process.c 9.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * arch/xtensa/kernel/process.c
 *
 * Xtensa Processor version.
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 2001 - 2005 Tensilica Inc.
 *
 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
 * Chris Zankel <chris@zankel.net>
 * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
 * Kevin Chea
 */

#include <linux/errno.h>
#include <linux/sched.h>
20
#include <linux/sched/debug.h>
21
#include <linux/sched/task.h>
22 23 24 25 26 27 28
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/elf.h>
29
#include <linux/hw_breakpoint.h>
30 31 32 33 34
#include <linux/init.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
#include <linux/module.h>
#include <linux/mqueue.h>
35
#include <linux/fs.h>
36
#include <linux/slab.h>
37
#include <linux/rcupdate.h>
38 39

#include <asm/pgtable.h>
40
#include <linux/uaccess.h>
41 42 43 44 45
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/platform.h>
#include <asm/mmu.h>
#include <asm/irq.h>
A
Arun Sharma 已提交
46
#include <linux/atomic.h>
47
#include <asm/asm-offsets.h>
48
#include <asm/regs.h>
49
#include <asm/hw_breakpoint.h>
50 51

extern void ret_from_fork(void);
52
extern void ret_from_kernel_thread(void);
53 54 55

struct task_struct *current_set[NR_CPUS] = {&init_task, };

A
Adrian Bunk 已提交
56 57 58
void (*pm_power_off)(void) = NULL;
EXPORT_SYMBOL(pm_power_off);

59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
#if XTENSA_HAVE_COPROCESSORS

void coprocessor_release_all(struct thread_info *ti)
{
	unsigned long cpenable;
	int i;

	/* Make sure we don't switch tasks during this operation. */

	preempt_disable();

	/* Walk through all cp owners and release it for the requested one. */

	cpenable = ti->cpenable;

	for (i = 0; i < XCHAL_CP_MAX; i++) {
		if (coprocessor_owner[i] == ti) {
			coprocessor_owner[i] = 0;
			cpenable &= ~(1 << i);
		}
	}

	ti->cpenable = cpenable;
	coprocessor_clear_cpenable();

	preempt_enable();
}

void coprocessor_flush_all(struct thread_info *ti)
{
	unsigned long cpenable;
	int i;

	preempt_disable();

	cpenable = ti->cpenable;

	for (i = 0; i < XCHAL_CP_MAX; i++) {
		if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
			coprocessor_flush(ti, i);
		cpenable >>= 1;
	}

	preempt_enable();
}

#endif


109 110 111
/*
 * Powermanagement idle function, if any is provided by the platform.
 */
T
Thomas Gleixner 已提交
112
void arch_cpu_idle(void)
113
{
T
Thomas Gleixner 已提交
114
	platform_idle();
115 116 117
}

/*
118
 * This is called when the thread calls exit().
119
 */
120
void exit_thread(struct task_struct *tsk)
121
{
122
#if XTENSA_HAVE_COPROCESSORS
123
	coprocessor_release_all(task_thread_info(tsk));
124
#endif
125 126
}

127 128 129 130
/*
 * Flush thread state. This is called when a thread does an execve()
 * Note that we flush coprocessor registers for the case execve fails.
 */
131 132
void flush_thread(void)
{
133 134 135 136 137
#if XTENSA_HAVE_COPROCESSORS
	struct thread_info *ti = current_thread_info();
	coprocessor_flush_all(ti);
	coprocessor_release_all(ti);
#endif
138
	flush_ptrace_hw_breakpoint(current);
139 140 141
}

/*
142 143
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
144
 */
145
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
146 147
{
#if XTENSA_HAVE_COPROCESSORS
148
	coprocessor_flush_all(task_thread_info(src));
149
#endif
150 151
	*dst = *src;
	return 0;
152 153 154 155 156
}

/*
 * Copy thread.
 *
157 158 159 160 161 162 163 164 165 166
 * There are two modes in which this function is called:
 * 1) Userspace thread creation,
 *    regs != NULL, usp_thread_fn is userspace stack pointer.
 *    It is expected to copy parent regs (in case CLONE_VM is not set
 *    in the clone_flags) and set up passed usp in the childregs.
 * 2) Kernel thread creation,
 *    regs == NULL, usp_thread_fn is the function to run in the new thread
 *    and thread_fn_arg is its parameter.
 *    childregs are not used for the kernel threads.
 *
167 168
 * The stack layout for the new thread looks like this:
 *
169
 *	+------------------------+
170 171 172 173 174
 *	|       childregs        |
 *	+------------------------+ <- thread.sp = sp in dummy-frame
 *	|      dummy-frame       |    (saved in dummy-frame spill-area)
 *	+------------------------+
 *
175 176 177
 * We create a dummy frame to return to either ret_from_fork or
 *   ret_from_kernel_thread:
 *   a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
178
 *   sp points to itself (thread.sp)
179 180
 *   a2, a3 are unused for userspace threads,
 *   a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
181 182 183
 *
 * Note: This is a pristine frame, so we don't need any spill region on top of
 *       childregs.
184 185 186 187 188 189 190 191 192 193
 *
 * The fun part:  if we're keeping the same VM (i.e. cloning a thread,
 * not an entire process), we're normally given a new usp, and we CANNOT share
 * any live address register windows.  If we just copy those live frames over,
 * the two threads (parent and child) will overflow the same frames onto the
 * parent stack at different times, likely corrupting the parent stack (esp.
 * if the parent returns from functions that called clone() and calls new
 * ones, before the child overflows its now old copies of its parent windows).
 * One solution is to spill windows to the parent stack, but that's fairly
 * involved.  Much simpler to just not copy those live frames across.
194 195
 */

196
int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn,
197
		unsigned long thread_fn_arg, struct task_struct *p)
198
{
199
	struct pt_regs *childregs = task_pt_regs(p);
200

C
Chris Zankel 已提交
201 202 203 204
#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
	struct thread_info *ti;
#endif

205 206 207 208 209
	/* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
	*((int*)childregs - 3) = (unsigned long)childregs;
	*((int*)childregs - 4) = 0;

	p->thread.sp = (unsigned long)childregs;
210

211 212 213 214 215 216 217
	if (!(p->flags & PF_KTHREAD)) {
		struct pt_regs *regs = current_pt_regs();
		unsigned long usp = usp_thread_fn ?
			usp_thread_fn : regs->areg[1];

		p->thread.ra = MAKE_RA_FOR_CALL(
				(unsigned long)ret_from_fork, 0x1);
218

219 220 221 222 223
		/* This does not copy all the regs.
		 * In a bout of brilliance or madness,
		 * ARs beyond a0-a15 exist past the end of the struct.
		 */
		*childregs = *regs;
224
		childregs->areg[1] = usp;
225
		childregs->areg[2] = 0;
226 227 228 229 230 231 232 233 234 235 236 237 238 239

		/* When sharing memory with the parent thread, the child
		   usually starts on a pristine stack, so we have to reset
		   windowbase, windowstart and wmask.
		   (Note that such a new thread is required to always create
		   an initial call4 frame)
		   The exception is vfork, where the new thread continues to
		   run on the parent's stack until it calls execve. This could
		   be a call8 or call12, which requires a legal stack frame
		   of the previous caller for the overflow handlers to work.
		   (Note that it's always legal to overflow live registers).
		   In this case, ensure to spill at least the stack pointer
		   of that frame. */

240
		if (clone_flags & CLONE_VM) {
241 242 243 244 245 246 247 248 249 250 251
			/* check that caller window is live and same stack */
			int len = childregs->wmask & ~0xf;
			if (regs->areg[1] == usp && len != 0) {
				int callinc = (regs->areg[0] >> 30) & 3;
				int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
				put_user(regs->areg[caller_ars+1],
					 (unsigned __user*)(usp - 12));
			}
			childregs->wmask = 1;
			childregs->windowstart = 1;
			childregs->windowbase = 0;
252 253 254 255 256
		} else {
			int len = childregs->wmask & ~0xf;
			memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
			       &regs->areg[XCHAL_NUM_AREGS - len/4], len);
		}
C
Chris Zankel 已提交
257 258

		/* The thread pointer is passed in the '4th argument' (= a5) */
259
		if (clone_flags & CLONE_SETTLS)
C
Chris Zankel 已提交
260
			childregs->threadptr = childregs->areg[5];
261
	} else {
262 263 264 265 266 267 268 269 270 271 272 273
		p->thread.ra = MAKE_RA_FOR_CALL(
				(unsigned long)ret_from_kernel_thread, 1);

		/* pass parameters to ret_from_kernel_thread:
		 * a2 = thread_fn, a3 = thread_fn arg
		 */
		*((int *)childregs - 1) = thread_fn_arg;
		*((int *)childregs - 2) = usp_thread_fn;

		/* Childregs are only used when we're going to userspace
		 * in which case start_thread will set them up.
		 */
274
	}
275 276 277 278 279 280

#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
	ti = task_thread_info(p);
	ti->cpenable = 0;
#endif

281 282
	clear_ptrace_hw_breakpoint(p);

283 284 285 286 287 288 289 290 291 292 293
	return 0;
}


/*
 * These bracket the sleeping functions..
 */

unsigned long get_wchan(struct task_struct *p)
{
	unsigned long sp, pc;
294
	unsigned long stack_page = (unsigned long) task_stack_page(p);
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.sp;
	pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);

	do {
		if (sp < stack_page + sizeof(struct task_struct) ||
		    sp >= (stack_page + THREAD_SIZE) ||
		    pc == 0)
			return 0;
		if (!in_sched_functions(pc))
			return pc;

		/* Stack layout: sp-4: ra, sp-3: sp' */

		pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp);
		sp = *(unsigned long *)sp - 3;
	} while (count++ < 16);
	return 0;
}

/*
 * xtensa_gregset_t and 'struct pt_regs' are vastly different formats
 * of processor registers.  Besides different ordering,
 * xtensa_gregset_t contains non-live register information that
 * 'struct pt_regs' does not.  Exception handling (primarily) uses
 * 'struct pt_regs'.  Core files and ptrace use xtensa_gregset_t.
 *
 */

328
void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs)
329
{
330 331 332 333 334 335 336 337 338 339
	unsigned long wb, ws, wm;
	int live, last;

	wb = regs->windowbase;
	ws = regs->windowstart;
	wm = regs->wmask;
	ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1);

	/* Don't leak any random bits. */

A
Alan Cox 已提交
340
	memset(elfregs, 0, sizeof(*elfregs));
341

342 343 344 345 346
	/* Note:  PS.EXCM is not set while user task is running; its
	 * being set in regs->ps is for exception handling convenience.
	 */

	elfregs->pc		= regs->pc;
347
	elfregs->ps		= (regs->ps & ~(1 << PS_EXCM_BIT));
348 349 350 351
	elfregs->lbeg		= regs->lbeg;
	elfregs->lend		= regs->lend;
	elfregs->lcount		= regs->lcount;
	elfregs->sar		= regs->sar;
352
	elfregs->windowstart	= ws;
353

354 355 356 357
	live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16;
	last = XCHAL_NUM_AREGS - (wm >> 4) * 4;
	memcpy(elfregs->a, regs->areg, live * 4);
	memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16);
358 359
}

360
int dump_fpu(void)
361 362 363
{
	return 0;
}