transport.c 22.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
/*
 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the BSD-type
 * license below:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *      Redistributions of source code must retain the above copyright
 *      notice, this list of conditions and the following disclaimer.
 *
 *      Redistributions in binary form must reproduce the above
 *      copyright notice, this list of conditions and the following
 *      disclaimer in the documentation and/or other materials provided
 *      with the distribution.
 *
 *      Neither the name of the Network Appliance, Inc. nor the names of
 *      its contributors may be used to endorse or promote products
 *      derived from this software without specific prior written
 *      permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * transport.c
 *
 * This file contains the top-level implementation of an RPC RDMA
 * transport.
 *
 * Naming convention: functions beginning with xprt_ are part of the
 * transport switch. All others are RPC RDMA internal.
 */

#include <linux/module.h>
#include <linux/init.h>
52
#include <linux/slab.h>
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
#include <linux/seq_file.h>

#include "xprt_rdma.h"

#ifdef RPC_DEBUG
# define RPCDBG_FACILITY	RPCDBG_TRANS
#endif

MODULE_LICENSE("Dual BSD/GPL");

MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS");
MODULE_AUTHOR("Network Appliance, Inc.");

/*
 * tunables
 */

static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
static unsigned int xprt_rdma_inline_write_padding;
74
static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
75
                int xprt_rdma_pad_optimize = 0;
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

#ifdef RPC_DEBUG

static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
static unsigned int zero;
static unsigned int max_padding = PAGE_SIZE;
static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
static unsigned int max_memreg = RPCRDMA_LAST - 1;

static struct ctl_table_header *sunrpc_table_header;

static ctl_table xr_tunables_table[] = {
	{
		.procname	= "rdma_slot_table_entries",
		.data		= &xprt_rdma_slot_table_entries,
		.maxlen		= sizeof(unsigned int),
		.mode		= 0644,
94
		.proc_handler	= proc_dointvec_minmax,
95 96 97 98 99 100 101 102
		.extra1		= &min_slot_table_size,
		.extra2		= &max_slot_table_size
	},
	{
		.procname	= "rdma_max_inline_read",
		.data		= &xprt_rdma_max_inline_read,
		.maxlen		= sizeof(unsigned int),
		.mode		= 0644,
103
		.proc_handler	= proc_dointvec,
104 105 106 107 108 109
	},
	{
		.procname	= "rdma_max_inline_write",
		.data		= &xprt_rdma_max_inline_write,
		.maxlen		= sizeof(unsigned int),
		.mode		= 0644,
110
		.proc_handler	= proc_dointvec,
111 112 113 114 115 116
	},
	{
		.procname	= "rdma_inline_write_padding",
		.data		= &xprt_rdma_inline_write_padding,
		.maxlen		= sizeof(unsigned int),
		.mode		= 0644,
117
		.proc_handler	= proc_dointvec_minmax,
118 119 120 121 122 123 124 125
		.extra1		= &zero,
		.extra2		= &max_padding,
	},
	{
		.procname	= "rdma_memreg_strategy",
		.data		= &xprt_rdma_memreg_strategy,
		.maxlen		= sizeof(unsigned int),
		.mode		= 0644,
126
		.proc_handler	= proc_dointvec_minmax,
127 128 129
		.extra1		= &min_memreg,
		.extra2		= &max_memreg,
	},
130 131 132 133 134
	{
		.procname	= "rdma_pad_optimize",
		.data		= &xprt_rdma_pad_optimize,
		.maxlen		= sizeof(unsigned int),
		.mode		= 0644,
135
		.proc_handler	= proc_dointvec,
136
	},
137
	{ },
138 139 140 141 142 143 144 145
};

static ctl_table sunrpc_table[] = {
	{
		.procname	= "sunrpc",
		.mode		= 0555,
		.child		= xr_tunables_table
	},
146
	{ },
147 148 149 150 151 152 153 154 155
};

#endif

static struct rpc_xprt_ops xprt_rdma_procs;	/* forward reference */

static void
xprt_rdma_format_addresses(struct rpc_xprt *xprt)
{
156
	struct sockaddr *sap = (struct sockaddr *)
157
					&rpcx_to_rdmad(xprt).addr;
158 159
	struct sockaddr_in *sin = (struct sockaddr_in *)sap;
	char buf[64];
160

161 162
	(void)rpc_ntop(sap, buf, sizeof(buf));
	xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
163

164
	snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
165
	xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
166 167 168

	xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";

169
	snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
170 171
	xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);

172
	snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
173
	xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
174 175 176 177 178 179 180 181

	/* netid */
	xprt->address_strings[RPC_DISPLAY_NETID] = "rdma";
}

static void
xprt_rdma_free_addresses(struct rpc_xprt *xprt)
{
182 183 184 185 186 187 188 189 190 191
	unsigned int i;

	for (i = 0; i < RPC_DISPLAY_MAX; i++)
		switch (i) {
		case RPC_DISPLAY_PROTO:
		case RPC_DISPLAY_NETID:
			continue;
		default:
			kfree(xprt->address_strings[i]);
		}
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
}

static void
xprt_rdma_connect_worker(struct work_struct *work)
{
	struct rpcrdma_xprt *r_xprt =
		container_of(work, struct rpcrdma_xprt, rdma_connect.work);
	struct rpc_xprt *xprt = &r_xprt->xprt;
	int rc = 0;

	if (!xprt->shutdown) {
		xprt_clear_connected(xprt);

		dprintk("RPC:       %s: %sconnect\n", __func__,
				r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
		rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
		if (rc)
			goto out;
	}
	goto out_clear;

out:
	xprt_wake_pending_tasks(xprt, rc);

out_clear:
	dprintk("RPC:       %s: exit\n", __func__);
	xprt_clear_connecting(xprt);
}

/*
 * xprt_rdma_destroy
 *
 * Destroy the xprt.
 * Free all memory associated with the object, including its own.
 * NOTE: none of the *destroy methods free memory for their top-level
 * objects, even though they may have allocated it (they do free
 * private memory). It's up to the caller to handle it. In this
 * case (RDMA transport), all structure memory is inlined with the
 * struct rpcrdma_xprt.
 */
static void
xprt_rdma_destroy(struct rpc_xprt *xprt)
{
	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
	int rc;

	dprintk("RPC:       %s: called\n", __func__);

	cancel_delayed_work(&r_xprt->rdma_connect);
	flush_scheduled_work();

	xprt_clear_connected(xprt);

	rpcrdma_buffer_destroy(&r_xprt->rx_buf);
	rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
	if (rc)
		dprintk("RPC:       %s: rpcrdma_ep_destroy returned %i\n",
			__func__, rc);
	rpcrdma_ia_close(&r_xprt->rx_ia);

	xprt_rdma_free_addresses(xprt);

	kfree(xprt->slot);
	xprt->slot = NULL;
	kfree(xprt);

	dprintk("RPC:       %s: returning\n", __func__);

	module_put(THIS_MODULE);
}

263 264 265 266 267
static const struct rpc_timeout xprt_rdma_default_timeout = {
	.to_initval = 60 * HZ,
	.to_maxval = 60 * HZ,
};

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/**
 * xprt_setup_rdma - Set up transport to use RDMA
 *
 * @args: rpc transport arguments
 */
static struct rpc_xprt *
xprt_setup_rdma(struct xprt_create *args)
{
	struct rpcrdma_create_data_internal cdata;
	struct rpc_xprt *xprt;
	struct rpcrdma_xprt *new_xprt;
	struct rpcrdma_ep *new_ep;
	struct sockaddr_in *sin;
	int rc;

	if (args->addrlen > sizeof(xprt->addr)) {
		dprintk("RPC:       %s: address too large\n", __func__);
		return ERR_PTR(-EBADF);
	}

	xprt = kzalloc(sizeof(struct rpcrdma_xprt), GFP_KERNEL);
	if (xprt == NULL) {
		dprintk("RPC:       %s: couldn't allocate rpcrdma_xprt\n",
			__func__);
		return ERR_PTR(-ENOMEM);
	}

	xprt->max_reqs = xprt_rdma_slot_table_entries;
	xprt->slot = kcalloc(xprt->max_reqs,
				sizeof(struct rpc_rqst), GFP_KERNEL);
	if (xprt->slot == NULL) {
		dprintk("RPC:       %s: couldn't allocate %d slots\n",
			__func__, xprt->max_reqs);
301
		kfree(xprt);
302 303 304 305
		return ERR_PTR(-ENOMEM);
	}

	/* 60 second timeout, no retries */
306
	xprt->timeout = &xprt_rdma_default_timeout;
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
	xprt->bind_timeout = (60U * HZ);
	xprt->reestablish_timeout = (5U * HZ);
	xprt->idle_timeout = (5U * 60 * HZ);

	xprt->resvport = 0;		/* privileged port not needed */
	xprt->tsh_size = 0;		/* RPC-RDMA handles framing */
	xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE;
	xprt->ops = &xprt_rdma_procs;

	/*
	 * Set up RDMA-specific connect data.
	 */

	/* Put server RDMA address in local cdata */
	memcpy(&cdata.addr, args->dstaddr, args->addrlen);

	/* Ensure xprt->addr holds valid server TCP (not RDMA)
	 * address, for any side protocols which peek at it */
	xprt->prot = IPPROTO_TCP;
	xprt->addrlen = args->addrlen;
	memcpy(&xprt->addr, &cdata.addr, xprt->addrlen);

	sin = (struct sockaddr_in *)&cdata.addr;
	if (ntohs(sin->sin_port) != 0)
		xprt_set_bound(xprt);

H
Harvey Harrison 已提交
333 334
	dprintk("RPC:       %s: %pI4:%u\n",
		__func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port));
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426

	/* Set max requests */
	cdata.max_requests = xprt->max_reqs;

	/* Set some length limits */
	cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
	cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */

	cdata.inline_wsize = xprt_rdma_max_inline_write;
	if (cdata.inline_wsize > cdata.wsize)
		cdata.inline_wsize = cdata.wsize;

	cdata.inline_rsize = xprt_rdma_max_inline_read;
	if (cdata.inline_rsize > cdata.rsize)
		cdata.inline_rsize = cdata.rsize;

	cdata.padding = xprt_rdma_inline_write_padding;

	/*
	 * Create new transport instance, which includes initialized
	 *  o ia
	 *  o endpoint
	 *  o buffers
	 */

	new_xprt = rpcx_to_rdmax(xprt);

	rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr,
				xprt_rdma_memreg_strategy);
	if (rc)
		goto out1;

	/*
	 * initialize and create ep
	 */
	new_xprt->rx_data = cdata;
	new_ep = &new_xprt->rx_ep;
	new_ep->rep_remote_addr = cdata.addr;

	rc = rpcrdma_ep_create(&new_xprt->rx_ep,
				&new_xprt->rx_ia, &new_xprt->rx_data);
	if (rc)
		goto out2;

	/*
	 * Allocate pre-registered send and receive buffers for headers and
	 * any inline data. Also specify any padding which will be provided
	 * from a preregistered zero buffer.
	 */
	rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia,
				&new_xprt->rx_data);
	if (rc)
		goto out3;

	/*
	 * Register a callback for connection events. This is necessary because
	 * connection loss notification is async. We also catch connection loss
	 * when reaping receives.
	 */
	INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker);
	new_ep->rep_func = rpcrdma_conn_func;
	new_ep->rep_xprt = xprt;

	xprt_rdma_format_addresses(xprt);

	if (!try_module_get(THIS_MODULE))
		goto out4;

	return xprt;

out4:
	xprt_rdma_free_addresses(xprt);
	rc = -EINVAL;
out3:
	(void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
out2:
	rpcrdma_ia_close(&new_xprt->rx_ia);
out1:
	kfree(xprt->slot);
	kfree(xprt);
	return ERR_PTR(rc);
}

/*
 * Close a connection, during shutdown or timeout/reconnect
 */
static void
xprt_rdma_close(struct rpc_xprt *xprt)
{
	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);

	dprintk("RPC:       %s: closing\n", __func__);
427 428
	if (r_xprt->rx_ep.rep_connected > 0)
		xprt->reestablish_timeout = 0;
429
	xprt_disconnect_done(xprt);
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
	(void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
}

static void
xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
{
	struct sockaddr_in *sap;

	sap = (struct sockaddr_in *)&xprt->addr;
	sap->sin_port = htons(port);
	sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
	sap->sin_port = htons(port);
	dprintk("RPC:       %s: %u\n", __func__, port);
}

static void
xprt_rdma_connect(struct rpc_task *task)
{
	struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt;
	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);

451 452 453 454 455 456 457 458 459 460 461 462 463
	if (r_xprt->rx_ep.rep_connected != 0) {
		/* Reconnect */
		schedule_delayed_work(&r_xprt->rdma_connect,
			xprt->reestablish_timeout);
		xprt->reestablish_timeout <<= 1;
		if (xprt->reestablish_timeout > (30 * HZ))
			xprt->reestablish_timeout = (30 * HZ);
		else if (xprt->reestablish_timeout < (5 * HZ))
			xprt->reestablish_timeout = (5 * HZ);
	} else {
		schedule_delayed_work(&r_xprt->rdma_connect, 0);
		if (!RPC_IS_ASYNC(task))
			flush_scheduled_work();
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
	}
}

static int
xprt_rdma_reserve_xprt(struct rpc_task *task)
{
	struct rpc_xprt *xprt = task->tk_xprt;
	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
	int credits = atomic_read(&r_xprt->rx_buf.rb_credits);

	/* == RPC_CWNDSCALE @ init, but *after* setup */
	if (r_xprt->rx_buf.rb_cwndscale == 0UL) {
		r_xprt->rx_buf.rb_cwndscale = xprt->cwnd;
		dprintk("RPC:       %s: cwndscale %lu\n", __func__,
			r_xprt->rx_buf.rb_cwndscale);
		BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0);
	}
	xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale;
	return xprt_reserve_xprt_cong(task);
}

/*
 * The RDMA allocate/free functions need the task structure as a place
 * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
 * sequence. For this reason, the recv buffers are attached to send
 * buffers for portions of the RPC. Note that the RPC layer allocates
 * both send and receive buffers in the same call. We may register
 * the receive buffer portion when using reply chunks.
 */
static void *
xprt_rdma_allocate(struct rpc_task *task, size_t size)
{
	struct rpc_xprt *xprt = task->tk_xprt;
	struct rpcrdma_req *req, *nreq;

	req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf);
	BUG_ON(NULL == req);

	if (size > req->rl_size) {
		dprintk("RPC:       %s: size %zd too large for buffer[%zd]: "
			"prog %d vers %d proc %d\n",
			__func__, size, req->rl_size,
			task->tk_client->cl_prog, task->tk_client->cl_vers,
			task->tk_msg.rpc_proc->p_proc);
		/*
		 * Outgoing length shortage. Our inline write max must have
		 * been configured to perform direct i/o.
		 *
		 * This is therefore a large metadata operation, and the
		 * allocate call was made on the maximum possible message,
		 * e.g. containing long filename(s) or symlink data. In
		 * fact, while these metadata operations *might* carry
		 * large outgoing payloads, they rarely *do*. However, we
		 * have to commit to the request here, so reallocate and
		 * register it now. The data path will never require this
		 * reallocation.
		 *
		 * If the allocation or registration fails, the RPC framework
		 * will (doggedly) retry.
		 */
		if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy ==
				RPCRDMA_BOUNCEBUFFERS) {
			/* forced to "pure inline" */
			dprintk("RPC:       %s: too much data (%zd) for inline "
					"(r/w max %d/%d)\n", __func__, size,
					rpcx_to_rdmad(xprt).inline_rsize,
					rpcx_to_rdmad(xprt).inline_wsize);
			size = req->rl_size;
			rpc_exit(task, -EIO);		/* fail the operation */
			rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
			goto out;
		}
		if (task->tk_flags & RPC_TASK_SWAPPER)
			nreq = kmalloc(sizeof *req + size, GFP_ATOMIC);
		else
			nreq = kmalloc(sizeof *req + size, GFP_NOFS);
		if (nreq == NULL)
			goto outfail;

		if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia,
				nreq->rl_base, size + sizeof(struct rpcrdma_req)
				- offsetof(struct rpcrdma_req, rl_base),
				&nreq->rl_handle, &nreq->rl_iov)) {
			kfree(nreq);
			goto outfail;
		}
		rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size;
		nreq->rl_size = size;
		nreq->rl_niovs = 0;
		nreq->rl_nchunks = 0;
		nreq->rl_buffer = (struct rpcrdma_buffer *)req;
		nreq->rl_reply = req->rl_reply;
		memcpy(nreq->rl_segments,
			req->rl_segments, sizeof nreq->rl_segments);
		/* flag the swap with an unused field */
		nreq->rl_iov.length = 0;
		req->rl_reply = NULL;
		req = nreq;
	}
	dprintk("RPC:       %s: size %zd, request 0x%p\n", __func__, size, req);
out:
565
	req->rl_connect_cookie = 0;	/* our reserved value */
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
	return req->rl_xdr_buf;

outfail:
	rpcrdma_buffer_put(req);
	rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
	return NULL;
}

/*
 * This function returns all RDMA resources to the pool.
 */
static void
xprt_rdma_free(void *buffer)
{
	struct rpcrdma_req *req;
	struct rpcrdma_xprt *r_xprt;
	struct rpcrdma_rep *rep;
	int i;

	if (buffer == NULL)
		return;

	req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]);
589 590 591 592 593
	if (req->rl_iov.length == 0) {	/* see allocate above */
		r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer,
				      struct rpcrdma_xprt, rx_buf);
	} else
		r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
	rep = req->rl_reply;

	dprintk("RPC:       %s: called on 0x%p%s\n",
		__func__, rep, (rep && rep->rr_func) ? " (with waiter)" : "");

	/*
	 * Finish the deregistration. When using mw bind, this was
	 * begun in rpcrdma_reply_handler(). In all other modes, we
	 * do it here, in thread context. The process is considered
	 * complete when the rr_func vector becomes NULL - this
	 * was put in place during rpcrdma_reply_handler() - the wait
	 * call below will not block if the dereg is "done". If
	 * interrupted, our framework will clean up.
	 */
	for (i = 0; req->rl_nchunks;) {
		--req->rl_nchunks;
		i += rpcrdma_deregister_external(
			&req->rl_segments[i], r_xprt, NULL);
	}

	if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) {
		rep->rr_func = NULL;	/* abandon the callback */
		req->rl_reply = NULL;
	}

	if (req->rl_iov.length == 0) {	/* see allocate above */
		struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer;
		oreq->rl_reply = req->rl_reply;
		(void) rpcrdma_deregister_internal(&r_xprt->rx_ia,
						   req->rl_handle,
						   &req->rl_iov);
		kfree(req);
		req = oreq;
	}

	/* Put back request+reply buffers */
	rpcrdma_buffer_put(req);
}

/*
 * send_request invokes the meat of RPC RDMA. It must do the following:
 *  1.  Marshal the RPC request into an RPC RDMA request, which means
 *	putting a header in front of data, and creating IOVs for RDMA
 *	from those in the request.
 *  2.  In marshaling, detect opportunities for RDMA, and use them.
 *  3.  Post a recv message to set up asynch completion, then send
 *	the request (rpcrdma_ep_post).
 *  4.  No partial sends are possible in the RPC-RDMA protocol (as in UDP).
 */

static int
xprt_rdma_send_request(struct rpc_task *task)
{
	struct rpc_rqst *rqst = task->tk_rqstp;
	struct rpc_xprt *xprt = task->tk_xprt;
	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);

	/* marshal the send itself */
	if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) {
		r_xprt->rx_stats.failed_marshal_count++;
		dprintk("RPC:       %s: rpcrdma_marshal_req failed\n",
			__func__);
		return -EIO;
	}

	if (req->rl_reply == NULL) 		/* e.g. reconnection */
		rpcrdma_recv_buffer_get(req);

	if (req->rl_reply) {
		req->rl_reply->rr_func = rpcrdma_reply_handler;
		/* this need only be done once, but... */
		req->rl_reply->rr_xprt = xprt;
	}

669 670 671 672 673 674 675
	/* Must suppress retransmit to maintain credits */
	if (req->rl_connect_cookie == xprt->connect_cookie)
		goto drop_connection;
	req->rl_connect_cookie = xprt->connect_cookie;

	if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
		goto drop_connection;
676

677
	rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len;
678 679
	rqst->rq_bytes_sent = 0;
	return 0;
680 681 682 683

drop_connection:
	xprt_disconnect_done(xprt);
	return -ENOTCONN;	/* implies disconnect */
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
}

static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
{
	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
	long idle_time = 0;

	if (xprt_connected(xprt))
		idle_time = (long)(jiffies - xprt->last_used) / HZ;

	seq_printf(seq,
	  "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu "
	  "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n",

	   0,	/* need a local port? */
	   xprt->stat.bind_count,
	   xprt->stat.connect_count,
	   xprt->stat.connect_time,
	   idle_time,
	   xprt->stat.sends,
	   xprt->stat.recvs,
	   xprt->stat.bad_xids,
	   xprt->stat.req_u,
	   xprt->stat.bklog_u,

	   r_xprt->rx_stats.read_chunk_count,
	   r_xprt->rx_stats.write_chunk_count,
	   r_xprt->rx_stats.reply_chunk_count,
	   r_xprt->rx_stats.total_rdma_request,
	   r_xprt->rx_stats.total_rdma_reply,
	   r_xprt->rx_stats.pullup_copy_count,
	   r_xprt->rx_stats.fixup_copy_count,
	   r_xprt->rx_stats.hardway_register_count,
	   r_xprt->rx_stats.failed_marshal_count,
	   r_xprt->rx_stats.bad_reply_count);
}

/*
 * Plumbing for rpc transport switch and kernel module
 */

static struct rpc_xprt_ops xprt_rdma_procs = {
	.reserve_xprt		= xprt_rdma_reserve_xprt,
	.release_xprt		= xprt_release_xprt_cong, /* sunrpc/xprt.c */
	.release_request	= xprt_release_rqst_cong,       /* ditto */
	.set_retrans_timeout	= xprt_set_retrans_timeout_def, /* ditto */
	.rpcbind		= rpcb_getport_async,	/* sunrpc/rpcb_clnt.c */
	.set_port		= xprt_rdma_set_port,
	.connect		= xprt_rdma_connect,
	.buf_alloc		= xprt_rdma_allocate,
	.buf_free		= xprt_rdma_free,
	.send_request		= xprt_rdma_send_request,
	.close			= xprt_rdma_close,
	.destroy		= xprt_rdma_destroy,
	.print_stats		= xprt_rdma_print_stats
};

static struct xprt_class xprt_rdma = {
	.list			= LIST_HEAD_INIT(xprt_rdma.list),
	.name			= "rdma",
	.owner			= THIS_MODULE,
	.ident			= XPRT_TRANSPORT_RDMA,
	.setup			= xprt_setup_rdma,
};

static void __exit xprt_rdma_cleanup(void)
{
	int rc;

753
	dprintk(KERN_INFO "RPCRDMA Module Removed, deregister RPC RDMA transport\n");
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
#ifdef RPC_DEBUG
	if (sunrpc_table_header) {
		unregister_sysctl_table(sunrpc_table_header);
		sunrpc_table_header = NULL;
	}
#endif
	rc = xprt_unregister_transport(&xprt_rdma);
	if (rc)
		dprintk("RPC:       %s: xprt_unregister returned %i\n",
			__func__, rc);
}

static int __init xprt_rdma_init(void)
{
	int rc;

	rc = xprt_register_transport(&xprt_rdma);

	if (rc)
		return rc;

	dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n");

	dprintk(KERN_INFO "Defaults:\n");
	dprintk(KERN_INFO "\tSlots %d\n"
		"\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
		xprt_rdma_slot_table_entries,
		xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
	dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n",
		xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);

#ifdef RPC_DEBUG
	if (!sunrpc_table_header)
		sunrpc_table_header = register_sysctl_table(sunrpc_table);
#endif
	return 0;
}

module_init(xprt_rdma_init);
module_exit(xprt_rdma_cleanup);