except for the FPSIMD subset.
 *
 *  * TIF_SVE clear:
 *
 *    An attempt by the user task to execute an SVE instruction causes
 *    do_sve_acc() to be called, which does some preparation and then
 *    sets TIF_SVE.
 *
 *    When stored, FPSIMD registers V0-V31 are encoded in
 *    task->fpsimd_state; bits [max : 128] for each of Z0-Z31 are
 *    logically zero but not stored anywhere; P0-P15 and FFR are not
 *    stored and have unspecified values from userspace's point of
 *    view.  For hygiene purposes, the kernel zeroes them on next use,
 *    but userspace is discouraged from relying on this.
 *
 *    task->thread.sve_state does not need to be non-NULL, valid or any
 *    particular size: it must not be dereferenced.
 *
 *  * FPSR and FPCR are always stored in task->fpsimd_state irrespctive of
 *    whether TIF_SVE is clear or set, since these are not vector length
 *    dependent.
 */

/*
 * Update current's FPSIMD/SVE registers from thread_struct.
 *
 * This function should be called only when the FPSIMD/SVE state in
 * thread_struct is known to be up to date, when preparing to enter
 * userspace.
 *
 * Softirqs (and preemption) must be disabled.
 */
static void task_fpsimd_load(void)
{
	WARN_ON(!in_softirq() && !irqs_disabled());

	if (system_supports_sve() && test_thread_flag(TIF_SVE))
		sve_load_state(sve_pffr(current),
			       &current->thread.fpsimd_state.fpsr,
			       sve_vq_from_vl(current->thread.sve_vl) - 1);
	else
		fpsimd_load_state(&current->thread.fpsimd_state);

	if (system_supports_sve()) {
		/* Toggle SVE trapping for userspace if needed */
		if (test_thread_flag(TIF_SVE))
			sve_user_enable();
		else
			sve_user_disable();

		/* Serialised by exception return to user */
	}
}

/*
 * Ensure current's FPSIMD/SVE storage in thread_struct is up to date
 * with respect to the CPU registers.
 *
 * Softirqs (and preemption) must be disabled.
 */
static void task_fpsimd_save(void)
{
	WARN_ON(!in_softirq() && !irqs_disabled());

	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
		if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
			if (WARN_ON(sve_get_vl() != current->thread.sve_vl)) {
				/*
				 * Can't save the user regs, so current would
				 * re-enter user with corrupt state.
				 * There's no way to recover, so kill it:
				 */
288
				force_signal_inject(SIGKILL, 0, 0);
289 290 291 292 293 294 295 296 297 298
				return;
			}

			sve_save_state(sve_pffr(current),
				       &current->thread.fpsimd_state.fpsr);
		} else
			fpsimd_save_state(&current->thread.fpsimd_state);
	}
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
/*
 * Helpers to translate bit indices in sve_vq_map to VQ values (and
 * vice versa).  This allows find_next_bit() to be used to find the
 * _maximum_ VQ not exceeding a certain value.
 */

static unsigned int vq_to_bit(unsigned int vq)
{
	return SVE_VQ_MAX - vq;
}

static unsigned int bit_to_vq(unsigned int bit)
{
	if (WARN_ON(bit >= SVE_VQ_MAX))
		bit = SVE_VQ_MAX - 1;

	return SVE_VQ_MAX - bit;
}

/*
 * All vector length selection from userspace comes through here.
 * We're on a slow path, so some sanity-checks are included.
 * If things go wrong there's a bug somewhere, but try to fall back to a
 * safe choice.
 */
static unsigned int find_supported_vector_length(unsigned int vl)
{
	int bit;
	int max_vl = sve_max_vl;

	if (WARN_ON(!sve_vl_valid(vl)))
		vl = SVE_VL_MIN;

	if (WARN_ON(!sve_vl_valid(max_vl)))
		max_vl = SVE_VL_MIN;

	if (vl > max_vl)
		vl = max_vl;

	bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
			    vq_to_bit(sve_vq_from_vl(vl)));
	return sve_vl_from_vq(bit_to_vq(bit));
}

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
#ifdef CONFIG_SYSCTL

static int sve_proc_do_default_vl(struct ctl_table *table, int write,
				  void __user *buffer, size_t *lenp,
				  loff_t *ppos)
{
	int ret;
	int vl = sve_default_vl;
	struct ctl_table tmp_table = {
		.data = &vl,
		.maxlen = sizeof(vl),
	};

	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
	if (ret || !write)
		return ret;

	/* Writing -1 has the special meaning "set to max": */
	if (vl == -1) {
		/* Fail safe if sve_max_vl wasn't initialised */
		if (WARN_ON(!sve_vl_valid(sve_max_vl)))
			vl = SVE_VL_MIN;
		else
			vl = sve_max_vl;

		goto chosen;
	}

	if (!sve_vl_valid(vl))
		return -EINVAL;

	vl = find_supported_vector_length(vl);
chosen:
	sve_default_vl = vl;
	return 0;
}

static struct ctl_table sve_default_vl_table[] = {
	{
		.procname	= "sve_default_vector_length",
		.mode		= 0644,
		.proc_handler	= sve_proc_do_default_vl,
	},
	{ }
};

static int __init sve_sysctl_init(void)
{
	if (system_supports_sve())
		if (!register_sysctl("abi", sve_default_vl_table))
			return -EINVAL;

	return 0;
}

#else /* ! CONFIG_SYSCTL */
static int __init sve_sysctl_init(void) { return 0; }
#endif /* ! CONFIG_SYSCTL */

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
#define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))

/*
 * Transfer the FPSIMD state in task->thread.fpsimd_state to
 * task->thread.sve_state.
 *
 * Task can be a non-runnable task, or current.  In the latter case,
 * softirqs (and preemption) must be disabled.
 * task->thread.sve_state must point to at least sve_state_size(task)
 * bytes of allocated kernel memory.
 * task->thread.fpsimd_state must be up to date before calling this function.
 */
static void fpsimd_to_sve(struct task_struct *task)
{
	unsigned int vq;
	void *sst = task->thread.sve_state;
	struct fpsimd_state const *fst = &task->thread.fpsimd_state;
	unsigned int i;

	if (!system_supports_sve())
		return;

	vq = sve_vq_from_vl(task->thread.sve_vl);
	for (i = 0; i < 32; ++i)
		memcpy(ZREG(sst, vq, i), &fst->vregs[i],
		       sizeof(fst->vregs[i]));
}

D
Dave Martin 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
/*
 * Transfer the SVE state in task->thread.sve_state to
 * task->thread.fpsimd_state.
 *
 * Task can be a non-runnable task, or current.  In the latter case,
 * softirqs (and preemption) must be disabled.
 * task->thread.sve_state must point to at least sve_state_size(task)
 * bytes of allocated kernel memory.
 * task->thread.sve_state must be up to date before calling this function.
 */
static void sve_to_fpsimd(struct task_struct *task)
{
	unsigned int vq;
	void const *sst = task->thread.sve_state;
	struct fpsimd_state *fst = &task->thread.fpsimd_state;
	unsigned int i;

	if (!system_supports_sve())
		return;

	vq = sve_vq_from_vl(task->thread.sve_vl);
	for (i = 0; i < 32; ++i)
		memcpy(&fst->vregs[i], ZREG(sst, vq, i),
		       sizeof(fst->vregs[i]));
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
#ifdef CONFIG_ARM64_SVE

/*
 * Return how many bytes of memory are required to store the full SVE
 * state for task, given task's currently configured vector length.
 */
size_t sve_state_size(struct task_struct const *task)
{
	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
}

/*
 * Ensure that task->thread.sve_state is allocated and sufficiently large.
 *
 * This function should be used only in preparation for replacing
 * task->thread.sve_state with new data.  The memory is always zeroed
 * here to prevent stale data from showing through: this is done in
 * the interest of testability and predictability: except in the
 * do_sve_acc() case, there is no ABI requirement to hide stale data
 * written previously be task.
 */
void sve_alloc(struct task_struct *task)
{
	if (task->thread.sve_state) {
		memset(task->thread.sve_state, 0, sve_state_size(current));
		return;
	}

	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
	task->thread.sve_state =
		kzalloc(sve_state_size(task), GFP_KERNEL);

	/*
	 * If future SVE revisions can have larger vectors though,
	 * this may cease to be true:
	 */
	BUG_ON(!task->thread.sve_state);
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555

/*
 * Ensure that task->thread.sve_state is up to date with respect to
 * the user task, irrespective of when SVE is in use or not.
 *
 * This should only be called by ptrace.  task must be non-runnable.
 * task->thread.sve_state must point to at least sve_state_size(task)
 * bytes of allocated kernel memory.
 */
void fpsimd_sync_to_sve(struct task_struct *task)
{
	if (!test_tsk_thread_flag(task, TIF_SVE))
		fpsimd_to_sve(task);
}

/*
 * Ensure that task->thread.fpsimd_state is up to date with respect to
 * the user task, irrespective of whether SVE is in use or not.
 *
 * This should only be called by ptrace.  task must be non-runnable.
 * task->thread.sve_state must point to at least sve_state_size(task)
 * bytes of allocated kernel memory.
 */
void sve_sync_to_fpsimd(struct task_struct *task)
{
	if (test_tsk_thread_flag(task, TIF_SVE))
		sve_to_fpsimd(task);
}

/*
 * Ensure that task->thread.sve_state is up to date with respect to
 * the task->thread.fpsimd_state.
 *
 * This should only be called by ptrace to merge new FPSIMD register
 * values into a task for which SVE is currently active.
 * task must be non-runnable.
 * task->thread.sve_state must point to at least sve_state_size(task)
 * bytes of allocated kernel memory.
 * task->thread.fpsimd_state must already have been initialised with
 * the new FPSIMD register values to be merged in.
 */
void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
{
	unsigned int vq;
	void *sst = task->thread.sve_state;
	struct fpsimd_state const *fst = &task->thread.fpsimd_state;
	unsigned int i;

	if (!test_tsk_thread_flag(task, TIF_SVE))
		return;

	vq = sve_vq_from_vl(task->thread.sve_vl);

	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));

	for (i = 0; i < 32; ++i)
		memcpy(ZREG(sst, vq, i), &fst->vregs[i],
		       sizeof(fst->vregs[i]));
}

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
int sve_set_vector_length(struct task_struct *task,
			  unsigned long vl, unsigned long flags)
{
	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
				     PR_SVE_SET_VL_ONEXEC))
		return -EINVAL;

	if (!sve_vl_valid(vl))
		return -EINVAL;

	/*
	 * Clamp to the maximum vector length that VL-agnostic SVE code can
	 * work with.  A flag may be assigned in the future to allow setting
	 * of larger vector lengths without confusing older software.
	 */
	if (vl > SVE_VL_ARCH_MAX)
		vl = SVE_VL_ARCH_MAX;

	vl = find_supported_vector_length(vl);

	if (flags & (PR_SVE_VL_INHERIT |
		     PR_SVE_SET_VL_ONEXEC))
		task->thread.sve_vl_onexec = vl;
	else
		/* Reset VL to system default on next exec: */
		task->thread.sve_vl_onexec = 0;

	/* Only actually set the VL if not deferred: */
	if (flags & PR_SVE_SET_VL_ONEXEC)
		goto out;

	if (vl == task->thread.sve_vl)
		goto out;

	/*
	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
	 * write any live register state back to task_struct, and convert to a
	 * non-SVE thread.
	 */
	if (task == current) {
		local_bh_disable();

		task_fpsimd_save();
		set_thread_flag(TIF_FOREIGN_FPSTATE);
	}

	fpsimd_flush_task_state(task);
	if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
		sve_to_fpsimd(task);

	if (task == current)
		local_bh_enable();

	/*
	 * Force reallocation of task SVE state to the correct size
	 * on next use:
	 */
	sve_free(task);

	task->thread.sve_vl = vl;

out:
	if (flags & PR_SVE_VL_INHERIT)
		set_tsk_thread_flag(task, TIF_SVE_VL_INHERIT);
	else
		clear_tsk_thread_flag(task, TIF_SVE_VL_INHERIT);

	return 0;
}

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
/*
 * Encode the current vector length and flags for return.
 * This is only required for prctl(): ptrace has separate fields
 *
 * flags are as for sve_set_vector_length().
 */
static int sve_prctl_status(unsigned long flags)
{
	int ret;

	if (flags & PR_SVE_SET_VL_ONEXEC)
		ret = current->thread.sve_vl_onexec;
	else
		ret = current->thread.sve_vl;

	if (test_thread_flag(TIF_SVE_VL_INHERIT))
		ret |= PR_SVE_VL_INHERIT;

	return ret;
}

/* PR_SVE_SET_VL */
int sve_set_current_vl(unsigned long arg)
{
	unsigned long vl, flags;
	int ret;

	vl = arg & PR_SVE_VL_LEN_MASK;
	flags = arg & ~vl;

	if (!system_supports_sve())
		return -EINVAL;

	ret = sve_set_vector_length(current, vl, flags);
	if (ret)
		return ret;

	return sve_prctl_status(flags);
}

/* PR_SVE_GET_VL */
int sve_get_current_vl(void)
{
	if (!system_supports_sve())
		return -EINVAL;

	return sve_prctl_status(0);
}

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
/*
 * Bitmap for temporary storage of the per-CPU set of supported vector lengths
 * during secondary boot.
 */
static DECLARE_BITMAP(sve_secondary_vq_map, SVE_VQ_MAX);

static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
{
	unsigned int vq, vl;
	unsigned long zcr;

	bitmap_zero(map, SVE_VQ_MAX);

	zcr = ZCR_ELx_LEN_MASK;
	zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;

	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
		write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
		vl = sve_get_vl();
		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
		set_bit(vq_to_bit(vq), map);
	}
}

void __init sve_init_vq_map(void)
{
	sve_probe_vqs(sve_vq_map);
}

/*
 * If we haven't committed to the set of supported VQs yet, filter out
 * those not supported by the current CPU.
 */
void sve_update_vq_map(void)
{
	sve_probe_vqs(sve_secondary_vq_map);
	bitmap_and(sve_vq_map, sve_vq_map, sve_secondary_vq_map, SVE_VQ_MAX);
}

/* Check whether the current CPU supports all VQs in the committed set */
int sve_verify_vq_map(void)
{
	int ret = 0;

	sve_probe_vqs(sve_secondary_vq_map);
	bitmap_andnot(sve_secondary_vq_map, sve_vq_map, sve_secondary_vq_map,
		      SVE_VQ_MAX);
	if (!bitmap_empty(sve_secondary_vq_map, SVE_VQ_MAX)) {
		pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
			smp_processor_id());
		ret = -EINVAL;
	}

	return ret;
}

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
static void __init sve_efi_setup(void)
{
	if (!IS_ENABLED(CONFIG_EFI))
		return;

	/*
	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
	 * This is evidence of a crippled system and we are returning void,
	 * so no attempt is made to handle this situation here.
	 */
	if (!sve_vl_valid(sve_max_vl))
		goto fail;

	efi_sve_state = __alloc_percpu(
		SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
	if (!efi_sve_state)
		goto fail;

	return;

fail:
	panic("Cannot allocate percpu memory for EFI SVE save/restore");
}

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
/*
 * Enable SVE for EL1.
 * Intended for use by the cpufeatures code during CPU boot.
 */
int sve_kernel_enable(void *__always_unused p)
{
	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
	isb();

	return 0;
}

void __init sve_setup(void)
{
	u64 zcr;

	if (!system_supports_sve())
		return;

	/*
	 * The SVE architecture mandates support for 128-bit vectors,
	 * so sve_vq_map must have at least SVE_VQ_MIN set.
	 * If something went wrong, at least try to patch it up:
	 */
	if (WARN_ON(!test_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
		set_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map);

	zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
	sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);

	/*
	 * Sanity-check that the max VL we determined through CPU features
	 * corresponds properly to sve_vq_map.  If not, do our best:
	 */
	if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
		sve_max_vl = find_supported_vector_length(sve_max_vl);

	/*
	 * For the default VL, pick the maximum supported value <= 64.
	 * VL == 64 is guaranteed not to grow the signal frame.
	 */
	sve_default_vl = find_supported_vector_length(64);

	pr_info("SVE: maximum available vector length %u bytes per vector\n",
		sve_max_vl);
	pr_info("SVE: default vector length %u bytes per vector\n",
		sve_default_vl);
802 803

	sve_efi_setup();
804 805
}

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
/*
 * Called from the put_task_struct() path, which cannot get here
 * unless dead_task is really dead and not schedulable.
 */
void fpsimd_release_task(struct task_struct *dead_task)
{
	__sve_free(dead_task);
}

#endif /* CONFIG_ARM64_SVE */

/*
 * Trapped SVE access
 *
 * Storage is allocated for the full SVE state, the current FPSIMD
 * register contents are migrated across, and TIF_SVE is set so that
 * the SVE access trap will be disabled the next time this task
 * reaches ret_to_user.
 *
 * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load()
 * would have disabled the SVE access trap for userspace during
 * ret_to_user, making an SVE access trap impossible in that case.
 */
asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
{
	/* Even if we chose not to use SVE, the hardware could still trap: */
	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
833
		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
		return;
	}

	sve_alloc(current);

	local_bh_disable();

	task_fpsimd_save();
	fpsimd_to_sve(current);

	/* Force ret_to_user to reload the registers: */
	fpsimd_flush_task_state(current);
	set_thread_flag(TIF_FOREIGN_FPSTATE);

	if (test_and_set_thread_flag(TIF_SVE))
		WARN_ON(1); /* SVE access shouldn't have trapped */

	local_bh_enable();
}

C
Catalin Marinas 已提交
854 855 856
/*
 * Trapped FP/ASIMD access.
 */
857
asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
C
Catalin Marinas 已提交
858 859 860 861 862 863 864 865
{
	/* TODO: implement lazy context saving/restoring */
	WARN_ON(1);
}

/*
 * Raise a SIGFPE for the current process.
 */
866
asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
C
Catalin Marinas 已提交
867 868
{
	siginfo_t info;
869
	unsigned int si_code = FPE_FIXME;
C
Catalin Marinas 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891

	if (esr & FPEXC_IOF)
		si_code = FPE_FLTINV;
	else if (esr & FPEXC_DZF)
		si_code = FPE_FLTDIV;
	else if (esr & FPEXC_OFF)
		si_code = FPE_FLTOVF;
	else if (esr & FPEXC_UFF)
		si_code = FPE_FLTUND;
	else if (esr & FPEXC_IXF)
		si_code = FPE_FLTRES;

	memset(&info, 0, sizeof(info));
	info.si_signo = SIGFPE;
	info.si_code = si_code;
	info.si_addr = (void __user *)instruction_pointer(regs);

	send_sig_info(SIGFPE, &info, current);
}

void fpsimd_thread_switch(struct task_struct *next)
{
892 893
	if (!system_supports_fpsimd())
		return;
894 895 896 897 898
	/*
	 * Save the current FPSIMD state to memory, but only if whatever is in
	 * the registers is in fact the most recent userland FPSIMD state of
	 * 'current'.
	 */
899 900
	if (current->mm)
		task_fpsimd_save();
901 902 903 904 905 906 907 908 909 910 911

	if (next->mm) {
		/*
		 * If we are switching to a task whose most recent userland
		 * FPSIMD state is already in the registers of *this* cpu,
		 * we can skip loading the state from memory. Otherwise, set
		 * the TIF_FOREIGN_FPSTATE flag so the state will be loaded
		 * upon the next return to userland.
		 */
		struct fpsimd_state *st = &next->thread.fpsimd_state;

912
		if (__this_cpu_read(fpsimd_last_state.st) == st
913
		    && st->cpu == smp_processor_id())
914
			clear_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE);
915
		else
916
			set_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE);
917
	}
C
Catalin Marinas 已提交
918 919 920 921
}

void fpsimd_flush_thread(void)
{
922
	int vl, supported_vl;
923

924 925
	if (!system_supports_fpsimd())
		return;
926 927 928

	local_bh_disable();

C
Catalin Marinas 已提交
929
	memset(&current->thread.fpsimd_state, 0, sizeof(struct fpsimd_state));
930
	fpsimd_flush_task_state(current);
931 932 933 934 935 936 937 938 939 940

	if (system_supports_sve()) {
		clear_thread_flag(TIF_SVE);
		sve_free(current);

		/*
		 * Reset the task vector length as required.
		 * This is where we ensure that all user tasks have a valid
		 * vector length configured: no kernel task can become a user
		 * task without an exec and hence a call to this function.
941 942 943
		 * By the time the first call to this function is made, all
		 * early hardware probing is complete, so sve_default_vl
		 * should be valid.
944 945 946
		 * If a bug causes this to go wrong, we make some noise and
		 * try to fudge thread.sve_vl to a safe value here.
		 */
947 948
		vl = current->thread.sve_vl_onexec ?
			current->thread.sve_vl_onexec : sve_default_vl;
949 950 951 952

		if (WARN_ON(!sve_vl_valid(vl)))
			vl = SVE_VL_MIN;

953 954 955 956
		supported_vl = find_supported_vector_length(vl);
		if (WARN_ON(supported_vl != vl))
			vl = supported_vl;

957
		current->thread.sve_vl = vl;
958 959 960 961 962 963 964

		/*
		 * If the task is not set to inherit, ensure that the vector
		 * length will be reset by a subsequent exec:
		 */
		if (!test_thread_flag(TIF_SVE_VL_INHERIT))
			current->thread.sve_vl_onexec = 0;
965 966
	}

967
	set_thread_flag(TIF_FOREIGN_FPSTATE);
968 969

	local_bh_enable();
C
Catalin Marinas 已提交
970 971
}

972
/*
973 974
 * Save the userland FPSIMD state of 'current' to memory, but only if the state
 * currently held in the registers does in fact belong to 'current'
975 976 977
 */
void fpsimd_preserve_current_state(void)
{
978 979
	if (!system_supports_fpsimd())
		return;
980 981

	local_bh_disable();
D
Dave Martin 已提交
982
	task_fpsimd_save();
983
	local_bh_enable();
984 985
}

D
Dave Martin 已提交
986 987 988 989 990 991 992 993 994 995 996 997
/*
 * Like fpsimd_preserve_current_state(), but ensure that
 * current->thread.fpsimd_state is updated so that it can be copied to
 * the signal frame.
 */
void fpsimd_signal_preserve_current_state(void)
{
	fpsimd_preserve_current_state();
	if (system_supports_sve() && test_thread_flag(TIF_SVE))
		sve_to_fpsimd(current);
}

998 999 1000 1001 1002 1003
/*
 * Associate current's FPSIMD context with this cpu
 * Preemption must be disabled when calling this function.
 */
static void fpsimd_bind_to_cpu(void)
{
1004 1005
	struct fpsimd_last_state_struct *last =
		this_cpu_ptr(&fpsimd_last_state);
1006 1007
	struct fpsimd_state *st = &current->thread.fpsimd_state;

1008 1009
	last->st = st;
	last->sve_in_use = test_thread_flag(TIF_SVE);
1010 1011 1012
	st->cpu = smp_processor_id();
}

1013
/*
1014 1015 1016 1017 1018 1019
 * Load the userland FPSIMD state of 'current' from memory, but only if the
 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
 * state of 'current'
 */
void fpsimd_restore_current_state(void)
{
1020 1021
	if (!system_supports_fpsimd())
		return;
1022 1023 1024

	local_bh_disable();

1025
	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1026
		task_fpsimd_load();
1027
		fpsimd_bind_to_cpu();
1028
	}
1029 1030

	local_bh_enable();
1031 1032 1033 1034 1035 1036
}

/*
 * Load an updated userland FPSIMD state for 'current' from memory and set the
 * flag that indicates that the FPSIMD register contents are the most recent
 * FPSIMD state of 'current'
1037
 */
1038
void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1039
{
1040 1041
	if (!system_supports_fpsimd())
		return;
1042 1043 1044

	local_bh_disable();

1045
	current->thread.fpsimd_state.user_fpsimd = *state;
1046
	if (system_supports_sve() && test_thread_flag(TIF_SVE))
D
Dave Martin 已提交
1047
		fpsimd_to_sve(current);
1048

D
Dave Martin 已提交
1049 1050
	task_fpsimd_load();

1051 1052
	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE))
		fpsimd_bind_to_cpu();
1053 1054

	local_bh_enable();
1055 1056
}

1057 1058 1059 1060 1061 1062 1063 1064
/*
 * Invalidate live CPU copies of task t's FPSIMD state
 */
void fpsimd_flush_task_state(struct task_struct *t)
{
	t->thread.fpsimd_state.cpu = NR_CPUS;
}

1065 1066
static inline void fpsimd_flush_cpu_state(void)
{
1067
	__this_cpu_write(fpsimd_last_state.st, NULL);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
}

/*
 * Invalidate any task SVE state currently held in this CPU's regs.
 *
 * This is used to prevent the kernel from trying to reuse SVE register data
 * that is detroyed by KVM guest enter/exit.  This function should go away when
 * KVM SVE support is implemented.  Don't use it for anything else.
 */
#ifdef CONFIG_ARM64_SVE
void sve_flush_cpu_state(void)
{
1080 1081
	struct fpsimd_last_state_struct const *last =
		this_cpu_ptr(&fpsimd_last_state);
1082

1083
	if (last->st && last->sve_in_use)
1084 1085 1086 1087
		fpsimd_flush_cpu_state();
}
#endif /* CONFIG_ARM64_SVE */

1088 1089
#ifdef CONFIG_KERNEL_MODE_NEON

1090
DEFINE_PER_CPU(bool, kernel_neon_busy);
1091
EXPORT_PER_CPU_SYMBOL(kernel_neon_busy);
1092

1093 1094 1095
/*
 * Kernel-side NEON support functions
 */
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

/*
 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
 * context
 *
 * Must not be called unless may_use_simd() returns true.
 * Task context in the FPSIMD registers is saved back to memory as necessary.
 *
 * A matching call to kernel_neon_end() must be made before returning from the
 * calling context.
 *
 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
 * called.
 */
void kernel_neon_begin(void)
1111
{
1112 1113
	if (WARN_ON(!system_supports_fpsimd()))
		return;
1114

1115 1116 1117 1118 1119 1120 1121
	BUG_ON(!may_use_simd());

	local_bh_disable();

	__this_cpu_write(kernel_neon_busy, true);

	/* Save unsaved task fpsimd state, if any: */
1122 1123 1124 1125
	if (current->mm) {
		task_fpsimd_save();
		set_thread_flag(TIF_FOREIGN_FPSTATE);
	}
1126 1127

	/* Invalidate any task state remaining in the fpsimd regs: */
1128
	fpsimd_flush_cpu_state();
1129 1130 1131 1132

	preempt_disable();

	local_bh_enable();
1133
}
1134
EXPORT_SYMBOL(kernel_neon_begin);
1135

1136 1137 1138 1139 1140 1141 1142 1143 1144
/*
 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
 *
 * Must be called from a context in which kernel_neon_begin() was previously
 * called, with no call to kernel_neon_end() in the meantime.
 *
 * The caller must not use the FPSIMD registers after this function is called,
 * unless kernel_neon_begin() is called again in the meantime.
 */
1145 1146
void kernel_neon_end(void)
{
1147 1148
	bool busy;

1149 1150
	if (!system_supports_fpsimd())
		return;
1151 1152 1153 1154 1155

	busy = __this_cpu_xchg(kernel_neon_busy, false);
	WARN_ON(!busy);	/* No matching kernel_neon_begin()? */

	preempt_enable();
1156 1157 1158
}
EXPORT_SYMBOL(kernel_neon_end);

1159 1160
#ifdef CONFIG_EFI

1161 1162
static DEFINE_PER_CPU(struct fpsimd_state, efi_fpsimd_state);
static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1163
static DEFINE_PER_CPU(bool, efi_sve_state_used);
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

/*
 * EFI runtime services support functions
 *
 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
 * is always used rather than being an optional accelerator.
 *
 * These functions provide the necessary support for ensuring FPSIMD
 * save/restore in the contexts from which EFI is used.
 *
 * Do not use them for any other purpose -- if tempted to do so, you are
 * either doing something wrong or you need to propose some refactoring.
 */

/*
 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
 */
void __efi_fpsimd_begin(void)
{
	if (!system_supports_fpsimd())
		return;

	WARN_ON(preemptible());

1189
	if (may_use_simd()) {
1190
		kernel_neon_begin();
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	} else {
		/*
		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
		 * preserving:
		 */
		if (system_supports_sve() && likely(efi_sve_state)) {
			char *sve_state = this_cpu_ptr(efi_sve_state);

			__this_cpu_write(efi_sve_state_used, true);

			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
		} else {
			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
		}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		__this_cpu_write(efi_fpsimd_state_used, true);
	}
}

/*
 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
 */
void __efi_fpsimd_end(void)
{
	if (!system_supports_fpsimd())
		return;

1219
	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1220
		kernel_neon_end();
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	} else {
		if (system_supports_sve() &&
		    likely(__this_cpu_read(efi_sve_state_used))) {
			char const *sve_state = this_cpu_ptr(efi_sve_state);

			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
				       sve_vq_from_vl(sve_get_vl()) - 1);

			__this_cpu_write(efi_sve_state_used, false);
		} else {
			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
		}
	}
1235 1236
}

1237 1238
#endif /* CONFIG_EFI */

1239 1240
#endif /* CONFIG_KERNEL_MODE_NEON */

1241 1242 1243 1244 1245 1246
#ifdef CONFIG_CPU_PM
static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
				  unsigned long cmd, void *v)
{
	switch (cmd) {
	case CPU_PM_ENTER:
1247 1248
		if (current->mm)
			task_fpsimd_save();
1249
		fpsimd_flush_cpu_state();
1250 1251 1252
		break;
	case CPU_PM_EXIT:
		if (current->mm)
1253
			set_thread_flag(TIF_FOREIGN_FPSTATE);
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		break;
	case CPU_PM_ENTER_FAILED:
	default:
		return NOTIFY_DONE;
	}
	return NOTIFY_OK;
}

static struct notifier_block fpsimd_cpu_pm_notifier_block = {
	.notifier_call = fpsimd_cpu_pm_notifier,
};

1266
static void __init fpsimd_pm_init(void)
1267 1268 1269 1270 1271 1272 1273 1274
{
	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
}

#else
static inline void fpsimd_pm_init(void) { }
#endif /* CONFIG_CPU_PM */

1275
#ifdef CONFIG_HOTPLUG_CPU
1276
static int fpsimd_cpu_dead(unsigned int cpu)
1277
{
1278
	per_cpu(fpsimd_last_state.st, cpu) = NULL;
1279
	return 0;
1280 1281 1282 1283
}

static inline void fpsimd_hotplug_init(void)
{
1284 1285
	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
				  NULL, fpsimd_cpu_dead);
1286 1287 1288 1289 1290 1291
}

#else
static inline void fpsimd_hotplug_init(void) { }
#endif

C
Catalin Marinas 已提交
1292 1293 1294 1295 1296
/*
 * FP/SIMD support code initialisation.
 */
static int __init fpsimd_init(void)
{
1297 1298 1299 1300
	if (elf_hwcap & HWCAP_FP) {
		fpsimd_pm_init();
		fpsimd_hotplug_init();
	} else {
C
Catalin Marinas 已提交
1301 1302 1303
		pr_notice("Floating-point is not implemented\n");
	}

1304
	if (!(elf_hwcap & HWCAP_ASIMD))
C
Catalin Marinas 已提交
1305
		pr_notice("Advanced SIMD is not implemented\n");
1306

1307
	return sve_sysctl_init();
C
Catalin Marinas 已提交
1308
}
1309
core_initcall(fpsimd_init);