cpm_common.c 8.5 KB
Newer Older
1 2 3 4 5 6 7
/*
 * Common CPM code
 *
 * Author: Scott Wood <scottwood@freescale.com>
 *
 * Copyright 2007 Freescale Semiconductor, Inc.
 *
8 9 10 11 12 13 14
 * Some parts derived from commproc.c/cpm2_common.c, which is:
 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
 * Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com>
 * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com)
 * 2006 (c) MontaVista Software, Inc.
 * Vitaly Bordug <vbordug@ru.mvista.com>
 *
15 16 17 18 19 20
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 */

#include <linux/init.h>
21
#include <linux/of_device.h>
22 23
#include <linux/spinlock.h>
#include <linux/of.h>
24
#include <linux/slab.h>
25

26 27 28
#include <asm/udbg.h>
#include <asm/io.h>
#include <asm/system.h>
29 30 31
#include <asm/rheap.h>
#include <asm/cpm.h>

32 33
#include <mm/mmu_decl.h>

34 35 36 37
#if defined(CONFIG_CPM2) || defined(CONFIG_8xx_GPIO)
#include <linux/of_gpio.h>
#endif

38 39 40 41 42 43 44 45 46
#ifdef CONFIG_PPC_EARLY_DEBUG_CPM
static u32 __iomem *cpm_udbg_txdesc =
	(u32 __iomem __force *)CONFIG_PPC_EARLY_DEBUG_CPM_ADDR;

static void udbg_putc_cpm(char c)
{
	u8 __iomem *txbuf = (u8 __iomem __force *)in_be32(&cpm_udbg_txdesc[1]);

	if (c == '\n')
47
		udbg_putc_cpm('\r');
48 49 50 51 52 53 54 55 56 57 58 59

	while (in_be32(&cpm_udbg_txdesc[0]) & 0x80000000)
		;

	out_8(txbuf, c);
	out_be32(&cpm_udbg_txdesc[0], 0xa0000001);
}

void __init udbg_init_cpm(void)
{
	if (cpm_udbg_txdesc) {
#ifdef CONFIG_CPM2
60
		setbat(1, 0xf0000000, 0xf0000000, 1024*1024, PAGE_KERNEL_NCG);
61 62 63 64 65
#endif
		udbg_putc = udbg_putc_cpm;
	}
}
#endif
66 67 68 69 70 71 72 73 74 75

static spinlock_t cpm_muram_lock;
static rh_block_t cpm_boot_muram_rh_block[16];
static rh_info_t cpm_muram_info;
static u8 __iomem *muram_vbase;
static phys_addr_t muram_pbase;

/* Max address size we deal with */
#define OF_MAX_ADDR_CELLS	4

76
int cpm_muram_init(void)
77 78 79 80 81 82 83 84
{
	struct device_node *np;
	struct resource r;
	u32 zero[OF_MAX_ADDR_CELLS] = {};
	resource_size_t max = 0;
	int i = 0;
	int ret = 0;

85 86 87
	if (muram_pbase)
		return 0;

88 89 90 91 92 93 94 95 96
	spin_lock_init(&cpm_muram_lock);
	/* initialize the info header */
	rh_init(&cpm_muram_info, 1,
	        sizeof(cpm_boot_muram_rh_block) /
	        sizeof(cpm_boot_muram_rh_block[0]),
	        cpm_boot_muram_rh_block);

	np = of_find_compatible_node(NULL, NULL, "fsl,cpm-muram-data");
	if (!np) {
97 98 99 100 101 102 103
		/* try legacy bindings */
		np = of_find_node_by_name(NULL, "data-only");
		if (!np) {
			printk(KERN_ERR "Cannot find CPM muram data node");
			ret = -ENODEV;
			goto out;
		}
104 105 106 107 108 109 110 111 112 113 114 115 116 117
	}

	muram_pbase = of_translate_address(np, zero);
	if (muram_pbase == (phys_addr_t)OF_BAD_ADDR) {
		printk(KERN_ERR "Cannot translate zero through CPM muram node");
		ret = -ENODEV;
		goto out;
	}

	while (of_address_to_resource(np, i++, &r) == 0) {
		if (r.end > max)
			max = r.end;

		rh_attach_region(&cpm_muram_info, r.start - muram_pbase,
118
				 resource_size(&r));
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
	}

	muram_vbase = ioremap(muram_pbase, max - muram_pbase + 1);
	if (!muram_vbase) {
		printk(KERN_ERR "Cannot map CPM muram");
		ret = -ENOMEM;
	}

out:
	of_node_put(np);
	return ret;
}

/**
 * cpm_muram_alloc - allocate the requested size worth of multi-user ram
 * @size: number of bytes to allocate
 * @align: requested alignment, in bytes
 *
 * This function returns an offset into the muram area.
 * Use cpm_dpram_addr() to get the virtual address of the area.
 * Use cpm_muram_free() to free the allocation.
 */
unsigned long cpm_muram_alloc(unsigned long size, unsigned long align)
{
	unsigned long start;
	unsigned long flags;

	spin_lock_irqsave(&cpm_muram_lock, flags);
	cpm_muram_info.alignment = align;
	start = rh_alloc(&cpm_muram_info, size, "commproc");
	spin_unlock_irqrestore(&cpm_muram_lock, flags);

	return start;
}
EXPORT_SYMBOL(cpm_muram_alloc);

/**
 * cpm_muram_free - free a chunk of multi-user ram
 * @offset: The beginning of the chunk as returned by cpm_muram_alloc().
 */
int cpm_muram_free(unsigned long offset)
{
	int ret;
	unsigned long flags;

	spin_lock_irqsave(&cpm_muram_lock, flags);
	ret = rh_free(&cpm_muram_info, offset);
	spin_unlock_irqrestore(&cpm_muram_lock, flags);

	return ret;
}
EXPORT_SYMBOL(cpm_muram_free);

/**
 * cpm_muram_alloc_fixed - reserve a specific region of multi-user ram
 * @offset: the offset into the muram area to reserve
 * @size: the number of bytes to reserve
 *
 * This function returns "start" on success, -ENOMEM on failure.
 * Use cpm_dpram_addr() to get the virtual address of the area.
 * Use cpm_muram_free() to free the allocation.
 */
unsigned long cpm_muram_alloc_fixed(unsigned long offset, unsigned long size)
{
	unsigned long start;
	unsigned long flags;

	spin_lock_irqsave(&cpm_muram_lock, flags);
	cpm_muram_info.alignment = 1;
	start = rh_alloc_fixed(&cpm_muram_info, offset, size, "commproc");
	spin_unlock_irqrestore(&cpm_muram_lock, flags);

	return start;
}
EXPORT_SYMBOL(cpm_muram_alloc_fixed);

/**
 * cpm_muram_addr - turn a muram offset into a virtual address
 * @offset: muram offset to convert
 */
void __iomem *cpm_muram_addr(unsigned long offset)
{
	return muram_vbase + offset;
}
EXPORT_SYMBOL(cpm_muram_addr);

205 206 207 208 209 210
unsigned long cpm_muram_offset(void __iomem *addr)
{
	return addr - (void __iomem *)muram_vbase;
}
EXPORT_SYMBOL(cpm_muram_offset);

211
/**
212
 * cpm_muram_dma - turn a muram virtual address into a DMA address
213 214 215 216 217 218 219
 * @offset: virtual address from cpm_muram_addr() to convert
 */
dma_addr_t cpm_muram_dma(void __iomem *addr)
{
	return muram_pbase + ((u8 __iomem *)addr - muram_vbase);
}
EXPORT_SYMBOL(cpm_muram_dma);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

#if defined(CONFIG_CPM2) || defined(CONFIG_8xx_GPIO)

struct cpm2_ioports {
	u32 dir, par, sor, odr, dat;
	u32 res[3];
};

struct cpm2_gpio32_chip {
	struct of_mm_gpio_chip mm_gc;
	spinlock_t lock;

	/* shadowed data register to clear/set bits safely */
	u32 cpdata;
};

static inline struct cpm2_gpio32_chip *
to_cpm2_gpio32_chip(struct of_mm_gpio_chip *mm_gc)
{
	return container_of(mm_gc, struct cpm2_gpio32_chip, mm_gc);
}

static void cpm2_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
{
	struct cpm2_gpio32_chip *cpm2_gc = to_cpm2_gpio32_chip(mm_gc);
	struct cpm2_ioports __iomem *iop = mm_gc->regs;

	cpm2_gc->cpdata = in_be32(&iop->dat);
}

static int cpm2_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
{
	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
	struct cpm2_ioports __iomem *iop = mm_gc->regs;
	u32 pin_mask;

	pin_mask = 1 << (31 - gpio);

	return !!(in_be32(&iop->dat) & pin_mask);
}

261 262
static void __cpm2_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
	int value)
263 264 265 266 267 268 269 270 271 272
{
	struct cpm2_gpio32_chip *cpm2_gc = to_cpm2_gpio32_chip(mm_gc);
	struct cpm2_ioports __iomem *iop = mm_gc->regs;

	if (value)
		cpm2_gc->cpdata |= pin_mask;
	else
		cpm2_gc->cpdata &= ~pin_mask;

	out_be32(&iop->dat, cpm2_gc->cpdata);
273 274 275 276 277 278 279 280 281 282 283 284
}

static void cpm2_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
{
	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
	struct cpm2_gpio32_chip *cpm2_gc = to_cpm2_gpio32_chip(mm_gc);
	unsigned long flags;
	u32 pin_mask = 1 << (31 - gpio);

	spin_lock_irqsave(&cpm2_gc->lock, flags);

	__cpm2_gpio32_set(mm_gc, pin_mask, value);
285 286 287 288 289 290 291

	spin_unlock_irqrestore(&cpm2_gc->lock, flags);
}

static int cpm2_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
{
	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
292
	struct cpm2_gpio32_chip *cpm2_gc = to_cpm2_gpio32_chip(mm_gc);
293
	struct cpm2_ioports __iomem *iop = mm_gc->regs;
294 295
	unsigned long flags;
	u32 pin_mask = 1 << (31 - gpio);
296

297
	spin_lock_irqsave(&cpm2_gc->lock, flags);
298 299

	setbits32(&iop->dir, pin_mask);
300
	__cpm2_gpio32_set(mm_gc, pin_mask, val);
301

302
	spin_unlock_irqrestore(&cpm2_gc->lock, flags);
303 304 305 306 307 308 309

	return 0;
}

static int cpm2_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
{
	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
310
	struct cpm2_gpio32_chip *cpm2_gc = to_cpm2_gpio32_chip(mm_gc);
311
	struct cpm2_ioports __iomem *iop = mm_gc->regs;
312 313
	unsigned long flags;
	u32 pin_mask = 1 << (31 - gpio);
314

315
	spin_lock_irqsave(&cpm2_gc->lock, flags);
316 317 318

	clrbits32(&iop->dir, pin_mask);

319 320
	spin_unlock_irqrestore(&cpm2_gc->lock, flags);

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	return 0;
}

int cpm2_gpiochip_add32(struct device_node *np)
{
	struct cpm2_gpio32_chip *cpm2_gc;
	struct of_mm_gpio_chip *mm_gc;
	struct gpio_chip *gc;

	cpm2_gc = kzalloc(sizeof(*cpm2_gc), GFP_KERNEL);
	if (!cpm2_gc)
		return -ENOMEM;

	spin_lock_init(&cpm2_gc->lock);

	mm_gc = &cpm2_gc->mm_gc;
337
	gc = &mm_gc->gc;
338 339 340 341 342 343 344 345 346 347 348

	mm_gc->save_regs = cpm2_gpio32_save_regs;
	gc->ngpio = 32;
	gc->direction_input = cpm2_gpio32_dir_in;
	gc->direction_output = cpm2_gpio32_dir_out;
	gc->get = cpm2_gpio32_get;
	gc->set = cpm2_gpio32_set;

	return of_mm_gpiochip_add(np, mm_gc);
}
#endif /* CONFIG_CPM2 || CONFIG_8xx_GPIO */