qede_main.c 54.4 KB
Newer Older
Y
Yuval Mintz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/* QLogic qede NIC Driver
* Copyright (c) 2015 QLogic Corporation
*
* This software is available under the terms of the GNU General Public License
* (GPL) Version 2, available from the file COPYING in the main directory of
* this source tree.
*/

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/version.h>
#include <linux/device.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/string.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <asm/byteorder.h>
#include <asm/param.h>
#include <linux/io.h>
#include <linux/netdev_features.h>
#include <linux/udp.h>
#include <linux/tcp.h>
#include <net/vxlan.h>
#include <linux/ip.h>
#include <net/ipv6.h>
#include <net/tcp.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/pkt_sched.h>
#include <linux/ethtool.h>
#include <linux/in.h>
#include <linux/random.h>
#include <net/ip6_checksum.h>
#include <linux/bitops.h>

#include "qede.h"

static const char version[] = "QLogic QL4xxx 40G/100G Ethernet Driver qede "
			      DRV_MODULE_VERSION "\n";

MODULE_DESCRIPTION("QLogic 40G/100G Ethernet Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);

static uint debug;
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, " Default debug msglevel");

static const struct qed_eth_ops *qed_ops;

#define CHIP_NUM_57980S_40		0x1634
#define CHIP_NUM_57980S_10		0x1635
#define CHIP_NUM_57980S_MF		0x1636
#define CHIP_NUM_57980S_100		0x1644
#define CHIP_NUM_57980S_50		0x1654
#define CHIP_NUM_57980S_25		0x1656

#ifndef PCI_DEVICE_ID_NX2_57980E
#define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
#define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
#define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
#define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
#define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
#define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
#endif

static const struct pci_device_id qede_pci_tbl[] = {
	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), 0 },
	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), 0 },
	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), 0 },
	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), 0 },
	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), 0 },
	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), 0 },
	{ 0 }
};

MODULE_DEVICE_TABLE(pci, qede_pci_tbl);

static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);

#define TX_TIMEOUT		(5 * HZ)

static void qede_remove(struct pci_dev *pdev);
88 89
static int qede_alloc_rx_buffer(struct qede_dev *edev,
				struct qede_rx_queue *rxq);
Y
Yuval Mintz 已提交
90 91 92 93 94 95 96 97

static struct pci_driver qede_pci_driver = {
	.name = "qede",
	.id_table = qede_pci_tbl,
	.probe = qede_probe,
	.remove = qede_remove,
};

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
static int qede_netdev_event(struct notifier_block *this, unsigned long event,
			     void *ptr)
{
	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
	struct ethtool_drvinfo drvinfo;
	struct qede_dev *edev;

	/* Currently only support name change */
	if (event != NETDEV_CHANGENAME)
		goto done;

	/* Check whether this is a qede device */
	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
		goto done;

	memset(&drvinfo, 0, sizeof(drvinfo));
	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
	if (strcmp(drvinfo.driver, "qede"))
		goto done;
	edev = netdev_priv(ndev);

	/* Notify qed of the name change */
	if (!edev->ops || !edev->ops->common)
		goto done;
	edev->ops->common->set_id(edev->cdev, edev->ndev->name,
				  "qede");

done:
	return NOTIFY_DONE;
}

static struct notifier_block qede_netdev_notifier = {
	.notifier_call = qede_netdev_event,
};

Y
Yuval Mintz 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
static
int __init qede_init(void)
{
	int ret;
	u32 qed_ver;

	pr_notice("qede_init: %s\n", version);

	qed_ver = qed_get_protocol_version(QED_PROTOCOL_ETH);
	if (qed_ver !=  QEDE_ETH_INTERFACE_VERSION) {
		pr_notice("Version mismatch [%08x != %08x]\n",
			  qed_ver,
			  QEDE_ETH_INTERFACE_VERSION);
		return -EINVAL;
	}

	qed_ops = qed_get_eth_ops(QEDE_ETH_INTERFACE_VERSION);
	if (!qed_ops) {
		pr_notice("Failed to get qed ethtool operations\n");
		return -EINVAL;
	}

155 156 157 158 159 160 161 162 163 164
	/* Must register notifier before pci ops, since we might miss
	 * interface rename after pci probe and netdev registeration.
	 */
	ret = register_netdevice_notifier(&qede_netdev_notifier);
	if (ret) {
		pr_notice("Failed to register netdevice_notifier\n");
		qed_put_eth_ops();
		return -EINVAL;
	}

Y
Yuval Mintz 已提交
165 166 167
	ret = pci_register_driver(&qede_pci_driver);
	if (ret) {
		pr_notice("Failed to register driver\n");
168
		unregister_netdevice_notifier(&qede_netdev_notifier);
Y
Yuval Mintz 已提交
169 170 171 172 173 174 175 176 177 178 179
		qed_put_eth_ops();
		return -EINVAL;
	}

	return 0;
}

static void __exit qede_cleanup(void)
{
	pr_notice("qede_cleanup called\n");

180
	unregister_netdevice_notifier(&qede_netdev_notifier);
Y
Yuval Mintz 已提交
181 182 183 184 185 186 187
	pci_unregister_driver(&qede_pci_driver);
	qed_put_eth_ops();
}

module_init(qede_init);
module_exit(qede_cleanup);

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
/* -------------------------------------------------------------------------
 * START OF FAST-PATH
 * -------------------------------------------------------------------------
 */

/* Unmap the data and free skb */
static int qede_free_tx_pkt(struct qede_dev *edev,
			    struct qede_tx_queue *txq,
			    int *len)
{
	u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
	struct eth_tx_1st_bd *first_bd;
	struct eth_tx_bd *tx_data_bd;
	int bds_consumed = 0;
	int nbds;
	bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
	int i, split_bd_len = 0;

	if (unlikely(!skb)) {
		DP_ERR(edev,
		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
		return -1;
	}

	*len = skb->len;

	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);

	bds_consumed++;

	nbds = first_bd->data.nbds;

	if (data_split) {
		struct eth_tx_bd *split = (struct eth_tx_bd *)
			qed_chain_consume(&txq->tx_pbl);
		split_bd_len = BD_UNMAP_LEN(split);
		bds_consumed++;
	}
	dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
		       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);

	/* Unmap the data of the skb frags */
	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
		tx_data_bd = (struct eth_tx_bd *)
			qed_chain_consume(&txq->tx_pbl);
		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
	}

	while (bds_consumed++ < nbds)
		qed_chain_consume(&txq->tx_pbl);

	/* Free skb */
	dev_kfree_skb_any(skb);
	txq->sw_tx_ring[idx].skb = NULL;
	txq->sw_tx_ring[idx].flags = 0;

	return 0;
}

/* Unmap the data and free skb when mapping failed during start_xmit */
static void qede_free_failed_tx_pkt(struct qede_dev *edev,
				    struct qede_tx_queue *txq,
				    struct eth_tx_1st_bd *first_bd,
				    int nbd,
				    bool data_split)
{
	u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
	struct eth_tx_bd *tx_data_bd;
	int i, split_bd_len = 0;

	/* Return prod to its position before this skb was handled */
	qed_chain_set_prod(&txq->tx_pbl,
			   le16_to_cpu(txq->tx_db.data.bd_prod),
			   first_bd);

	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);

	if (data_split) {
		struct eth_tx_bd *split = (struct eth_tx_bd *)
					  qed_chain_produce(&txq->tx_pbl);
		split_bd_len = BD_UNMAP_LEN(split);
		nbd--;
	}

	dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
		       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);

	/* Unmap the data of the skb frags */
	for (i = 0; i < nbd; i++) {
		tx_data_bd = (struct eth_tx_bd *)
			qed_chain_produce(&txq->tx_pbl);
		if (tx_data_bd->nbytes)
			dma_unmap_page(&edev->pdev->dev,
				       BD_UNMAP_ADDR(tx_data_bd),
				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
	}

	/* Return again prod to its position before this skb was handled */
	qed_chain_set_prod(&txq->tx_pbl,
			   le16_to_cpu(txq->tx_db.data.bd_prod),
			   first_bd);

	/* Free skb */
	dev_kfree_skb_any(skb);
	txq->sw_tx_ring[idx].skb = NULL;
	txq->sw_tx_ring[idx].flags = 0;
}

static u32 qede_xmit_type(struct qede_dev *edev,
			  struct sk_buff *skb,
			  int *ipv6_ext)
{
	u32 rc = XMIT_L4_CSUM;
	__be16 l3_proto;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return XMIT_PLAIN;

	l3_proto = vlan_get_protocol(skb);
	if (l3_proto == htons(ETH_P_IPV6) &&
	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
		*ipv6_ext = 1;

	if (skb_is_gso(skb))
		rc |= XMIT_LSO;

	return rc;
}

static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
					 struct eth_tx_2nd_bd *second_bd,
					 struct eth_tx_3rd_bd *third_bd)
{
	u8 l4_proto;
	u16 bd2_bits = 0, bd2_bits2 = 0;

	bd2_bits2 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);

	bd2_bits |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;

	bd2_bits2 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);

	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
		l4_proto = ipv6_hdr(skb)->nexthdr;
	else
		l4_proto = ip_hdr(skb)->protocol;

	if (l4_proto == IPPROTO_UDP)
		bd2_bits2 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;

	if (third_bd) {
		third_bd->data.bitfields |=
			((tcp_hdrlen(skb) / 4) &
			 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
			ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT;
	}

	second_bd->data.bitfields = cpu_to_le16(bd2_bits);
	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
}

static int map_frag_to_bd(struct qede_dev *edev,
			  skb_frag_t *frag,
			  struct eth_tx_bd *bd)
{
	dma_addr_t mapping;

	/* Map skb non-linear frag data for DMA */
	mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
				   skb_frag_size(frag),
				   DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
		DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
		return -ENOMEM;
	}

	/* Setup the data pointer of the frag data */
	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));

	return 0;
}

/* Main transmit function */
static
netdev_tx_t qede_start_xmit(struct sk_buff *skb,
			    struct net_device *ndev)
{
	struct qede_dev *edev = netdev_priv(ndev);
	struct netdev_queue *netdev_txq;
	struct qede_tx_queue *txq;
	struct eth_tx_1st_bd *first_bd;
	struct eth_tx_2nd_bd *second_bd = NULL;
	struct eth_tx_3rd_bd *third_bd = NULL;
	struct eth_tx_bd *tx_data_bd = NULL;
	u16 txq_index;
	u8 nbd = 0;
	dma_addr_t mapping;
	int rc, frag_idx = 0, ipv6_ext = 0;
	u8 xmit_type;
	u16 idx;
	u16 hlen;
	bool data_split;

	/* Get tx-queue context and netdev index */
	txq_index = skb_get_queue_mapping(skb);
	WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
	txq = QEDE_TX_QUEUE(edev, txq_index);
	netdev_txq = netdev_get_tx_queue(ndev, txq_index);

	/* Current code doesn't support SKB linearization, since the max number
	 * of skb frags can be passed in the FW HSI.
	 */
	BUILD_BUG_ON(MAX_SKB_FRAGS > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET);

	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
			       (MAX_SKB_FRAGS + 1));

	xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);

	/* Fill the entry in the SW ring and the BDs in the FW ring */
	idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
	txq->sw_tx_ring[idx].skb = skb;
	first_bd = (struct eth_tx_1st_bd *)
		   qed_chain_produce(&txq->tx_pbl);
	memset(first_bd, 0, sizeof(*first_bd));
	first_bd->data.bd_flags.bitfields =
		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;

	/* Map skb linear data for DMA and set in the first BD */
	mapping = dma_map_single(&edev->pdev->dev, skb->data,
				 skb_headlen(skb), DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
		DP_NOTICE(edev, "SKB mapping failed\n");
		qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
		return NETDEV_TX_OK;
	}
	nbd++;
	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));

	/* In case there is IPv6 with extension headers or LSO we need 2nd and
	 * 3rd BDs.
	 */
	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
		second_bd = (struct eth_tx_2nd_bd *)
			qed_chain_produce(&txq->tx_pbl);
		memset(second_bd, 0, sizeof(*second_bd));

		nbd++;
		third_bd = (struct eth_tx_3rd_bd *)
			qed_chain_produce(&txq->tx_pbl);
		memset(third_bd, 0, sizeof(*third_bd));

		nbd++;
		/* We need to fill in additional data in second_bd... */
		tx_data_bd = (struct eth_tx_bd *)second_bd;
	}

	if (skb_vlan_tag_present(skb)) {
		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
		first_bd->data.bd_flags.bitfields |=
			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
	}

	/* Fill the parsing flags & params according to the requested offload */
	if (xmit_type & XMIT_L4_CSUM) {
		/* We don't re-calculate IP checksum as it is already done by
		 * the upper stack
		 */
		first_bd->data.bd_flags.bitfields |=
			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;

		/* If the packet is IPv6 with extension header, indicate that
		 * to FW and pass few params, since the device cracker doesn't
		 * support parsing IPv6 with extension header/s.
		 */
		if (unlikely(ipv6_ext))
			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
	}

	if (xmit_type & XMIT_LSO) {
		first_bd->data.bd_flags.bitfields |=
			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
		third_bd->data.lso_mss =
			cpu_to_le16(skb_shinfo(skb)->gso_size);

		first_bd->data.bd_flags.bitfields |=
		1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
		hlen = skb_transport_header(skb) +
		       tcp_hdrlen(skb) - skb->data;

		/* @@@TBD - if will not be removed need to check */
		third_bd->data.bitfields |=
			(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);

		/* Make life easier for FW guys who can't deal with header and
		 * data on same BD. If we need to split, use the second bd...
		 */
		if (unlikely(skb_headlen(skb) > hlen)) {
			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
				   "TSO split header size is %d (%x:%x)\n",
				   first_bd->nbytes, first_bd->addr.hi,
				   first_bd->addr.lo);

			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
					   le32_to_cpu(first_bd->addr.lo)) +
					   hlen;

			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
					      le16_to_cpu(first_bd->nbytes) -
					      hlen);

			/* this marks the BD as one that has no
			 * individual mapping
			 */
			txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;

			first_bd->nbytes = cpu_to_le16(hlen);

			tx_data_bd = (struct eth_tx_bd *)third_bd;
			data_split = true;
		}
	}

	/* Handle fragmented skb */
	/* special handle for frags inside 2nd and 3rd bds.. */
	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
		rc = map_frag_to_bd(edev,
				    &skb_shinfo(skb)->frags[frag_idx],
				    tx_data_bd);
		if (rc) {
			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
						data_split);
			return NETDEV_TX_OK;
		}

		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
			tx_data_bd = (struct eth_tx_bd *)third_bd;
		else
			tx_data_bd = NULL;

		frag_idx++;
	}

	/* map last frags into 4th, 5th .... */
	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
		tx_data_bd = (struct eth_tx_bd *)
			     qed_chain_produce(&txq->tx_pbl);

		memset(tx_data_bd, 0, sizeof(*tx_data_bd));

		rc = map_frag_to_bd(edev,
				    &skb_shinfo(skb)->frags[frag_idx],
				    tx_data_bd);
		if (rc) {
			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
						data_split);
			return NETDEV_TX_OK;
		}
	}

	/* update the first BD with the actual num BDs */
	first_bd->data.nbds = nbd;

	netdev_tx_sent_queue(netdev_txq, skb->len);

	skb_tx_timestamp(skb);

	/* Advance packet producer only before sending the packet since mapping
	 * of pages may fail.
	 */
	txq->sw_tx_prod++;

	/* 'next page' entries are counted in the producer value */
	txq->tx_db.data.bd_prod =
		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));

	/* wmb makes sure that the BDs data is updated before updating the
	 * producer, otherwise FW may read old data from the BDs.
	 */
	wmb();
	barrier();
	writel(txq->tx_db.raw, txq->doorbell_addr);

	/* mmiowb is needed to synchronize doorbell writes from more than one
	 * processor. It guarantees that the write arrives to the device before
	 * the queue lock is released and another start_xmit is called (possibly
	 * on another CPU). Without this barrier, the next doorbell can bypass
	 * this doorbell. This is applicable to IA64/Altix systems.
	 */
	mmiowb();

	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
		      < (MAX_SKB_FRAGS + 1))) {
		netif_tx_stop_queue(netdev_txq);
		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
			   "Stop queue was called\n");
		/* paired memory barrier is in qede_tx_int(), we have to keep
		 * ordering of set_bit() in netif_tx_stop_queue() and read of
		 * fp->bd_tx_cons
		 */
		smp_mb();

		if (qed_chain_get_elem_left(&txq->tx_pbl)
		     >= (MAX_SKB_FRAGS + 1) &&
		    (edev->state == QEDE_STATE_OPEN)) {
			netif_tx_wake_queue(netdev_txq);
			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
				   "Wake queue was called\n");
		}
	}

	return NETDEV_TX_OK;
}

static int qede_txq_has_work(struct qede_tx_queue *txq)
{
	u16 hw_bd_cons;

	/* Tell compiler that consumer and producer can change */
	barrier();
	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
		return 0;

	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
}

static int qede_tx_int(struct qede_dev *edev,
		       struct qede_tx_queue *txq)
{
	struct netdev_queue *netdev_txq;
	u16 hw_bd_cons;
	unsigned int pkts_compl = 0, bytes_compl = 0;
	int rc;

	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);

	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
	barrier();

	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
		int len = 0;

		rc = qede_free_tx_pkt(edev, txq, &len);
		if (rc) {
			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
				  hw_bd_cons,
				  qed_chain_get_cons_idx(&txq->tx_pbl));
			break;
		}

		bytes_compl += len;
		pkts_compl++;
		txq->sw_tx_cons++;
	}

	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);

	/* Need to make the tx_bd_cons update visible to start_xmit()
	 * before checking for netif_tx_queue_stopped().  Without the
	 * memory barrier, there is a small possibility that
	 * start_xmit() will miss it and cause the queue to be stopped
	 * forever.
	 * On the other hand we need an rmb() here to ensure the proper
	 * ordering of bit testing in the following
	 * netif_tx_queue_stopped(txq) call.
	 */
	smp_mb();

	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
		/* Taking tx_lock is needed to prevent reenabling the queue
		 * while it's empty. This could have happen if rx_action() gets
		 * suspended in qede_tx_int() after the condition before
		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
		 *
		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
		 * sends some packets consuming the whole queue again->
		 * stops the queue
		 */

		__netif_tx_lock(netdev_txq, smp_processor_id());

		if ((netif_tx_queue_stopped(netdev_txq)) &&
		    (edev->state == QEDE_STATE_OPEN) &&
		    (qed_chain_get_elem_left(&txq->tx_pbl)
		      >= (MAX_SKB_FRAGS + 1))) {
			netif_tx_wake_queue(netdev_txq);
			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
				   "Wake queue was called\n");
		}

		__netif_tx_unlock(netdev_txq);
	}

	return 0;
}

static bool qede_has_rx_work(struct qede_rx_queue *rxq)
{
	u16 hw_comp_cons, sw_comp_cons;

	/* Tell compiler that status block fields can change */
	barrier();

	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);

	return hw_comp_cons != sw_comp_cons;
}

static bool qede_has_tx_work(struct qede_fastpath *fp)
{
	u8 tc;

	for (tc = 0; tc < fp->edev->num_tc; tc++)
		if (qede_txq_has_work(&fp->txqs[tc]))
			return true;
	return false;
}

/* This function copies the Rx buffer from the CONS position to the PROD
 * position, since we failed to allocate a new Rx buffer.
 */
static void qede_reuse_rx_data(struct qede_rx_queue *rxq)
{
	struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
	struct sw_rx_data *sw_rx_data_cons =
		&rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
	struct sw_rx_data *sw_rx_data_prod =
		&rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];

	dma_unmap_addr_set(sw_rx_data_prod, mapping,
			   dma_unmap_addr(sw_rx_data_cons, mapping));

	sw_rx_data_prod->data = sw_rx_data_cons->data;
	memcpy(rx_bd_prod, rx_bd_cons, sizeof(struct eth_rx_bd));

	rxq->sw_rx_cons++;
	rxq->sw_rx_prod++;
}

static inline void qede_update_rx_prod(struct qede_dev *edev,
				       struct qede_rx_queue *rxq)
{
	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
	struct eth_rx_prod_data rx_prods = {0};

	/* Update producers */
	rx_prods.bd_prod = cpu_to_le16(bd_prod);
	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);

	/* Make sure that the BD and SGE data is updated before updating the
	 * producers since FW might read the BD/SGE right after the producer
	 * is updated.
	 */
	wmb();

	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
			(u32 *)&rx_prods);

	/* mmiowb is needed to synchronize doorbell writes from more than one
	 * processor. It guarantees that the write arrives to the device before
	 * the napi lock is released and another qede_poll is called (possibly
	 * on another CPU). Without this barrier, the next doorbell can bypass
	 * this doorbell. This is applicable to IA64/Altix systems.
	 */
	mmiowb();
}

static u32 qede_get_rxhash(struct qede_dev *edev,
			   u8 bitfields,
			   __le32 rss_hash,
			   enum pkt_hash_types *rxhash_type)
{
	enum rss_hash_type htype;

	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);

	if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
		*rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
				(htype == RSS_HASH_TYPE_IPV6)) ?
				PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
		return le32_to_cpu(rss_hash);
	}
	*rxhash_type = PKT_HASH_TYPE_NONE;
	return 0;
}

static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
{
	skb_checksum_none_assert(skb);

	if (csum_flag & QEDE_CSUM_UNNECESSARY)
		skb->ip_summed = CHECKSUM_UNNECESSARY;
}

static inline void qede_skb_receive(struct qede_dev *edev,
				    struct qede_fastpath *fp,
				    struct sk_buff *skb,
				    u16 vlan_tag)
{
	if (vlan_tag)
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
				       vlan_tag);

	napi_gro_receive(&fp->napi, skb);
}

static u8 qede_check_csum(u16 flag)
{
	u16 csum_flag = 0;
	u8 csum = 0;

	if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
	     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) {
		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
		csum = QEDE_CSUM_UNNECESSARY;
	}

	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;

	if (csum_flag & flag)
		return QEDE_CSUM_ERROR;

	return csum;
}

static int qede_rx_int(struct qede_fastpath *fp, int budget)
{
	struct qede_dev *edev = fp->edev;
	struct qede_rx_queue *rxq = fp->rxq;

	u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
	int rx_pkt = 0;
	u8 csum_flag;

	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);

	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
	 * read before it is written by FW, then FW writes CQE and SB, and then
	 * the CPU reads the hw_comp_cons, it will use an old CQE.
	 */
	rmb();

	/* Loop to complete all indicated BDs */
	while (sw_comp_cons != hw_comp_cons) {
		struct eth_fast_path_rx_reg_cqe *fp_cqe;
		enum pkt_hash_types rxhash_type;
		enum eth_rx_cqe_type cqe_type;
		struct sw_rx_data *sw_rx_data;
		union eth_rx_cqe *cqe;
		struct sk_buff *skb;
		u16 len, pad;
		u32 rx_hash;
		u8 *data;

		/* Get the CQE from the completion ring */
		cqe = (union eth_rx_cqe *)
			qed_chain_consume(&rxq->rx_comp_ring);
		cqe_type = cqe->fast_path_regular.type;

		if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
			edev->ops->eth_cqe_completion(
					edev->cdev, fp->rss_id,
					(struct eth_slow_path_rx_cqe *)cqe);
			goto next_cqe;
		}

		/* Get the data from the SW ring */
		sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
		sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
		data = sw_rx_data->data;

		fp_cqe = &cqe->fast_path_regular;
		len =  le16_to_cpu(fp_cqe->pkt_len);
		pad = fp_cqe->placement_offset;

		/* For every Rx BD consumed, we allocate a new BD so the BD ring
		 * is always with a fixed size. If allocation fails, we take the
		 * consumed BD and return it to the ring in the PROD position.
		 * The packet that was received on that BD will be dropped (and
		 * not passed to the upper stack).
		 */
		if (likely(qede_alloc_rx_buffer(edev, rxq) == 0)) {
			dma_unmap_single(&edev->pdev->dev,
					 dma_unmap_addr(sw_rx_data, mapping),
					 rxq->rx_buf_size, DMA_FROM_DEVICE);

			/* If this is an error packet then drop it */
			parse_flag =
			le16_to_cpu(cqe->fast_path_regular.pars_flags.flags);
			csum_flag = qede_check_csum(parse_flag);
			if (csum_flag == QEDE_CSUM_ERROR) {
				DP_NOTICE(edev,
					  "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
					  sw_comp_cons, parse_flag);
				rxq->rx_hw_errors++;
				kfree(data);
				goto next_rx;
			}

			skb = build_skb(data, 0);

			if (unlikely(!skb)) {
				DP_NOTICE(edev,
					  "Build_skb failed, dropping incoming packet\n");
				kfree(data);
				rxq->rx_alloc_errors++;
				goto next_rx;
			}

			skb_reserve(skb, pad);

		} else {
			DP_NOTICE(edev,
				  "New buffer allocation failed, dropping incoming packet and reusing its buffer\n");
			qede_reuse_rx_data(rxq);
			rxq->rx_alloc_errors++;
			goto next_cqe;
		}

		sw_rx_data->data = NULL;

		skb_put(skb, len);

		skb->protocol = eth_type_trans(skb, edev->ndev);

		rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
					  fp_cqe->rss_hash,
					  &rxhash_type);

		skb_set_hash(skb, rx_hash, rxhash_type);

		qede_set_skb_csum(skb, csum_flag);

		skb_record_rx_queue(skb, fp->rss_id);

		qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));

		qed_chain_consume(&rxq->rx_bd_ring);

next_rx:
		rxq->sw_rx_cons++;
		rx_pkt++;

next_cqe: /* don't consume bd rx buffer */
		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
		/* CR TPA - revisit how to handle budget in TPA perhaps
		 * increase on "end"
		 */
		if (rx_pkt == budget)
			break;
	} /* repeat while sw_comp_cons != hw_comp_cons... */

	/* Update producers */
	qede_update_rx_prod(edev, rxq);

	return rx_pkt;
}

static int qede_poll(struct napi_struct *napi, int budget)
{
	int work_done = 0;
	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
						 napi);
	struct qede_dev *edev = fp->edev;

	while (1) {
		u8 tc;

		for (tc = 0; tc < edev->num_tc; tc++)
			if (qede_txq_has_work(&fp->txqs[tc]))
				qede_tx_int(edev, &fp->txqs[tc]);

		if (qede_has_rx_work(fp->rxq)) {
			work_done += qede_rx_int(fp, budget - work_done);

			/* must not complete if we consumed full budget */
			if (work_done >= budget)
				break;
		}

		/* Fall out from the NAPI loop if needed */
		if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
			qed_sb_update_sb_idx(fp->sb_info);
			/* *_has_*_work() reads the status block,
			 * thus we need to ensure that status block indices
			 * have been actually read (qed_sb_update_sb_idx)
			 * prior to this check (*_has_*_work) so that
			 * we won't write the "newer" value of the status block
			 * to HW (if there was a DMA right after
			 * qede_has_rx_work and if there is no rmb, the memory
			 * reading (qed_sb_update_sb_idx) may be postponed
			 * to right before *_ack_sb). In this case there
			 * will never be another interrupt until there is
			 * another update of the status block, while there
			 * is still unhandled work.
			 */
			rmb();

			if (!(qede_has_rx_work(fp->rxq) ||
			      qede_has_tx_work(fp))) {
				napi_complete(napi);
				/* Update and reenable interrupts */
				qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
					   1 /*update*/);
				break;
			}
		}
	}

	return work_done;
}

static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
{
	struct qede_fastpath *fp = fp_cookie;

	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);

	napi_schedule_irqoff(&fp->napi);
	return IRQ_HANDLED;
}

/* -------------------------------------------------------------------------
 * END OF FAST-PATH
 * -------------------------------------------------------------------------
 */

static int qede_open(struct net_device *ndev);
static int qede_close(struct net_device *ndev);
static const struct net_device_ops qede_netdev_ops = {
	.ndo_open = qede_open,
	.ndo_stop = qede_close,
	.ndo_start_xmit = qede_start_xmit,
	.ndo_validate_addr = eth_validate_addr,
};

Y
Yuval Mintz 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
/* -------------------------------------------------------------------------
 * START OF PROBE / REMOVE
 * -------------------------------------------------------------------------
 */

static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
					    struct pci_dev *pdev,
					    struct qed_dev_eth_info *info,
					    u32 dp_module,
					    u8 dp_level)
{
	struct net_device *ndev;
	struct qede_dev *edev;

	ndev = alloc_etherdev_mqs(sizeof(*edev),
				  info->num_queues,
				  info->num_queues);
	if (!ndev) {
		pr_err("etherdev allocation failed\n");
		return NULL;
	}

	edev = netdev_priv(ndev);
	edev->ndev = ndev;
	edev->cdev = cdev;
	edev->pdev = pdev;
	edev->dp_module = dp_module;
	edev->dp_level = dp_level;
	edev->ops = qed_ops;
1069 1070
	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
Y
Yuval Mintz 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

	DP_INFO(edev, "Allocated netdev with 64 tx queues and 64 rx queues\n");

	SET_NETDEV_DEV(ndev, &pdev->dev);

	memcpy(&edev->dev_info, info, sizeof(*info));

	edev->num_tc = edev->dev_info.num_tc;

	return edev;
}

static void qede_init_ndev(struct qede_dev *edev)
{
	struct net_device *ndev = edev->ndev;
	struct pci_dev *pdev = edev->pdev;
	u32 hw_features;

	pci_set_drvdata(pdev, ndev);

	ndev->mem_start = edev->dev_info.common.pci_mem_start;
	ndev->base_addr = ndev->mem_start;
	ndev->mem_end = edev->dev_info.common.pci_mem_end;
	ndev->irq = edev->dev_info.common.pci_irq;

	ndev->watchdog_timeo = TX_TIMEOUT;

1098 1099
	ndev->netdev_ops = &qede_netdev_ops;

Y
Yuval Mintz 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	/* user-changeble features */
	hw_features = NETIF_F_GRO | NETIF_F_SG |
		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
		      NETIF_F_TSO | NETIF_F_TSO6;

	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
			      NETIF_F_HIGHDMA;
	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
			 NETIF_F_HW_VLAN_CTAG_TX;

	ndev->hw_features = hw_features;

	/* Set network device HW mac */
	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
}

/* This function converts from 32b param to two params of level and module
 * Input 32b decoding:
 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
 * 'happy' flow, e.g. memory allocation failed.
 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
 * and provide important parameters.
 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
 * module. VERBOSE prints are for tracking the specific flow in low level.
 *
 * Notice that the level should be that of the lowest required logs.
 */
static void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
{
	*p_dp_level = QED_LEVEL_NOTICE;
	*p_dp_module = 0;

	if (debug & QED_LOG_VERBOSE_MASK) {
		*p_dp_level = QED_LEVEL_VERBOSE;
		*p_dp_module = (debug & 0x3FFFFFFF);
	} else if (debug & QED_LOG_INFO_MASK) {
		*p_dp_level = QED_LEVEL_INFO;
	} else if (debug & QED_LOG_NOTICE_MASK) {
		*p_dp_level = QED_LEVEL_NOTICE;
	}
}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
static void qede_free_fp_array(struct qede_dev *edev)
{
	if (edev->fp_array) {
		struct qede_fastpath *fp;
		int i;

		for_each_rss(i) {
			fp = &edev->fp_array[i];

			kfree(fp->sb_info);
			kfree(fp->rxq);
			kfree(fp->txqs);
		}
		kfree(edev->fp_array);
	}
	edev->num_rss = 0;
}

static int qede_alloc_fp_array(struct qede_dev *edev)
{
	struct qede_fastpath *fp;
	int i;

	edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
				 sizeof(*edev->fp_array), GFP_KERNEL);
	if (!edev->fp_array) {
		DP_NOTICE(edev, "fp array allocation failed\n");
		goto err;
	}

	for_each_rss(i) {
		fp = &edev->fp_array[i];

		fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
		if (!fp->sb_info) {
			DP_NOTICE(edev, "sb info struct allocation failed\n");
			goto err;
		}

		fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
		if (!fp->rxq) {
			DP_NOTICE(edev, "RXQ struct allocation failed\n");
			goto err;
		}

		fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
		if (!fp->txqs) {
			DP_NOTICE(edev, "TXQ array allocation failed\n");
			goto err;
		}
	}

	return 0;
err:
	qede_free_fp_array(edev);
	return -ENOMEM;
}

Y
Yuval Mintz 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
static void qede_update_pf_params(struct qed_dev *cdev)
{
	struct qed_pf_params pf_params;

	/* 16 rx + 16 tx */
	memset(&pf_params, 0, sizeof(struct qed_pf_params));
	pf_params.eth_pf_params.num_cons = 32;
	qed_ops->common->update_pf_params(cdev, &pf_params);
}

enum qede_probe_mode {
	QEDE_PROBE_NORMAL,
};

static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
			enum qede_probe_mode mode)
{
	struct qed_slowpath_params params;
	struct qed_dev_eth_info dev_info;
	struct qede_dev *edev;
	struct qed_dev *cdev;
	int rc;

	if (unlikely(dp_level & QED_LEVEL_INFO))
		pr_notice("Starting qede probe\n");

	cdev = qed_ops->common->probe(pdev, QED_PROTOCOL_ETH,
				      dp_module, dp_level);
	if (!cdev) {
		rc = -ENODEV;
		goto err0;
	}

	qede_update_pf_params(cdev);

	/* Start the Slowpath-process */
	memset(&params, 0, sizeof(struct qed_slowpath_params));
	params.int_mode = QED_INT_MODE_MSIX;
	params.drv_major = QEDE_MAJOR_VERSION;
	params.drv_minor = QEDE_MINOR_VERSION;
	params.drv_rev = QEDE_REVISION_VERSION;
	params.drv_eng = QEDE_ENGINEERING_VERSION;
	strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
	rc = qed_ops->common->slowpath_start(cdev, &params);
	if (rc) {
		pr_notice("Cannot start slowpath\n");
		goto err1;
	}

	/* Learn information crucial for qede to progress */
	rc = qed_ops->fill_dev_info(cdev, &dev_info);
	if (rc)
		goto err2;

	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
				   dp_level);
	if (!edev) {
		rc = -ENOMEM;
		goto err2;
	}

	qede_init_ndev(edev);

1264 1265 1266 1267 1268 1269
	rc = register_netdev(edev->ndev);
	if (rc) {
		DP_NOTICE(edev, "Cannot register net-device\n");
		goto err3;
	}

Y
Yuval Mintz 已提交
1270 1271 1272 1273 1274 1275
	edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);

	DP_INFO(edev, "Ending successfully qede probe\n");

	return 0;

1276 1277
err3:
	free_netdev(edev->ndev);
Y
Yuval Mintz 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
err2:
	qed_ops->common->slowpath_stop(cdev);
err1:
	qed_ops->common->remove(cdev);
err0:
	return rc;
}

static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
	u32 dp_module = 0;
	u8 dp_level = 0;

	qede_config_debug(debug, &dp_module, &dp_level);

	return __qede_probe(pdev, dp_module, dp_level,
			    QEDE_PROBE_NORMAL);
}

enum qede_remove_mode {
	QEDE_REMOVE_NORMAL,
};

static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
{
	struct net_device *ndev = pci_get_drvdata(pdev);
	struct qede_dev *edev = netdev_priv(ndev);
	struct qed_dev *cdev = edev->cdev;

	DP_INFO(edev, "Starting qede_remove\n");

1309 1310
	unregister_netdev(ndev);

Y
Yuval Mintz 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	edev->ops->common->set_power_state(cdev, PCI_D0);

	pci_set_drvdata(pdev, NULL);

	free_netdev(ndev);

	/* Use global ops since we've freed edev */
	qed_ops->common->slowpath_stop(cdev);
	qed_ops->common->remove(cdev);

	pr_notice("Ending successfully qede_remove\n");
}

static void qede_remove(struct pci_dev *pdev)
{
	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
}
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161

/* -------------------------------------------------------------------------
 * START OF LOAD / UNLOAD
 * -------------------------------------------------------------------------
 */

static int qede_set_num_queues(struct qede_dev *edev)
{
	int rc;
	u16 rss_num;

	/* Setup queues according to possible resources*/
	rss_num = netif_get_num_default_rss_queues() *
		  edev->dev_info.common.num_hwfns;

	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);

	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
	if (rc > 0) {
		/* Managed to request interrupts for our queues */
		edev->num_rss = rc;
		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
			QEDE_RSS_CNT(edev), rss_num);
		rc = 0;
	}
	return rc;
}

static void qede_free_mem_sb(struct qede_dev *edev,
			     struct qed_sb_info *sb_info)
{
	if (sb_info->sb_virt)
		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
				  (void *)sb_info->sb_virt, sb_info->sb_phys);
}

/* This function allocates fast-path status block memory */
static int qede_alloc_mem_sb(struct qede_dev *edev,
			     struct qed_sb_info *sb_info,
			     u16 sb_id)
{
	struct status_block *sb_virt;
	dma_addr_t sb_phys;
	int rc;

	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
				     sizeof(*sb_virt),
				     &sb_phys, GFP_KERNEL);
	if (!sb_virt) {
		DP_ERR(edev, "Status block allocation failed\n");
		return -ENOMEM;
	}

	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
					sb_virt, sb_phys, sb_id,
					QED_SB_TYPE_L2_QUEUE);
	if (rc) {
		DP_ERR(edev, "Status block initialization failed\n");
		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
				  sb_virt, sb_phys);
		return rc;
	}

	return 0;
}

static void qede_free_rx_buffers(struct qede_dev *edev,
				 struct qede_rx_queue *rxq)
{
	u16 i;

	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
		struct sw_rx_data *rx_buf;
		u8 *data;

		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
		data = rx_buf->data;

		dma_unmap_single(&edev->pdev->dev,
				 dma_unmap_addr(rx_buf, mapping),
				 rxq->rx_buf_size, DMA_FROM_DEVICE);

		rx_buf->data = NULL;
		kfree(data);
	}
}

static void qede_free_mem_rxq(struct qede_dev *edev,
			      struct qede_rx_queue *rxq)
{
	/* Free rx buffers */
	qede_free_rx_buffers(edev, rxq);

	/* Free the parallel SW ring */
	kfree(rxq->sw_rx_ring);

	/* Free the real RQ ring used by FW */
	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
}

static int qede_alloc_rx_buffer(struct qede_dev *edev,
				struct qede_rx_queue *rxq)
{
	struct sw_rx_data *sw_rx_data;
	struct eth_rx_bd *rx_bd;
	dma_addr_t mapping;
	u16 rx_buf_size;
	u8 *data;

	rx_buf_size = rxq->rx_buf_size;

	data = kmalloc(rx_buf_size, GFP_ATOMIC);
	if (unlikely(!data)) {
		DP_NOTICE(edev, "Failed to allocate Rx data\n");
		return -ENOMEM;
	}

	mapping = dma_map_single(&edev->pdev->dev, data,
				 rx_buf_size, DMA_FROM_DEVICE);
	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
		kfree(data);
		DP_NOTICE(edev, "Failed to map Rx buffer\n");
		return -ENOMEM;
	}

	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
	sw_rx_data->data = data;

	dma_unmap_addr_set(sw_rx_data, mapping, mapping);

	/* Advance PROD and get BD pointer */
	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
	WARN_ON(!rx_bd);
	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));

	rxq->sw_rx_prod++;

	return 0;
}

/* This function allocates all memory needed per Rx queue */
static int qede_alloc_mem_rxq(struct qede_dev *edev,
			      struct qede_rx_queue *rxq)
{
	int i, rc, size, num_allocated;

	rxq->num_rx_buffers = edev->q_num_rx_buffers;

	rxq->rx_buf_size = NET_IP_ALIGN +
			   ETH_OVERHEAD +
			   edev->ndev->mtu +
			   QEDE_FW_RX_ALIGN_END;

	/* Allocate the parallel driver ring for Rx buffers */
	size = sizeof(*rxq->sw_rx_ring) * NUM_RX_BDS_MAX;
	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
	if (!rxq->sw_rx_ring) {
		DP_ERR(edev, "Rx buffers ring allocation failed\n");
		goto err;
	}

	/* Allocate FW Rx ring  */
	rc = edev->ops->common->chain_alloc(edev->cdev,
					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
					    QED_CHAIN_MODE_NEXT_PTR,
					    NUM_RX_BDS_MAX,
					    sizeof(struct eth_rx_bd),
					    &rxq->rx_bd_ring);

	if (rc)
		goto err;

	/* Allocate FW completion ring */
	rc = edev->ops->common->chain_alloc(edev->cdev,
					    QED_CHAIN_USE_TO_CONSUME,
					    QED_CHAIN_MODE_PBL,
					    NUM_RX_BDS_MAX,
					    sizeof(union eth_rx_cqe),
					    &rxq->rx_comp_ring);
	if (rc)
		goto err;

	/* Allocate buffers for the Rx ring */
	for (i = 0; i < rxq->num_rx_buffers; i++) {
		rc = qede_alloc_rx_buffer(edev, rxq);
		if (rc)
			break;
	}
	num_allocated = i;
	if (!num_allocated) {
		DP_ERR(edev, "Rx buffers allocation failed\n");
		goto err;
	} else if (num_allocated < rxq->num_rx_buffers) {
		DP_NOTICE(edev,
			  "Allocated less buffers than desired (%d allocated)\n",
			  num_allocated);
	}

	return 0;

err:
	qede_free_mem_rxq(edev, rxq);
	return -ENOMEM;
}

static void qede_free_mem_txq(struct qede_dev *edev,
			      struct qede_tx_queue *txq)
{
	/* Free the parallel SW ring */
	kfree(txq->sw_tx_ring);

	/* Free the real RQ ring used by FW */
	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
}

/* This function allocates all memory needed per Tx queue */
static int qede_alloc_mem_txq(struct qede_dev *edev,
			      struct qede_tx_queue *txq)
{
	int size, rc;
	union eth_tx_bd_types *p_virt;

	txq->num_tx_buffers = edev->q_num_tx_buffers;

	/* Allocate the parallel driver ring for Tx buffers */
	size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
	txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
	if (!txq->sw_tx_ring) {
		DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
		goto err;
	}

	rc = edev->ops->common->chain_alloc(edev->cdev,
					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
					    QED_CHAIN_MODE_PBL,
					    NUM_TX_BDS_MAX,
					    sizeof(*p_virt),
					    &txq->tx_pbl);
	if (rc)
		goto err;

	return 0;

err:
	qede_free_mem_txq(edev, txq);
	return -ENOMEM;
}

/* This function frees all memory of a single fp */
static void qede_free_mem_fp(struct qede_dev *edev,
			     struct qede_fastpath *fp)
{
	int tc;

	qede_free_mem_sb(edev, fp->sb_info);

	qede_free_mem_rxq(edev, fp->rxq);

	for (tc = 0; tc < edev->num_tc; tc++)
		qede_free_mem_txq(edev, &fp->txqs[tc]);
}

/* This function allocates all memory needed for a single fp (i.e. an entity
 * which contains status block, one rx queue and multiple per-TC tx queues.
 */
static int qede_alloc_mem_fp(struct qede_dev *edev,
			     struct qede_fastpath *fp)
{
	int rc, tc;

	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
	if (rc)
		goto err;

	rc = qede_alloc_mem_rxq(edev, fp->rxq);
	if (rc)
		goto err;

	for (tc = 0; tc < edev->num_tc; tc++) {
		rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
		if (rc)
			goto err;
	}

	return 0;

err:
	qede_free_mem_fp(edev, fp);
	return -ENOMEM;
}

static void qede_free_mem_load(struct qede_dev *edev)
{
	int i;

	for_each_rss(i) {
		struct qede_fastpath *fp = &edev->fp_array[i];

		qede_free_mem_fp(edev, fp);
	}
}

/* This function allocates all qede memory at NIC load. */
static int qede_alloc_mem_load(struct qede_dev *edev)
{
	int rc = 0, rss_id;

	for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
		struct qede_fastpath *fp = &edev->fp_array[rss_id];

		rc = qede_alloc_mem_fp(edev, fp);
		if (rc)
			break;
	}

	if (rss_id != QEDE_RSS_CNT(edev)) {
		/* Failed allocating memory for all the queues */
		if (!rss_id) {
			DP_ERR(edev,
			       "Failed to allocate memory for the leading queue\n");
			rc = -ENOMEM;
		} else {
			DP_NOTICE(edev,
				  "Failed to allocate memory for all of RSS queues\n Desired: %d queues, allocated: %d queues\n",
				  QEDE_RSS_CNT(edev), rss_id);
		}
		edev->num_rss = rss_id;
	}

	return 0;
}

/* This function inits fp content and resets the SB, RXQ and TXQ structures */
static void qede_init_fp(struct qede_dev *edev)
{
	int rss_id, txq_index, tc;
	struct qede_fastpath *fp;

	for_each_rss(rss_id) {
		fp = &edev->fp_array[rss_id];

		fp->edev = edev;
		fp->rss_id = rss_id;

		memset((void *)&fp->napi, 0, sizeof(fp->napi));

		memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));

		memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
		fp->rxq->rxq_id = rss_id;

		memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
		for (tc = 0; tc < edev->num_tc; tc++) {
			txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
			fp->txqs[tc].index = txq_index;
		}

		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
			 edev->ndev->name, rss_id);
	}
}

static int qede_set_real_num_queues(struct qede_dev *edev)
{
	int rc = 0;

	rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
	if (rc) {
		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
		return rc;
	}
	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
	if (rc) {
		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
		return rc;
	}

	return 0;
}

static void qede_napi_disable_remove(struct qede_dev *edev)
{
	int i;

	for_each_rss(i) {
		napi_disable(&edev->fp_array[i].napi);

		netif_napi_del(&edev->fp_array[i].napi);
	}
}

static void qede_napi_add_enable(struct qede_dev *edev)
{
	int i;

	/* Add NAPI objects */
	for_each_rss(i) {
		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
			       qede_poll, NAPI_POLL_WEIGHT);
		napi_enable(&edev->fp_array[i].napi);
	}
}

static void qede_sync_free_irqs(struct qede_dev *edev)
{
	int i;

	for (i = 0; i < edev->int_info.used_cnt; i++) {
		if (edev->int_info.msix_cnt) {
			synchronize_irq(edev->int_info.msix[i].vector);
			free_irq(edev->int_info.msix[i].vector,
				 &edev->fp_array[i]);
		} else {
			edev->ops->common->simd_handler_clean(edev->cdev, i);
		}
	}

	edev->int_info.used_cnt = 0;
}

static int qede_req_msix_irqs(struct qede_dev *edev)
{
	int i, rc;

	/* Sanitize number of interrupts == number of prepared RSS queues */
	if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
		DP_ERR(edev,
		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
		       QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
		return -EINVAL;
	}

	for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
		rc = request_irq(edev->int_info.msix[i].vector,
				 qede_msix_fp_int, 0, edev->fp_array[i].name,
				 &edev->fp_array[i]);
		if (rc) {
			DP_ERR(edev, "Request fp %d irq failed\n", i);
			qede_sync_free_irqs(edev);
			return rc;
		}
		DP_VERBOSE(edev, NETIF_MSG_INTR,
			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
			   edev->fp_array[i].name, i,
			   &edev->fp_array[i]);
		edev->int_info.used_cnt++;
	}

	return 0;
}

static void qede_simd_fp_handler(void *cookie)
{
	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;

	napi_schedule_irqoff(&fp->napi);
}

static int qede_setup_irqs(struct qede_dev *edev)
{
	int i, rc = 0;

	/* Learn Interrupt configuration */
	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
	if (rc)
		return rc;

	if (edev->int_info.msix_cnt) {
		rc = qede_req_msix_irqs(edev);
		if (rc)
			return rc;
		edev->ndev->irq = edev->int_info.msix[0].vector;
	} else {
		const struct qed_common_ops *ops;

		/* qed should learn receive the RSS ids and callbacks */
		ops = edev->ops->common;
		for (i = 0; i < QEDE_RSS_CNT(edev); i++)
			ops->simd_handler_config(edev->cdev,
						 &edev->fp_array[i], i,
						 qede_simd_fp_handler);
		edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
	}
	return 0;
}

static int qede_drain_txq(struct qede_dev *edev,
			  struct qede_tx_queue *txq,
			  bool allow_drain)
{
	int rc, cnt = 1000;

	while (txq->sw_tx_cons != txq->sw_tx_prod) {
		if (!cnt) {
			if (allow_drain) {
				DP_NOTICE(edev,
					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
					  txq->index);
				rc = edev->ops->common->drain(edev->cdev);
				if (rc)
					return rc;
				return qede_drain_txq(edev, txq, false);
			}
			DP_NOTICE(edev,
				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
				  txq->index, txq->sw_tx_prod,
				  txq->sw_tx_cons);
			return -ENODEV;
		}
		cnt--;
		usleep_range(1000, 2000);
		barrier();
	}

	/* FW finished processing, wait for HW to transmit all tx packets */
	usleep_range(1000, 2000);

	return 0;
}

static int qede_stop_queues(struct qede_dev *edev)
{
	struct qed_update_vport_params vport_update_params;
	struct qed_dev *cdev = edev->cdev;
	int rc, tc, i;

	/* Disable the vport */
	memset(&vport_update_params, 0, sizeof(vport_update_params));
	vport_update_params.vport_id = 0;
	vport_update_params.update_vport_active_flg = 1;
	vport_update_params.vport_active_flg = 0;
	vport_update_params.update_rss_flg = 0;

	rc = edev->ops->vport_update(cdev, &vport_update_params);
	if (rc) {
		DP_ERR(edev, "Failed to update vport\n");
		return rc;
	}

	/* Flush Tx queues. If needed, request drain from MCP */
	for_each_rss(i) {
		struct qede_fastpath *fp = &edev->fp_array[i];

		for (tc = 0; tc < edev->num_tc; tc++) {
			struct qede_tx_queue *txq = &fp->txqs[tc];

			rc = qede_drain_txq(edev, txq, true);
			if (rc)
				return rc;
		}
	}

	/* Stop all Queues in reverse order*/
	for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
		struct qed_stop_rxq_params rx_params;

		/* Stop the Tx Queue(s)*/
		for (tc = 0; tc < edev->num_tc; tc++) {
			struct qed_stop_txq_params tx_params;

			tx_params.rss_id = i;
			tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
			rc = edev->ops->q_tx_stop(cdev, &tx_params);
			if (rc) {
				DP_ERR(edev, "Failed to stop TXQ #%d\n",
				       tx_params.tx_queue_id);
				return rc;
			}
		}

		/* Stop the Rx Queue*/
		memset(&rx_params, 0, sizeof(rx_params));
		rx_params.rss_id = i;
		rx_params.rx_queue_id = i;

		rc = edev->ops->q_rx_stop(cdev, &rx_params);
		if (rc) {
			DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
			return rc;
		}
	}

	/* Stop the vport */
	rc = edev->ops->vport_stop(cdev, 0);
	if (rc)
		DP_ERR(edev, "Failed to stop VPORT\n");

	return rc;
}

static int qede_start_queues(struct qede_dev *edev)
{
	int rc, tc, i;
	int vport_id = 0, drop_ttl0_flg = 1, vlan_removal_en = 1;
	struct qed_dev *cdev = edev->cdev;
	struct qed_update_vport_rss_params *rss_params = &edev->rss_params;
	struct qed_update_vport_params vport_update_params;
	struct qed_queue_start_common_params q_params;

	if (!edev->num_rss) {
		DP_ERR(edev,
		       "Cannot update V-VPORT as active as there are no Rx queues\n");
		return -EINVAL;
	}

	rc = edev->ops->vport_start(cdev, vport_id,
				    edev->ndev->mtu,
				    drop_ttl0_flg,
				    vlan_removal_en);

	if (rc) {
		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
		return rc;
	}

	DP_VERBOSE(edev, NETIF_MSG_IFUP,
		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
		   vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);

	for_each_rss(i) {
		struct qede_fastpath *fp = &edev->fp_array[i];
		dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;

		memset(&q_params, 0, sizeof(q_params));
		q_params.rss_id = i;
		q_params.queue_id = i;
		q_params.vport_id = 0;
		q_params.sb = fp->sb_info->igu_sb_id;
		q_params.sb_idx = RX_PI;

		rc = edev->ops->q_rx_start(cdev, &q_params,
					   fp->rxq->rx_buf_size,
					   fp->rxq->rx_bd_ring.p_phys_addr,
					   phys_table,
					   fp->rxq->rx_comp_ring.page_cnt,
					   &fp->rxq->hw_rxq_prod_addr);
		if (rc) {
			DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
			return rc;
		}

		fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];

		qede_update_rx_prod(edev, fp->rxq);

		for (tc = 0; tc < edev->num_tc; tc++) {
			struct qede_tx_queue *txq = &fp->txqs[tc];
			int txq_index = tc * QEDE_RSS_CNT(edev) + i;

			memset(&q_params, 0, sizeof(q_params));
			q_params.rss_id = i;
			q_params.queue_id = txq_index;
			q_params.vport_id = 0;
			q_params.sb = fp->sb_info->igu_sb_id;
			q_params.sb_idx = TX_PI(tc);

			rc = edev->ops->q_tx_start(cdev, &q_params,
						   txq->tx_pbl.pbl.p_phys_table,
						   txq->tx_pbl.page_cnt,
						   &txq->doorbell_addr);
			if (rc) {
				DP_ERR(edev, "Start TXQ #%d failed %d\n",
				       txq_index, rc);
				return rc;
			}

			txq->hw_cons_ptr =
				&fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
			SET_FIELD(txq->tx_db.data.params,
				  ETH_DB_DATA_DEST, DB_DEST_XCM);
			SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
				  DB_AGG_CMD_SET);
			SET_FIELD(txq->tx_db.data.params,
				  ETH_DB_DATA_AGG_VAL_SEL,
				  DQ_XCM_ETH_TX_BD_PROD_CMD);

			txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
		}
	}

	/* Prepare and send the vport enable */
	memset(&vport_update_params, 0, sizeof(vport_update_params));
	vport_update_params.vport_id = vport_id;
	vport_update_params.update_vport_active_flg = 1;
	vport_update_params.vport_active_flg = 1;

	/* Fill struct with RSS params */
	if (QEDE_RSS_CNT(edev) > 1) {
		vport_update_params.update_rss_flg = 1;
		for (i = 0; i < 128; i++)
			rss_params->rss_ind_table[i] =
			ethtool_rxfh_indir_default(i, QEDE_RSS_CNT(edev));
		netdev_rss_key_fill(rss_params->rss_key,
				    sizeof(rss_params->rss_key));
	} else {
		memset(rss_params, 0, sizeof(*rss_params));
	}
	memcpy(&vport_update_params.rss_params, rss_params,
	       sizeof(*rss_params));

	rc = edev->ops->vport_update(cdev, &vport_update_params);
	if (rc) {
		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
		return rc;
	}

	return 0;
}

enum qede_unload_mode {
	QEDE_UNLOAD_NORMAL,
};

static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
{
	int rc;

	DP_INFO(edev, "Starting qede unload\n");

	/* Close OS Tx */
	netif_tx_disable(edev->ndev);
	netif_carrier_off(edev->ndev);

	rc = qede_stop_queues(edev);
	if (rc) {
		qede_sync_free_irqs(edev);
		goto out;
	}

	DP_INFO(edev, "Stopped Queues\n");

	edev->ops->fastpath_stop(edev->cdev);

	/* Release the interrupts */
	qede_sync_free_irqs(edev);
	edev->ops->common->set_fp_int(edev->cdev, 0);

	qede_napi_disable_remove(edev);

	qede_free_mem_load(edev);
	qede_free_fp_array(edev);

out:
	mutex_unlock(&edev->qede_lock);
	DP_INFO(edev, "Ending qede unload\n");
}

enum qede_load_mode {
	QEDE_LOAD_NORMAL,
};

static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
{
	int rc;

	DP_INFO(edev, "Starting qede load\n");

	rc = qede_set_num_queues(edev);
	if (rc)
		goto err0;

	rc = qede_alloc_fp_array(edev);
	if (rc)
		goto err0;

	qede_init_fp(edev);

	rc = qede_alloc_mem_load(edev);
	if (rc)
		goto err1;
	DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
		QEDE_RSS_CNT(edev), edev->num_tc);

	rc = qede_set_real_num_queues(edev);
	if (rc)
		goto err2;

	qede_napi_add_enable(edev);
	DP_INFO(edev, "Napi added and enabled\n");

	rc = qede_setup_irqs(edev);
	if (rc)
		goto err3;
	DP_INFO(edev, "Setup IRQs succeeded\n");

	rc = qede_start_queues(edev);
	if (rc)
		goto err4;
	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");

	/* Add primary mac and set Rx filters */
	ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);

	DP_INFO(edev, "Ending successfully qede load\n");

	return 0;

err4:
	qede_sync_free_irqs(edev);
	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
err3:
	qede_napi_disable_remove(edev);
err2:
	qede_free_mem_load(edev);
err1:
	edev->ops->common->set_fp_int(edev->cdev, 0);
	qede_free_fp_array(edev);
	edev->num_rss = 0;
err0:
	return rc;
}

/* called with rtnl_lock */
static int qede_open(struct net_device *ndev)
{
	struct qede_dev *edev = netdev_priv(ndev);

	netif_carrier_off(ndev);

	edev->ops->common->set_power_state(edev->cdev, PCI_D0);

	return qede_load(edev, QEDE_LOAD_NORMAL);
}

static int qede_close(struct net_device *ndev)
{
	struct qede_dev *edev = netdev_priv(ndev);

	qede_unload(edev, QEDE_UNLOAD_NORMAL);

	return 0;
}