enlighten.c 27.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Core of Xen paravirt_ops implementation.
 *
 * This file contains the xen_paravirt_ops structure itself, and the
 * implementations for:
 * - privileged instructions
 * - interrupt flags
 * - segment operations
 * - booting and setup
 *
 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/preempt.h>
18
#include <linux/hardirq.h>
19 20 21 22 23 24
#include <linux/percpu.h>
#include <linux/delay.h>
#include <linux/start_kernel.h>
#include <linux/sched.h>
#include <linux/bootmem.h>
#include <linux/module.h>
25 26 27
#include <linux/mm.h>
#include <linux/page-flags.h>
#include <linux/highmem.h>
J
Jeremy Fitzhardinge 已提交
28
#include <linux/smp.h>
29 30 31 32

#include <xen/interface/xen.h>
#include <xen/interface/physdev.h>
#include <xen/interface/vcpu.h>
J
Jeremy Fitzhardinge 已提交
33
#include <xen/interface/sched.h>
34 35 36 37 38 39 40 41 42 43 44 45
#include <xen/features.h>
#include <xen/page.h>

#include <asm/paravirt.h>
#include <asm/page.h>
#include <asm/xen/hypercall.h>
#include <asm/xen/hypervisor.h>
#include <asm/fixmap.h>
#include <asm/processor.h>
#include <asm/setup.h>
#include <asm/desc.h>
#include <asm/pgtable.h>
J
Jeremy Fitzhardinge 已提交
46
#include <asm/tlbflush.h>
J
Jeremy Fitzhardinge 已提交
47
#include <asm/reboot.h>
48 49

#include "xen-ops.h"
J
Jeremy Fitzhardinge 已提交
50
#include "mmu.h"
51 52 53 54 55 56 57 58 59 60 61 62 63
#include "multicalls.h"

EXPORT_SYMBOL_GPL(hypercall_page);

DEFINE_PER_CPU(enum paravirt_lazy_mode, xen_lazy_mode);

DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
DEFINE_PER_CPU(unsigned long, xen_cr3);

struct start_info *xen_start_info;
EXPORT_SYMBOL_GPL(xen_start_info);

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
static /* __initdata */ struct shared_info dummy_shared_info;

/*
 * Point at some empty memory to start with. We map the real shared_info
 * page as soon as fixmap is up and running.
 */
struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;

/*
 * Flag to determine whether vcpu info placement is available on all
 * VCPUs.  We assume it is to start with, and then set it to zero on
 * the first failure.  This is because it can succeed on some VCPUs
 * and not others, since it can involve hypervisor memory allocation,
 * or because the guest failed to guarantee all the appropriate
 * constraints on all VCPUs (ie buffer can't cross a page boundary).
 *
 * Note that any particular CPU may be using a placed vcpu structure,
 * but we can only optimise if the all are.
 *
 * 0: not available, 1: available
 */
static int have_vcpu_info_placement = 1;

static void __init xen_vcpu_setup(int cpu)
88
{
89 90 91 92
	struct vcpu_register_vcpu_info info;
	int err;
	struct vcpu_info *vcpup;

93
	per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

	if (!have_vcpu_info_placement)
		return;		/* already tested, not available */

	vcpup = &per_cpu(xen_vcpu_info, cpu);

	info.mfn = virt_to_mfn(vcpup);
	info.offset = offset_in_page(vcpup);

	printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %x, offset %d\n",
	       cpu, vcpup, info.mfn, info.offset);

	/* Check to see if the hypervisor will put the vcpu_info
	   structure where we want it, which allows direct access via
	   a percpu-variable. */
	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);

	if (err) {
		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
		have_vcpu_info_placement = 0;
	} else {
		/* This cpu is using the registered vcpu info, even if
		   later ones fail to. */
		per_cpu(xen_vcpu, cpu) = vcpup;
118

119 120 121
		printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
		       cpu, vcpup);
	}
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
}

static void __init xen_banner(void)
{
	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
	       paravirt_ops.name);
	printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
}

static void xen_cpuid(unsigned int *eax, unsigned int *ebx,
		      unsigned int *ecx, unsigned int *edx)
{
	unsigned maskedx = ~0;

	/*
	 * Mask out inconvenient features, to try and disable as many
	 * unsupported kernel subsystems as possible.
	 */
	if (*eax == 1)
		maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
			    (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
			    (1 << X86_FEATURE_ACC));   /* thermal monitoring */

	asm(XEN_EMULATE_PREFIX "cpuid"
		: "=a" (*eax),
		  "=b" (*ebx),
		  "=c" (*ecx),
		  "=d" (*edx)
		: "0" (*eax), "2" (*ecx));
	*edx &= maskedx;
}

static void xen_set_debugreg(int reg, unsigned long val)
{
	HYPERVISOR_set_debugreg(reg, val);
}

static unsigned long xen_get_debugreg(int reg)
{
	return HYPERVISOR_get_debugreg(reg);
}

static unsigned long xen_save_fl(void)
{
	struct vcpu_info *vcpu;
	unsigned long flags;

	vcpu = x86_read_percpu(xen_vcpu);
170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	/* flag has opposite sense of mask */
	flags = !vcpu->evtchn_upcall_mask;

	/* convert to IF type flag
	   -0 -> 0x00000000
	   -1 -> 0xffffffff
	*/
	return (-flags) & X86_EFLAGS_IF;
}

static void xen_restore_fl(unsigned long flags)
{
	struct vcpu_info *vcpu;

	/* convert from IF type flag */
	flags = !(flags & X86_EFLAGS_IF);
187 188 189 190 191

	/* There's a one instruction preempt window here.  We need to
	   make sure we're don't switch CPUs between getting the vcpu
	   pointer and updating the mask. */
	preempt_disable();
192 193
	vcpu = x86_read_percpu(xen_vcpu);
	vcpu->evtchn_upcall_mask = flags;
194
	preempt_enable_no_resched();
195

196 197
	/* Doesn't matter if we get preempted here, because any
	   pending event will get dealt with anyway. */
198

199 200 201
	if (flags == 0) {
		preempt_check_resched();
		barrier(); /* unmask then check (avoid races) */
202 203
		if (unlikely(vcpu->evtchn_upcall_pending))
			force_evtchn_callback();
204
	}
205 206 207 208
}

static void xen_irq_disable(void)
{
209 210 211
	/* There's a one instruction preempt window here.  We need to
	   make sure we're don't switch CPUs between getting the vcpu
	   pointer and updating the mask. */
212
	preempt_disable();
213
	x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
214 215 216 217 218 219 220
	preempt_enable_no_resched();
}

static void xen_irq_enable(void)
{
	struct vcpu_info *vcpu;

221 222 223
	/* There's a one instruction preempt window here.  We need to
	   make sure we're don't switch CPUs between getting the vcpu
	   pointer and updating the mask. */
224 225 226
	preempt_disable();
	vcpu = x86_read_percpu(xen_vcpu);
	vcpu->evtchn_upcall_mask = 0;
227
	preempt_enable_no_resched();
228

229 230
	/* Doesn't matter if we get preempted here, because any
	   pending event will get dealt with anyway. */
231

232
	barrier(); /* unmask then check (avoid races) */
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
	if (unlikely(vcpu->evtchn_upcall_pending))
		force_evtchn_callback();
}

static void xen_safe_halt(void)
{
	/* Blocking includes an implicit local_irq_enable(). */
	if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
		BUG();
}

static void xen_halt(void)
{
	if (irqs_disabled())
		HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
	else
		xen_safe_halt();
}

static void xen_set_lazy_mode(enum paravirt_lazy_mode mode)
{
254 255
	BUG_ON(preemptible());

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
	switch (mode) {
	case PARAVIRT_LAZY_NONE:
		BUG_ON(x86_read_percpu(xen_lazy_mode) == PARAVIRT_LAZY_NONE);
		break;

	case PARAVIRT_LAZY_MMU:
	case PARAVIRT_LAZY_CPU:
		BUG_ON(x86_read_percpu(xen_lazy_mode) != PARAVIRT_LAZY_NONE);
		break;

	case PARAVIRT_LAZY_FLUSH:
		/* flush if necessary, but don't change state */
		if (x86_read_percpu(xen_lazy_mode) != PARAVIRT_LAZY_NONE)
			xen_mc_flush();
		return;
	}

	xen_mc_flush();
	x86_write_percpu(xen_lazy_mode, mode);
}

static unsigned long xen_store_tr(void)
{
	return 0;
}

static void xen_set_ldt(const void *addr, unsigned entries)
{
	unsigned long linear_addr = (unsigned long)addr;
	struct mmuext_op *op;
	struct multicall_space mcs = xen_mc_entry(sizeof(*op));

	op = mcs.args;
	op->cmd = MMUEXT_SET_LDT;
	if (linear_addr) {
		/* ldt my be vmalloced, use arbitrary_virt_to_machine */
		xmaddr_t maddr;
		maddr = arbitrary_virt_to_machine((unsigned long)addr);
		linear_addr = (unsigned long)maddr.maddr;
	}
	op->arg1.linear_addr = linear_addr;
	op->arg2.nr_ents = entries;

	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

static void xen_load_gdt(const struct Xgt_desc_struct *dtr)
{
	unsigned long *frames;
	unsigned long va = dtr->address;
	unsigned int size = dtr->size + 1;
	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
	int f;
	struct multicall_space mcs;

	/* A GDT can be up to 64k in size, which corresponds to 8192
	   8-byte entries, or 16 4k pages.. */

	BUG_ON(size > 65536);
	BUG_ON(va & ~PAGE_MASK);

	mcs = xen_mc_entry(sizeof(*frames) * pages);
	frames = mcs.args;

	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
		frames[f] = virt_to_mfn(va);
		make_lowmem_page_readonly((void *)va);
	}

	MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));

	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

static void load_TLS_descriptor(struct thread_struct *t,
				unsigned int cpu, unsigned int i)
{
	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
	xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
	struct multicall_space mc = __xen_mc_entry(0);

	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
}

static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
{
	xen_mc_batch();

	load_TLS_descriptor(t, cpu, 0);
	load_TLS_descriptor(t, cpu, 1);
	load_TLS_descriptor(t, cpu, 2);

	xen_mc_issue(PARAVIRT_LAZY_CPU);
351 352 353 354 355 356 357 358 359 360 361 362

	/*
	 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
	 * it means we're in a context switch, and %gs has just been
	 * saved.  This means we can zero it out to prevent faults on
	 * exit from the hypervisor if the next process has no %gs.
	 * Either way, it has been saved, and the new value will get
	 * loaded properly.  This will go away as soon as Xen has been
	 * modified to not save/restore %gs for normal hypercalls.
	 */
	if (xen_get_lazy_mode() == PARAVIRT_LAZY_CPU)
		loadsegment(gs, 0);
363 364 365 366 367 368 369 370 371
}

static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
				u32 low, u32 high)
{
	unsigned long lp = (unsigned long)&dt[entrynum];
	xmaddr_t mach_lp = virt_to_machine(lp);
	u64 entry = (u64)high << 32 | low;

372 373
	preempt_disable();

374 375 376
	xen_mc_flush();
	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
		BUG();
377 378

	preempt_enable();
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
}

static int cvt_gate_to_trap(int vector, u32 low, u32 high,
			    struct trap_info *info)
{
	u8 type, dpl;

	type = (high >> 8) & 0x1f;
	dpl = (high >> 13) & 3;

	if (type != 0xf && type != 0xe)
		return 0;

	info->vector = vector;
	info->address = (high & 0xffff0000) | (low & 0x0000ffff);
	info->cs = low >> 16;
	info->flags = dpl;
	/* interrupt gates clear IF */
	if (type == 0xe)
		info->flags |= 4;

	return 1;
}

/* Locations of each CPU's IDT */
static DEFINE_PER_CPU(struct Xgt_desc_struct, idt_desc);

/* Set an IDT entry.  If the entry is part of the current IDT, then
   also update Xen. */
static void xen_write_idt_entry(struct desc_struct *dt, int entrynum,
				u32 low, u32 high)
{
	unsigned long p = (unsigned long)&dt[entrynum];
412 413 414 415 416 417
	unsigned long start, end;

	preempt_disable();

	start = __get_cpu_var(idt_desc).address;
	end = start + __get_cpu_var(idt_desc).size + 1;
418 419 420 421 422 423 424 425 426 427 428 429 430 431

	xen_mc_flush();

	write_dt_entry(dt, entrynum, low, high);

	if (p >= start && (p + 8) <= end) {
		struct trap_info info[2];

		info[1].address = 0;

		if (cvt_gate_to_trap(entrynum, low, high, &info[0]))
			if (HYPERVISOR_set_trap_table(info))
				BUG();
	}
432 433

	preempt_enable();
434 435
}

J
Jeremy Fitzhardinge 已提交
436 437
static void xen_convert_trap_info(const struct Xgt_desc_struct *desc,
				  struct trap_info *traps)
438 439 440 441 442 443 444 445 446 447 448 449 450
{
	unsigned in, out, count;

	count = (desc->size+1) / 8;
	BUG_ON(count > 256);

	for (in = out = 0; in < count; in++) {
		const u32 *entry = (u32 *)(desc->address + in * 8);

		if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
			out++;
	}
	traps[out].address = 0;
J
Jeremy Fitzhardinge 已提交
451 452 453 454
}

void xen_copy_trap_info(struct trap_info *traps)
{
455
	const struct Xgt_desc_struct *desc = &__get_cpu_var(idt_desc);
J
Jeremy Fitzhardinge 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469

	xen_convert_trap_info(desc, traps);
}

/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
   hold a spinlock to protect the static traps[] array (static because
   it avoids allocation, and saves stack space). */
static void xen_load_idt(const struct Xgt_desc_struct *desc)
{
	static DEFINE_SPINLOCK(lock);
	static struct trap_info traps[257];

	spin_lock(&lock);

470 471
	__get_cpu_var(idt_desc) = *desc;

J
Jeremy Fitzhardinge 已提交
472
	xen_convert_trap_info(desc, traps);
473 474 475 476 477 478 479 480 481 482 483 484 485

	xen_mc_flush();
	if (HYPERVISOR_set_trap_table(traps))
		BUG();

	spin_unlock(&lock);
}

/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
   they're handled differently. */
static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
				u32 low, u32 high)
{
486 487
	preempt_disable();

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	switch ((high >> 8) & 0xff) {
	case DESCTYPE_LDT:
	case DESCTYPE_TSS:
		/* ignore */
		break;

	default: {
		xmaddr_t maddr = virt_to_machine(&dt[entry]);
		u64 desc = (u64)high << 32 | low;

		xen_mc_flush();
		if (HYPERVISOR_update_descriptor(maddr.maddr, desc))
			BUG();
	}

	}
504 505

	preempt_enable();
506 507 508
}

static void xen_load_esp0(struct tss_struct *tss,
509
			  struct thread_struct *thread)
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
{
	struct multicall_space mcs = xen_mc_entry(0);
	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->esp0);
	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

static void xen_set_iopl_mask(unsigned mask)
{
	struct physdev_set_iopl set_iopl;

	/* Force the change at ring 0. */
	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
}

static void xen_io_delay(void)
{
}

#ifdef CONFIG_X86_LOCAL_APIC
static unsigned long xen_apic_read(unsigned long reg)
{
	return 0;
}
J
Jeremy Fitzhardinge 已提交
534 535 536 537 538 539

static void xen_apic_write(unsigned long reg, unsigned long val)
{
	/* Warn to see if there's any stray references */
	WARN_ON(1);
}
540 541 542 543
#endif

static void xen_flush_tlb(void)
{
J
Jeremy Fitzhardinge 已提交
544 545
	struct mmuext_op *op;
	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
546

J
Jeremy Fitzhardinge 已提交
547 548 549 550 551
	op = mcs.args;
	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
552 553 554 555
}

static void xen_flush_tlb_single(unsigned long addr)
{
J
Jeremy Fitzhardinge 已提交
556 557
	struct mmuext_op *op;
	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
558

J
Jeremy Fitzhardinge 已提交
559 560 561 562 563 564
	op = mcs.args;
	op->cmd = MMUEXT_INVLPG_LOCAL;
	op->arg1.linear_addr = addr & PAGE_MASK;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
565 566
}

J
Jeremy Fitzhardinge 已提交
567 568 569
static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
				 unsigned long va)
{
J
Jeremy Fitzhardinge 已提交
570 571 572 573
	struct {
		struct mmuext_op op;
		cpumask_t mask;
	} *args;
J
Jeremy Fitzhardinge 已提交
574
	cpumask_t cpumask = *cpus;
J
Jeremy Fitzhardinge 已提交
575
	struct multicall_space mcs;
J
Jeremy Fitzhardinge 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

	/*
	 * A couple of (to be removed) sanity checks:
	 *
	 * - current CPU must not be in mask
	 * - mask must exist :)
	 */
	BUG_ON(cpus_empty(cpumask));
	BUG_ON(cpu_isset(smp_processor_id(), cpumask));
	BUG_ON(!mm);

	/* If a CPU which we ran on has gone down, OK. */
	cpus_and(cpumask, cpumask, cpu_online_map);
	if (cpus_empty(cpumask))
		return;

J
Jeremy Fitzhardinge 已提交
592 593 594 595 596
	mcs = xen_mc_entry(sizeof(*args));
	args = mcs.args;
	args->mask = cpumask;
	args->op.arg2.vcpumask = &args->mask;

J
Jeremy Fitzhardinge 已提交
597
	if (va == TLB_FLUSH_ALL) {
J
Jeremy Fitzhardinge 已提交
598
		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
J
Jeremy Fitzhardinge 已提交
599
	} else {
J
Jeremy Fitzhardinge 已提交
600 601
		args->op.cmd = MMUEXT_INVLPG_MULTI;
		args->op.arg1.linear_addr = va;
J
Jeremy Fitzhardinge 已提交
602 603
	}

J
Jeremy Fitzhardinge 已提交
604 605 606
	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
J
Jeremy Fitzhardinge 已提交
607 608
}

609 610 611 612 613
static void xen_write_cr2(unsigned long cr2)
{
	x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
}

614 615 616 617 618
static unsigned long xen_read_cr2(void)
{
	return x86_read_percpu(xen_vcpu)->arch.cr2;
}

619 620 621 622 623
static unsigned long xen_read_cr2_direct(void)
{
	return x86_read_percpu(xen_vcpu_info.arch.cr2);
}

624 625
static void xen_write_cr4(unsigned long cr4)
{
626 627
	/* Just ignore cr4 changes; Xen doesn't allow us to do
	   anything anyway. */
628 629 630 631 632 633 634 635 636
}

static unsigned long xen_read_cr3(void)
{
	return x86_read_percpu(xen_cr3);
}

static void xen_write_cr3(unsigned long cr3)
{
637 638
	BUG_ON(preemptible());

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
	if (cr3 == x86_read_percpu(xen_cr3)) {
		/* just a simple tlb flush */
		xen_flush_tlb();
		return;
	}

	x86_write_percpu(xen_cr3, cr3);


	{
		struct mmuext_op *op;
		struct multicall_space mcs = xen_mc_entry(sizeof(*op));
		unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));

		op = mcs.args;
		op->cmd = MMUEXT_NEW_BASEPTR;
		op->arg1.mfn = mfn;

		MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

		xen_mc_issue(PARAVIRT_LAZY_CPU);
	}
}

663 664
/* Early in boot, while setting up the initial pagetable, assume
   everything is pinned. */
665
static __init void xen_alloc_pt_init(struct mm_struct *mm, u32 pfn)
666
{
667
	BUG_ON(mem_map);	/* should only be used early */
668 669 670
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
}

671 672 673
/* This needs to make sure the new pte page is pinned iff its being
   attached to a pinned pagetable. */
static void xen_alloc_pt(struct mm_struct *mm, u32 pfn)
674
{
675
	struct page *page = pfn_to_page(pfn);
676

677 678 679 680 681 682 683 684 685 686
	if (PagePinned(virt_to_page(mm->pgd))) {
		SetPagePinned(page);

		if (!PageHighMem(page))
			make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
		else
			/* make sure there are no stray mappings of
			   this page */
			kmap_flush_unused();
	}
687 688
}

689
/* This should never happen until we're OK to use struct page */
690 691
static void xen_release_pt(u32 pfn)
{
692 693 694 695 696 697
	struct page *page = pfn_to_page(pfn);

	if (PagePinned(page)) {
		if (!PageHighMem(page))
			make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
	}
698 699
}

700 701
#ifdef CONFIG_HIGHPTE
static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
702
{
703 704 705 706 707 708 709 710 711 712 713
	pgprot_t prot = PAGE_KERNEL;

	if (PagePinned(page))
		prot = PAGE_KERNEL_RO;

	if (0 && PageHighMem(page))
		printk("mapping highpte %lx type %d prot %s\n",
		       page_to_pfn(page), type,
		       (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");

	return kmap_atomic_prot(page, type, prot);
714
}
715
#endif
716

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
{
	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
			       pte_val_ma(pte));

	return pte;
}

/* Init-time set_pte while constructing initial pagetables, which
   doesn't allow RO pagetable pages to be remapped RW */
static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
{
	pte = mask_rw_pte(ptep, pte);

	xen_set_pte(ptep, pte);
}

736 737 738 739
static __init void xen_pagetable_setup_start(pgd_t *base)
{
	pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;

740 741 742
	/* special set_pte for pagetable initialization */
	paravirt_ops.set_pte = xen_set_pte_init;

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	init_mm.pgd = base;
	/*
	 * copy top-level of Xen-supplied pagetable into place.	 For
	 * !PAE we can use this as-is, but for PAE it is a stand-in
	 * while we copy the pmd pages.
	 */
	memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));

	if (PTRS_PER_PMD > 1) {
		int i;
		/*
		 * For PAE, need to allocate new pmds, rather than
		 * share Xen's, since Xen doesn't like pmd's being
		 * shared between address spaces.
		 */
		for (i = 0; i < PTRS_PER_PGD; i++) {
			if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
				pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);

				memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
				       PAGE_SIZE);

765
				make_lowmem_page_readonly(pmd);
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785

				set_pgd(&base[i], __pgd(1 + __pa(pmd)));
			} else
				pgd_clear(&base[i]);
		}
	}

	/* make sure zero_page is mapped RO so we can use it in pagetables */
	make_lowmem_page_readonly(empty_zero_page);
	make_lowmem_page_readonly(base);
	/*
	 * Switch to new pagetable.  This is done before
	 * pagetable_init has done anything so that the new pages
	 * added to the table can be prepared properly for Xen.
	 */
	xen_write_cr3(__pa(base));
}

static __init void xen_pagetable_setup_done(pgd_t *base)
{
786 787 788
	/* This will work as long as patching hasn't happened yet
	   (which it hasn't) */
	paravirt_ops.alloc_pt = xen_alloc_pt;
789
	paravirt_ops.set_pte = xen_set_pte;
790

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
		/*
		 * Create a mapping for the shared info page.
		 * Should be set_fixmap(), but shared_info is a machine
		 * address with no corresponding pseudo-phys address.
		 */
		set_pte_mfn(fix_to_virt(FIX_PARAVIRT_BOOTMAP),
			    PFN_DOWN(xen_start_info->shared_info),
			    PAGE_KERNEL);

		HYPERVISOR_shared_info =
			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);

	} else
		HYPERVISOR_shared_info =
			(struct shared_info *)__va(xen_start_info->shared_info);

808 809 810 811 812 813 814 815 816 817 818 819 820
	/* Actually pin the pagetable down, but we can't set PG_pinned
	   yet because the page structures don't exist yet. */
	{
		struct mmuext_op op;
#ifdef CONFIG_X86_PAE
		op.cmd = MMUEXT_PIN_L3_TABLE;
#else
		op.cmd = MMUEXT_PIN_L3_TABLE;
#endif
		op.arg1.mfn = pfn_to_mfn(PFN_DOWN(__pa(base)));
		if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
			BUG();
	}
821
}
822

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
/* This is called once we have the cpu_possible_map */
void __init xen_setup_vcpu_info_placement(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		xen_vcpu_setup(cpu);

	/* xen_vcpu_setup managed to place the vcpu_info within the
	   percpu area for all cpus, so make use of it */
	if (have_vcpu_info_placement) {
		printk(KERN_INFO "Xen: using vcpu_info placement\n");

		paravirt_ops.save_fl = xen_save_fl_direct;
		paravirt_ops.restore_fl = xen_restore_fl_direct;
		paravirt_ops.irq_disable = xen_irq_disable_direct;
		paravirt_ops.irq_enable = xen_irq_enable_direct;
		paravirt_ops.read_cr2 = xen_read_cr2_direct;
841
		paravirt_ops.iret = xen_iret_direct;
842
	}
843 844
}

845 846
static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
			  unsigned long addr, unsigned len)
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
{
	char *start, *end, *reloc;
	unsigned ret;

	start = end = reloc = NULL;

#define SITE(x)								\
	case PARAVIRT_PATCH(x):						\
	if (have_vcpu_info_placement) {					\
		start = (char *)xen_##x##_direct;			\
		end = xen_##x##_direct_end;				\
		reloc = xen_##x##_direct_reloc;				\
	}								\
	goto patch_site

	switch (type) {
		SITE(irq_enable);
		SITE(irq_disable);
		SITE(save_fl);
		SITE(restore_fl);
#undef SITE

	patch_site:
		if (start == NULL || (end-start) > len)
			goto default_patch;

873
		ret = paravirt_patch_insns(insnbuf, len, start, end);
874 875 876 877 878 879 880

		/* Note: because reloc is assigned from something that
		   appears to be an array, gcc assumes it's non-null,
		   but doesn't know its relationship with start and
		   end. */
		if (reloc > start && reloc < end) {
			int reloc_off = reloc - start;
881 882
			long *relocp = (long *)(insnbuf + reloc_off);
			long delta = start - (char *)addr;
883 884 885 886 887 888 889

			*relocp += delta;
		}
		break;

	default_patch:
	default:
890 891
		ret = paravirt_patch_default(type, clobbers, insnbuf,
					     addr, len);
892 893 894 895 896 897
		break;
	}

	return ret;
}

898 899 900 901 902 903 904
static const struct paravirt_ops xen_paravirt_ops __initdata = {
	.paravirt_enabled = 1,
	.shared_kernel_pmd = 0,

	.name = "Xen",
	.banner = xen_banner,

905
	.patch = xen_patch,
906 907 908

	.memory_setup = xen_memory_setup,
	.arch_setup = xen_arch_setup,
J
Jeremy Fitzhardinge 已提交
909
	.init_IRQ = xen_init_IRQ,
910
	.post_allocator_init = xen_mark_init_mm_pinned,
911

J
Jeremy Fitzhardinge 已提交
912 913 914 915
	.time_init = xen_time_init,
	.set_wallclock = xen_set_wallclock,
	.get_wallclock = xen_get_wallclock,
	.get_cpu_khz = xen_cpu_khz,
J
Jeremy Fitzhardinge 已提交
916
	.sched_clock = xen_sched_clock,
J
Jeremy Fitzhardinge 已提交
917

918 919 920 921 922 923 924 925 926 927 928
	.cpuid = xen_cpuid,

	.set_debugreg = xen_set_debugreg,
	.get_debugreg = xen_get_debugreg,

	.clts = native_clts,

	.read_cr0 = native_read_cr0,
	.write_cr0 = native_write_cr0,

	.read_cr2 = xen_read_cr2,
929
	.write_cr2 = xen_write_cr2,
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972

	.read_cr3 = xen_read_cr3,
	.write_cr3 = xen_write_cr3,

	.read_cr4 = native_read_cr4,
	.read_cr4_safe = native_read_cr4_safe,
	.write_cr4 = xen_write_cr4,

	.save_fl = xen_save_fl,
	.restore_fl = xen_restore_fl,
	.irq_disable = xen_irq_disable,
	.irq_enable = xen_irq_enable,
	.safe_halt = xen_safe_halt,
	.halt = xen_halt,
	.wbinvd = native_wbinvd,

	.read_msr = native_read_msr_safe,
	.write_msr = native_write_msr_safe,
	.read_tsc = native_read_tsc,
	.read_pmc = native_read_pmc,

	.iret = (void *)&hypercall_page[__HYPERVISOR_iret],
	.irq_enable_sysexit = NULL,  /* never called */

	.load_tr_desc = paravirt_nop,
	.set_ldt = xen_set_ldt,
	.load_gdt = xen_load_gdt,
	.load_idt = xen_load_idt,
	.load_tls = xen_load_tls,

	.store_gdt = native_store_gdt,
	.store_idt = native_store_idt,
	.store_tr = xen_store_tr,

	.write_ldt_entry = xen_write_ldt_entry,
	.write_gdt_entry = xen_write_gdt_entry,
	.write_idt_entry = xen_write_idt_entry,
	.load_esp0 = xen_load_esp0,

	.set_iopl_mask = xen_set_iopl_mask,
	.io_delay = xen_io_delay,

#ifdef CONFIG_X86_LOCAL_APIC
J
Jeremy Fitzhardinge 已提交
973 974
	.apic_write = xen_apic_write,
	.apic_write_atomic = xen_apic_write,
975 976 977 978 979 980 981 982 983
	.apic_read = xen_apic_read,
	.setup_boot_clock = paravirt_nop,
	.setup_secondary_clock = paravirt_nop,
	.startup_ipi_hook = paravirt_nop,
#endif

	.flush_tlb_user = xen_flush_tlb,
	.flush_tlb_kernel = xen_flush_tlb,
	.flush_tlb_single = xen_flush_tlb_single,
J
Jeremy Fitzhardinge 已提交
984
	.flush_tlb_others = xen_flush_tlb_others,
985 986 987 988 989 990 991

	.pte_update = paravirt_nop,
	.pte_update_defer = paravirt_nop,

	.pagetable_setup_start = xen_pagetable_setup_start,
	.pagetable_setup_done = xen_pagetable_setup_done,

992
	.alloc_pt = xen_alloc_pt_init,
993
	.release_pt = xen_release_pt,
994 995 996 997 998 999 1000
	.alloc_pd = paravirt_nop,
	.alloc_pd_clone = paravirt_nop,
	.release_pd = paravirt_nop,

#ifdef CONFIG_HIGHPTE
	.kmap_atomic_pte = xen_kmap_atomic_pte,
#endif
1001

1002
	.set_pte = NULL,	/* see xen_pagetable_setup_* */
J
Jeremy Fitzhardinge 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	.set_pte_at = xen_set_pte_at,
	.set_pmd = xen_set_pmd,

	.pte_val = xen_pte_val,
	.pgd_val = xen_pgd_val,

	.make_pte = xen_make_pte,
	.make_pgd = xen_make_pgd,

#ifdef CONFIG_X86_PAE
	.set_pte_atomic = xen_set_pte_atomic,
	.set_pte_present = xen_set_pte_at,
	.set_pud = xen_set_pud,
	.pte_clear = xen_pte_clear,
	.pmd_clear = xen_pmd_clear,

	.make_pmd = xen_make_pmd,
	.pmd_val = xen_pmd_val,
#endif	/* PAE */

	.activate_mm = xen_activate_mm,
	.dup_mmap = xen_dup_mmap,
	.exit_mmap = xen_exit_mmap,

1027 1028 1029
	.set_lazy_mode = xen_set_lazy_mode,
};

J
Jeremy Fitzhardinge 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
#ifdef CONFIG_SMP
static const struct smp_ops xen_smp_ops __initdata = {
	.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
	.smp_prepare_cpus = xen_smp_prepare_cpus,
	.cpu_up = xen_cpu_up,
	.smp_cpus_done = xen_smp_cpus_done,

	.smp_send_stop = xen_smp_send_stop,
	.smp_send_reschedule = xen_smp_send_reschedule,
	.smp_call_function_mask = xen_smp_call_function_mask,
};
#endif	/* CONFIG_SMP */

J
Jeremy Fitzhardinge 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
static void xen_reboot(int reason)
{
#ifdef CONFIG_SMP
	smp_send_stop();
#endif

	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason))
		BUG();
}

static void xen_restart(char *msg)
{
	xen_reboot(SHUTDOWN_reboot);
}

static void xen_emergency_restart(void)
{
	xen_reboot(SHUTDOWN_reboot);
}

static void xen_machine_halt(void)
{
	xen_reboot(SHUTDOWN_poweroff);
}

static void xen_crash_shutdown(struct pt_regs *regs)
{
	xen_reboot(SHUTDOWN_crash);
}

static const struct machine_ops __initdata xen_machine_ops = {
	.restart = xen_restart,
	.halt = xen_machine_halt,
	.power_off = xen_machine_halt,
	.shutdown = xen_machine_halt,
	.crash_shutdown = xen_crash_shutdown,
	.emergency_restart = xen_emergency_restart,
};

1082

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
/* First C function to be called on Xen boot */
asmlinkage void __init xen_start_kernel(void)
{
	pgd_t *pgd;

	if (!xen_start_info)
		return;

	BUG_ON(memcmp(xen_start_info->magic, "xen-3.0", 7) != 0);

	/* Install Xen paravirt ops */
	paravirt_ops = xen_paravirt_ops;
J
Jeremy Fitzhardinge 已提交
1095 1096
	machine_ops = xen_machine_ops;

J
Jeremy Fitzhardinge 已提交
1097 1098 1099
#ifdef CONFIG_SMP
	smp_ops = xen_smp_ops;
#endif
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

	xen_setup_features();

	/* Get mfn list */
	if (!xen_feature(XENFEAT_auto_translated_physmap))
		phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;

	pgd = (pgd_t *)xen_start_info->pt_base;

	init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;

	init_mm.pgd = pgd; /* use the Xen pagetables to start */

	/* keep using Xen gdt for now; no urgent need to change it */

	x86_write_percpu(xen_cr3, __pa(pgd));
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

#ifdef CONFIG_SMP
	/* Don't do the full vcpu_info placement stuff until we have a
	   possible map. */
	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
#else
	/* May as well do it now, since there's no good time to call
	   it later on UP. */
	xen_setup_vcpu_info_placement();
#endif
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

	paravirt_ops.kernel_rpl = 1;
	if (xen_feature(XENFEAT_supervisor_mode_kernel))
		paravirt_ops.kernel_rpl = 0;

	/* set the limit of our address space */
	reserve_top_address(-HYPERVISOR_VIRT_START + 2 * PAGE_SIZE);

	/* set up basic CPUID stuff */
	cpu_detect(&new_cpu_data);
	new_cpu_data.hard_math = 1;
	new_cpu_data.x86_capability[0] = cpuid_edx(1);

	/* Poke various useful things into boot_params */
	LOADER_TYPE = (9 << 4) | 0;
	INITRD_START = xen_start_info->mod_start ? __pa(xen_start_info->mod_start) : 0;
	INITRD_SIZE = xen_start_info->mod_len;

	/* Start the world */
	start_kernel();
}