crc32.c 15.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
/*
 * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
 * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks!
 * Code was from the public domain, copyright abandoned.  Code was
 * subsequently included in the kernel, thus was re-licensed under the
 * GNU GPL v2.
 *
 * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
 * Same crc32 function was used in 5 other places in the kernel.
 * I made one version, and deleted the others.
 * There are various incantations of crc32().  Some use a seed of 0 or ~0.
 * Some xor at the end with ~0.  The generic crc32() function takes
 * seed as an argument, and doesn't xor at the end.  Then individual
 * users can do whatever they need.
 *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
 *   fs/jffs2 uses seed 0, doesn't xor with ~0.
 *   fs/partitions/efi.c uses seed ~0, xor's with ~0.
 *
 * This source code is licensed under the GNU General Public License,
 * Version 2.  See the file COPYING for more details.
 */

#include <linux/crc32.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <asm/atomic.h>
#include "crc32defs.h"
#if CRC_LE_BITS == 8
#define tole(x) __constant_cpu_to_le32(x)
#define tobe(x) __constant_cpu_to_be32(x)
#else
#define tole(x) (x)
#define tobe(x) (x)
#endif
#include "crc32table.h"

MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
MODULE_DESCRIPTION("Ethernet CRC32 calculations");
MODULE_LICENSE("GPL");

#if CRC_LE_BITS == 1
/*
 * In fact, the table-based code will work in this case, but it can be
 * simplified by inlining the table in ?: form.
 */

/**
 * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
 * @crc - seed value for computation.  ~0 for Ethernet, sometimes 0 for
 *        other uses, or the previous crc32 value if computing incrementally.
 * @p   - pointer to buffer over which CRC is run
 * @len - length of buffer @p
 * 
 */
u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len)
{
	int i;
	while (len--) {
		crc ^= *p++;
		for (i = 0; i < 8; i++)
			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
	}
	return crc;
}
#else				/* Table-based approach */

/**
 * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
 * @crc - seed value for computation.  ~0 for Ethernet, sometimes 0 for
 *        other uses, or the previous crc32 value if computing incrementally.
 * @p   - pointer to buffer over which CRC is run
 * @len - length of buffer @p
 * 
 */
u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len)
{
# if CRC_LE_BITS == 8
	const u32      *b =(u32 *)p;
	const u32      *tab = crc32table_le;

# ifdef __LITTLE_ENDIAN
#  define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
# else
#  define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
# endif

	crc = __cpu_to_le32(crc);
	/* Align it */
	if(unlikely(((long)b)&3 && len)){
		do {
			u8 *p = (u8 *)b;
			DO_CRC(*p++);
			b = (void *)p;
		} while ((--len) && ((long)b)&3 );
	}
	if(likely(len >= 4)){
		/* load data 32 bits wide, xor data 32 bits wide. */
		size_t save_len = len & 3;
	        len = len >> 2;
		--b; /* use pre increment below(*++b) for speed */
		do {
			crc ^= *++b;
			DO_CRC(0);
			DO_CRC(0);
			DO_CRC(0);
			DO_CRC(0);
		} while (--len);
		b++; /* point to next byte(s) */
		len = save_len;
	}
	/* And the last few bytes */
	if(len){
		do {
			u8 *p = (u8 *)b;
			DO_CRC(*p++);
			b = (void *)p;
		} while (--len);
	}

	return __le32_to_cpu(crc);
#undef ENDIAN_SHIFT
#undef DO_CRC

# elif CRC_LE_BITS == 4
	while (len--) {
		crc ^= *p++;
		crc = (crc >> 4) ^ crc32table_le[crc & 15];
		crc = (crc >> 4) ^ crc32table_le[crc & 15];
	}
	return crc;
# elif CRC_LE_BITS == 2
	while (len--) {
		crc ^= *p++;
		crc = (crc >> 2) ^ crc32table_le[crc & 3];
		crc = (crc >> 2) ^ crc32table_le[crc & 3];
		crc = (crc >> 2) ^ crc32table_le[crc & 3];
		crc = (crc >> 2) ^ crc32table_le[crc & 3];
	}
	return crc;
# endif
}
#endif

#if CRC_BE_BITS == 1
/*
 * In fact, the table-based code will work in this case, but it can be
 * simplified by inlining the table in ?: form.
 */

/**
 * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
 * @crc - seed value for computation.  ~0 for Ethernet, sometimes 0 for
 *        other uses, or the previous crc32 value if computing incrementally.
 * @p   - pointer to buffer over which CRC is run
 * @len - length of buffer @p
 * 
 */
u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len)
{
	int i;
	while (len--) {
		crc ^= *p++ << 24;
		for (i = 0; i < 8; i++)
			crc =
			    (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE :
					  0);
	}
	return crc;
}

#else				/* Table-based approach */
/**
 * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
 * @crc - seed value for computation.  ~0 for Ethernet, sometimes 0 for
 *        other uses, or the previous crc32 value if computing incrementally.
 * @p   - pointer to buffer over which CRC is run
 * @len - length of buffer @p
 * 
 */
u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len)
{
# if CRC_BE_BITS == 8
	const u32      *b =(u32 *)p;
	const u32      *tab = crc32table_be;

# ifdef __LITTLE_ENDIAN
#  define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
# else
#  define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
# endif

	crc = __cpu_to_be32(crc);
	/* Align it */
	if(unlikely(((long)b)&3 && len)){
		do {
			u8 *p = (u8 *)b;
			DO_CRC(*p++);
			b = (u32 *)p;
		} while ((--len) && ((long)b)&3 );
	}
	if(likely(len >= 4)){
		/* load data 32 bits wide, xor data 32 bits wide. */
		size_t save_len = len & 3;
	        len = len >> 2;
		--b; /* use pre increment below(*++b) for speed */
		do {
			crc ^= *++b;
			DO_CRC(0);
			DO_CRC(0);
			DO_CRC(0);
			DO_CRC(0);
		} while (--len);
		b++; /* point to next byte(s) */
		len = save_len;
	}
	/* And the last few bytes */
	if(len){
		do {
			u8 *p = (u8 *)b;
			DO_CRC(*p++);
			b = (void *)p;
		} while (--len);
	}
	return __be32_to_cpu(crc);
#undef ENDIAN_SHIFT
#undef DO_CRC

# elif CRC_BE_BITS == 4
	while (len--) {
		crc ^= *p++ << 24;
		crc = (crc << 4) ^ crc32table_be[crc >> 28];
		crc = (crc << 4) ^ crc32table_be[crc >> 28];
	}
	return crc;
# elif CRC_BE_BITS == 2
	while (len--) {
		crc ^= *p++ << 24;
		crc = (crc << 2) ^ crc32table_be[crc >> 30];
		crc = (crc << 2) ^ crc32table_be[crc >> 30];
		crc = (crc << 2) ^ crc32table_be[crc >> 30];
		crc = (crc << 2) ^ crc32table_be[crc >> 30];
	}
	return crc;
# endif
}
#endif

u32 bitreverse(u32 x)
{
	x = (x >> 16) | (x << 16);
	x = (x >> 8 & 0x00ff00ff) | (x << 8 & 0xff00ff00);
	x = (x >> 4 & 0x0f0f0f0f) | (x << 4 & 0xf0f0f0f0);
	x = (x >> 2 & 0x33333333) | (x << 2 & 0xcccccccc);
	x = (x >> 1 & 0x55555555) | (x << 1 & 0xaaaaaaaa);
	return x;
}

EXPORT_SYMBOL(crc32_le);
EXPORT_SYMBOL(crc32_be);
EXPORT_SYMBOL(bitreverse);

/*
 * A brief CRC tutorial.
 *
 * A CRC is a long-division remainder.  You add the CRC to the message,
 * and the whole thing (message+CRC) is a multiple of the given
 * CRC polynomial.  To check the CRC, you can either check that the
 * CRC matches the recomputed value, *or* you can check that the
 * remainder computed on the message+CRC is 0.  This latter approach
 * is used by a lot of hardware implementations, and is why so many
 * protocols put the end-of-frame flag after the CRC.
 *
 * It's actually the same long division you learned in school, except that
 * - We're working in binary, so the digits are only 0 and 1, and
 * - When dividing polynomials, there are no carries.  Rather than add and
 *   subtract, we just xor.  Thus, we tend to get a bit sloppy about
 *   the difference between adding and subtracting.
 *
 * A 32-bit CRC polynomial is actually 33 bits long.  But since it's
 * 33 bits long, bit 32 is always going to be set, so usually the CRC
 * is written in hex with the most significant bit omitted.  (If you're
 * familiar with the IEEE 754 floating-point format, it's the same idea.)
 *
 * Note that a CRC is computed over a string of *bits*, so you have
 * to decide on the endianness of the bits within each byte.  To get
 * the best error-detecting properties, this should correspond to the
 * order they're actually sent.  For example, standard RS-232 serial is
 * little-endian; the most significant bit (sometimes used for parity)
 * is sent last.  And when appending a CRC word to a message, you should
 * do it in the right order, matching the endianness.
 *
 * Just like with ordinary division, the remainder is always smaller than
 * the divisor (the CRC polynomial) you're dividing by.  Each step of the
 * division, you take one more digit (bit) of the dividend and append it
 * to the current remainder.  Then you figure out the appropriate multiple
 * of the divisor to subtract to being the remainder back into range.
 * In binary, it's easy - it has to be either 0 or 1, and to make the
 * XOR cancel, it's just a copy of bit 32 of the remainder.
 *
 * When computing a CRC, we don't care about the quotient, so we can
 * throw the quotient bit away, but subtract the appropriate multiple of
 * the polynomial from the remainder and we're back to where we started,
 * ready to process the next bit.
 *
 * A big-endian CRC written this way would be coded like:
 * for (i = 0; i < input_bits; i++) {
 * 	multiple = remainder & 0x80000000 ? CRCPOLY : 0;
 * 	remainder = (remainder << 1 | next_input_bit()) ^ multiple;
 * }
 * Notice how, to get at bit 32 of the shifted remainder, we look
 * at bit 31 of the remainder *before* shifting it.
 *
 * But also notice how the next_input_bit() bits we're shifting into
 * the remainder don't actually affect any decision-making until
 * 32 bits later.  Thus, the first 32 cycles of this are pretty boring.
 * Also, to add the CRC to a message, we need a 32-bit-long hole for it at
 * the end, so we have to add 32 extra cycles shifting in zeros at the
 * end of every message,
 *
 * So the standard trick is to rearrage merging in the next_input_bit()
 * until the moment it's needed.  Then the first 32 cycles can be precomputed,
 * and merging in the final 32 zero bits to make room for the CRC can be
 * skipped entirely.
 * This changes the code to:
 * for (i = 0; i < input_bits; i++) {
 *      remainder ^= next_input_bit() << 31;
 * 	multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
 * 	remainder = (remainder << 1) ^ multiple;
 * }
 * With this optimization, the little-endian code is simpler:
 * for (i = 0; i < input_bits; i++) {
 *      remainder ^= next_input_bit();
 * 	multiple = (remainder & 1) ? CRCPOLY : 0;
 * 	remainder = (remainder >> 1) ^ multiple;
 * }
 *
 * Note that the other details of endianness have been hidden in CRCPOLY
 * (which must be bit-reversed) and next_input_bit().
 *
 * However, as long as next_input_bit is returning the bits in a sensible
 * order, we can actually do the merging 8 or more bits at a time rather
 * than one bit at a time:
 * for (i = 0; i < input_bytes; i++) {
 * 	remainder ^= next_input_byte() << 24;
 * 	for (j = 0; j < 8; j++) {
 * 		multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
 * 		remainder = (remainder << 1) ^ multiple;
 * 	}
 * }
 * Or in little-endian:
 * for (i = 0; i < input_bytes; i++) {
 * 	remainder ^= next_input_byte();
 * 	for (j = 0; j < 8; j++) {
 * 		multiple = (remainder & 1) ? CRCPOLY : 0;
 * 		remainder = (remainder << 1) ^ multiple;
 * 	}
 * }
 * If the input is a multiple of 32 bits, you can even XOR in a 32-bit
 * word at a time and increase the inner loop count to 32.
 *
 * You can also mix and match the two loop styles, for example doing the
 * bulk of a message byte-at-a-time and adding bit-at-a-time processing
 * for any fractional bytes at the end.
 *
 * The only remaining optimization is to the byte-at-a-time table method.
 * Here, rather than just shifting one bit of the remainder to decide
 * in the correct multiple to subtract, we can shift a byte at a time.
 * This produces a 40-bit (rather than a 33-bit) intermediate remainder,
 * but again the multiple of the polynomial to subtract depends only on
 * the high bits, the high 8 bits in this case.  
 *
 * The multile we need in that case is the low 32 bits of a 40-bit
 * value whose high 8 bits are given, and which is a multiple of the
 * generator polynomial.  This is simply the CRC-32 of the given
 * one-byte message.
 *
 * Two more details: normally, appending zero bits to a message which
 * is already a multiple of a polynomial produces a larger multiple of that
 * polynomial.  To enable a CRC to detect this condition, it's common to
 * invert the CRC before appending it.  This makes the remainder of the
 * message+crc come out not as zero, but some fixed non-zero value.
 *
 * The same problem applies to zero bits prepended to the message, and
 * a similar solution is used.  Instead of starting with a remainder of
 * 0, an initial remainder of all ones is used.  As long as you start
 * the same way on decoding, it doesn't make a difference.
 */

#ifdef UNITTEST

#include <stdlib.h>
#include <stdio.h>

#if 0				/*Not used at present */
static void
buf_dump(char const *prefix, unsigned char const *buf, size_t len)
{
	fputs(prefix, stdout);
	while (len--)
		printf(" %02x", *buf++);
	putchar('\n');

}
#endif

static void bytereverse(unsigned char *buf, size_t len)
{
	while (len--) {
		unsigned char x = *buf;
		x = (x >> 4) | (x << 4);
		x = (x >> 2 & 0x33) | (x << 2 & 0xcc);
		x = (x >> 1 & 0x55) | (x << 1 & 0xaa);
		*buf++ = x;
	}
}

static void random_garbage(unsigned char *buf, size_t len)
{
	while (len--)
		*buf++ = (unsigned char) random();
}

#if 0				/* Not used at present */
static void store_le(u32 x, unsigned char *buf)
{
	buf[0] = (unsigned char) x;
	buf[1] = (unsigned char) (x >> 8);
	buf[2] = (unsigned char) (x >> 16);
	buf[3] = (unsigned char) (x >> 24);
}
#endif

static void store_be(u32 x, unsigned char *buf)
{
	buf[0] = (unsigned char) (x >> 24);
	buf[1] = (unsigned char) (x >> 16);
	buf[2] = (unsigned char) (x >> 8);
	buf[3] = (unsigned char) x;
}

/*
 * This checks that CRC(buf + CRC(buf)) = 0, and that
 * CRC commutes with bit-reversal.  This has the side effect
 * of bytewise bit-reversing the input buffer, and returns
 * the CRC of the reversed buffer.
 */
static u32 test_step(u32 init, unsigned char *buf, size_t len)
{
	u32 crc1, crc2;
	size_t i;

	crc1 = crc32_be(init, buf, len);
	store_be(crc1, buf + len);
	crc2 = crc32_be(init, buf, len + 4);
	if (crc2)
		printf("\nCRC cancellation fail: 0x%08x should be 0\n",
		       crc2);

	for (i = 0; i <= len + 4; i++) {
		crc2 = crc32_be(init, buf, i);
		crc2 = crc32_be(crc2, buf + i, len + 4 - i);
		if (crc2)
			printf("\nCRC split fail: 0x%08x\n", crc2);
	}

	/* Now swap it around for the other test */

	bytereverse(buf, len + 4);
	init = bitreverse(init);
	crc2 = bitreverse(crc1);
	if (crc1 != bitreverse(crc2))
D
Dominik Hackl 已提交
476
		printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n",
L
Linus Torvalds 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
		       crc1, crc2, bitreverse(crc2));
	crc1 = crc32_le(init, buf, len);
	if (crc1 != crc2)
		printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1,
		       crc2);
	crc2 = crc32_le(init, buf, len + 4);
	if (crc2)
		printf("\nCRC cancellation fail: 0x%08x should be 0\n",
		       crc2);

	for (i = 0; i <= len + 4; i++) {
		crc2 = crc32_le(init, buf, i);
		crc2 = crc32_le(crc2, buf + i, len + 4 - i);
		if (crc2)
			printf("\nCRC split fail: 0x%08x\n", crc2);
	}

	return crc1;
}

#define SIZE 64
#define INIT1 0
#define INIT2 0

int main(void)
{
	unsigned char buf1[SIZE + 4];
	unsigned char buf2[SIZE + 4];
	unsigned char buf3[SIZE + 4];
	int i, j;
	u32 crc1, crc2, crc3;

	for (i = 0; i <= SIZE; i++) {
		printf("\rTesting length %d...", i);
		fflush(stdout);
		random_garbage(buf1, i);
		random_garbage(buf2, i);
		for (j = 0; j < i; j++)
			buf3[j] = buf1[j] ^ buf2[j];

		crc1 = test_step(INIT1, buf1, i);
		crc2 = test_step(INIT2, buf2, i);
		/* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */
		crc3 = test_step(INIT1 ^ INIT2, buf3, i);
		if (crc3 != (crc1 ^ crc2))
			printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n",
			       crc3, crc1, crc2);
	}
	printf("\nAll test complete.  No failures expected.\n");
	return 0;
}

#endif				/* UNITTEST */