sched.c 164.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
J
Jens Axboe 已提交
64
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
65

66
#include <asm/tlb.h>
L
Linus Torvalds 已提交
67

68 69 70 71 72 73 74 75 76 77
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107 108 109 110 111 112 113
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
136 137 138
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

139
/*
I
Ingo Molnar 已提交
140
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 142
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
143
static unsigned int static_prio_timeslice(int static_prio)
144
{
I
Ingo Molnar 已提交
145 146 147 148 149 150 151
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
152 153
}

154 155 156 157 158 159 160 161 162 163 164 165
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
166
/*
I
Ingo Molnar 已提交
167
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
168
 */
I
Ingo Molnar 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
I
Ingo Molnar 已提交
185
	u64 min_vruntime;
I
Ingo Molnar 已提交
186 187 188 189 190 191 192 193 194 195 196
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
197
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
198 199 200 201 202 203 204 205 206 207 208 209
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
210

I
Ingo Molnar 已提交
211 212 213 214 215 216 217
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
218 219 220 221 222 223 224
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
225
struct rq {
I
Ingo Molnar 已提交
226
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
227 228 229 230 231 232

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
233 234
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235
	unsigned char idle_at_tick;
236 237 238
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
239 240 241 242 243 244 245
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
246
#endif
I
Ingo Molnar 已提交
247
	struct rt_rq  rt;
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

257
	struct task_struct *curr, *idle;
258
	unsigned long next_balance;
L
Linus Torvalds 已提交
259
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
260 261 262 263 264

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
265 266
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
267
	u64 tick_timestamp;
I
Ingo Molnar 已提交
268

L
Linus Torvalds 已提交
269 270 271 272 273 274 275 276
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
277
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
278

279
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
302
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
303 304
};

305
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
306
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
307

I
Ingo Molnar 已提交
308 309 310 311 312
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

313 314 315 316 317 318 319 320 321
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
322
/*
I
Ingo Molnar 已提交
323 324
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
325
 */
I
Ingo Molnar 已提交
326
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
327 328 329 330 331 332
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
333 334 335
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
336 337 338 339 340 341 342 343 344 345
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
346 347 348 349 350
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
351 352 353 354 355 356 357 358 359 360
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
361
}
I
Ingo Molnar 已提交
362

I
Ingo Molnar 已提交
363 364 365 366
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
367 368
}

N
Nick Piggin 已提交
369 370
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
371
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
372 373 374 375
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
376 377
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
378 379 380 381 382 383

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
	SCHED_FEAT_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 2,
	SCHED_FEAT_SLEEPER_AVG		= 4,
	SCHED_FEAT_SLEEPER_LOAD_AVG	= 8,
	SCHED_FEAT_START_DEBIT		= 16,
};

const_debug unsigned int sysctl_sched_features =
		SCHED_FEAT_FAIR_SLEEPERS	*0 |
		SCHED_FEAT_NEW_FAIR_SLEEPERS	*1 |
		SCHED_FEAT_SLEEPER_AVG		*0 |
		SCHED_FEAT_SLEEPER_LOAD_AVG	*1 |
409
		SCHED_FEAT_START_DEBIT		*1;
I
Ingo Molnar 已提交
410 411 412

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

413 414 415 416 417 418 419 420
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
421
	struct rq *rq;
422

423
	local_irq_save(flags);
I
Ingo Molnar 已提交
424 425 426
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
427
	local_irq_restore(flags);
428 429 430 431

	return now;
}

I
Ingo Molnar 已提交
432 433 434 435 436 437 438 439 440 441 442 443
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
444
#ifndef prepare_arch_switch
445 446 447 448 449 450 451
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
452
static inline int task_running(struct rq *rq, struct task_struct *p)
453 454 455 456
{
	return rq->curr == p;
}

457
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
458 459 460
{
}

461
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
462
{
463 464 465 466
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
467 468 469 470 471 472 473
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

474 475 476 477
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
478
static inline int task_running(struct rq *rq, struct task_struct *p)
479 480 481 482 483 484 485 486
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

487
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

504
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
505 506 507 508 509 510 511 512 513 514 515 516
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
517
#endif
518 519
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
520

521 522 523 524
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
525
static inline struct rq *__task_rq_lock(struct task_struct *p)
526 527
	__acquires(rq->lock)
{
528
	struct rq *rq;
529 530 531 532 533 534 535 536 537 538 539

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
540 541 542 543 544
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
545
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
546 547
	__acquires(rq->lock)
{
548
	struct rq *rq;
L
Linus Torvalds 已提交
549 550 551 552 553 554 555 556 557 558 559 560

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

561
static inline void __task_rq_unlock(struct rq *rq)
562 563 564 565 566
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

567
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
568 569 570 571 572 573
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
574
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
575
 */
576
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
577 578
	__acquires(rq->lock)
{
579
	struct rq *rq;
L
Linus Torvalds 已提交
580 581 582 583 584 585 586 587

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

588
/*
589
 * We are going deep-idle (irqs are disabled):
590
 */
591
void sched_clock_idle_sleep_event(void)
592
{
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
609

610 611 612 613 614 615 616 617 618 619 620
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
621
}
622
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
623

I
Ingo Molnar 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
static u64 div64_likely32(u64 divident, unsigned long divisor)
{
#if BITS_PER_LONG == 32
	if (likely(divident <= 0xffffffffULL))
		return (u32)divident / divisor;
	do_div(divident, divisor);

	return divident;
#else
	return divident / divisor;
#endif
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
697 698 699
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
700
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
701

702
static unsigned long
703 704 705 706 707 708
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
709
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
710 711 712 713 714

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
715
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
716
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
717 718
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
719
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
720

721
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
722 723 724 725 726 727 728 729
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

730
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
731 732
{
	lw->weight += inc;
733 734
	if (sched_feat(FAIR_SLEEPERS))
		lw->inv_weight = WMULT_CONST / lw->weight;
735 736
}

737
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
738 739
{
	lw->weight -= dec;
740
	if (sched_feat(FAIR_SLEEPERS) && likely(lw->weight))
741
		lw->inv_weight = WMULT_CONST / lw->weight;
742 743
}

744 745 746 747 748 749 750 751 752
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
753 754 755 756 757 758 759 760 761 762 763
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
764 765 766
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
767 768
 */
static const int prio_to_weight[40] = {
769 770 771 772 773 774 775 776
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
777 778
};

779 780 781 782 783 784 785
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
786
static const u32 prio_to_wmult[40] = {
787 788 789 790 791 792 793 794
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
795
};
796

I
Ingo Molnar 已提交
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
814
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
815 816 817 818 819 820 821 822 823 824 825

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
 * total load (rq->ls.load.weight) on the runqueue, while
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
 * This function is called /before/ updating rq->ls.load
 * and when switching tasks.
 */
841
static inline void inc_load(struct rq *rq, const struct task_struct *p)
842 843 844 845
{
	update_load_add(&rq->ls.load, p->se.load.weight);
}

846
static inline void dec_load(struct rq *rq, const struct task_struct *p)
847 848 849 850
{
	update_load_sub(&rq->ls.load, p->se.load.weight);
}

851
static void inc_nr_running(struct task_struct *p, struct rq *rq)
852 853
{
	rq->nr_running++;
854
	inc_load(rq, p);
855 856
}

857
static void dec_nr_running(struct task_struct *p, struct rq *rq)
858 859
{
	rq->nr_running--;
860
	dec_load(rq, p);
861 862
}

863 864
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
865 866
	p->se.wait_runtime = 0;

867
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
868 869 870 871
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
872

I
Ingo Molnar 已提交
873 874 875 876 877 878 879 880
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
881

I
Ingo Molnar 已提交
882 883
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
884 885
}

886
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
887
{
I
Ingo Molnar 已提交
888
	sched_info_queued(p);
889
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
890
	p->se.on_rq = 1;
891 892
}

893
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
894
{
895
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
896
	p->se.on_rq = 0;
897 898
}

899
/*
I
Ingo Molnar 已提交
900
 * __normal_prio - return the priority that is based on the static prio
901 902 903
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
904
	return p->static_prio;
905 906
}

907 908 909 910 911 912 913
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
914
static inline int normal_prio(struct task_struct *p)
915 916 917
{
	int prio;

918
	if (task_has_rt_policy(p))
919 920 921 922 923 924 925 926 927 928 929 930 931
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
932
static int effective_prio(struct task_struct *p)
933 934 935 936 937 938 939 940 941 942 943 944
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
945
/*
I
Ingo Molnar 已提交
946
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
947
 */
I
Ingo Molnar 已提交
948
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
949
{
I
Ingo Molnar 已提交
950 951
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
952

953
	enqueue_task(rq, p, wakeup);
954
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
955 956 957
}

/*
I
Ingo Molnar 已提交
958
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
959
 */
I
Ingo Molnar 已提交
960
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
961
{
I
Ingo Molnar 已提交
962
	update_rq_clock(rq);
L
Linus Torvalds 已提交
963

I
Ingo Molnar 已提交
964 965
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
966

967
	enqueue_task(rq, p, 0);
968
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
969 970 971 972 973
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
974
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
975
{
I
Ingo Molnar 已提交
976 977 978
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

979
	dequeue_task(rq, p, sleep);
980
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
981 982 983 984 985 986
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
987
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
988 989 990 991
{
	return cpu_curr(task_cpu(p)) == p;
}

992 993 994
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
I
Ingo Molnar 已提交
995 996 997 998 999 1000 1001 1002 1003
	return cpu_rq(cpu)->ls.load.weight;
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
1004 1005
}

L
Linus Torvalds 已提交
1006
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1007

I
Ingo Molnar 已提交
1008
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1009
{
I
Ingo Molnar 已提交
1010 1011 1012 1013 1014
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
	u64 clock_offset, fair_clock_offset;

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1015 1016
	fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;

I
Ingo Molnar 已提交
1017 1018
	if (p->se.wait_start_fair)
		p->se.wait_start_fair -= fair_clock_offset;
I
Ingo Molnar 已提交
1019 1020 1021 1022 1023 1024
	if (p->se.sleep_start_fair)
		p->se.sleep_start_fair -= fair_clock_offset;

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1025 1026 1027 1028
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
I
Ingo Molnar 已提交
1029
#endif
I
Ingo Molnar 已提交
1030 1031

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1032 1033
}

1034
struct migration_req {
L
Linus Torvalds 已提交
1035 1036
	struct list_head list;

1037
	struct task_struct *task;
L
Linus Torvalds 已提交
1038 1039 1040
	int dest_cpu;

	struct completion done;
1041
};
L
Linus Torvalds 已提交
1042 1043 1044 1045 1046

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1047
static int
1048
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1049
{
1050
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1051 1052 1053 1054 1055

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1056
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1057 1058 1059 1060 1061 1062 1063 1064
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1065

L
Linus Torvalds 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1078
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1079 1080
{
	unsigned long flags;
I
Ingo Molnar 已提交
1081
	int running, on_rq;
1082
	struct rq *rq;
L
Linus Torvalds 已提交
1083 1084

repeat:
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1112
	rq = task_rq_lock(p, &flags);
1113
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1114
	on_rq = p->se.on_rq;
1115 1116 1117 1118 1119 1120 1121 1122 1123
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1124 1125 1126
		cpu_relax();
		goto repeat;
	}
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1137
	if (unlikely(on_rq)) {
1138 1139 1140 1141 1142 1143 1144 1145 1146
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1162
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1174 1175
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1176 1177 1178 1179
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1180
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1181
{
1182
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1183
	unsigned long total = weighted_cpuload(cpu);
1184

1185
	if (type == 0)
I
Ingo Molnar 已提交
1186
		return total;
1187

I
Ingo Molnar 已提交
1188
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1189 1190 1191
}

/*
1192 1193
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1194
 */
N
Nick Piggin 已提交
1195
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1196
{
1197
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1198
	unsigned long total = weighted_cpuload(cpu);
1199

N
Nick Piggin 已提交
1200
	if (type == 0)
I
Ingo Molnar 已提交
1201
		return total;
1202

I
Ingo Molnar 已提交
1203
	return max(rq->cpu_load[type-1], total);
1204 1205 1206 1207 1208 1209 1210
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1211
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1212
	unsigned long total = weighted_cpuload(cpu);
1213 1214
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1215
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1216 1217
}

N
Nick Piggin 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1235 1236 1237 1238
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1255 1256
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1257 1258 1259 1260 1261 1262 1263 1264

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1265
nextgroup:
N
Nick Piggin 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1275
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1276
 */
I
Ingo Molnar 已提交
1277 1278
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1279
{
1280
	cpumask_t tmp;
N
Nick Piggin 已提交
1281 1282 1283 1284
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1285 1286 1287 1288
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1289
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1315

1316
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1317 1318 1319
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1320 1321
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1322 1323
		if (tmp->flags & flag)
			sd = tmp;
1324
	}
N
Nick Piggin 已提交
1325 1326 1327 1328

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1329 1330 1331 1332 1333 1334
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1335 1336 1337

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1338 1339 1340 1341
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1342

1343
		new_cpu = find_idlest_cpu(group, t, cpu);
1344 1345 1346 1347 1348
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1349

1350
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1377
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1378 1379 1380 1381 1382
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1393 1394 1395 1396
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1397
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1398 1399 1400 1401
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1402
		} else {
N
Nick Piggin 已提交
1403
			break;
I
Ingo Molnar 已提交
1404
		}
L
Linus Torvalds 已提交
1405 1406 1407 1408
	}
	return cpu;
}
#else
1409
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1429
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1430 1431 1432 1433
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1434
	struct rq *rq;
L
Linus Torvalds 已提交
1435
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1436
	struct sched_domain *sd, *this_sd = NULL;
1437
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1438 1439 1440 1441 1442 1443 1444 1445
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1446
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1456 1457
	new_cpu = cpu;

L
Linus Torvalds 已提交
1458 1459 1460
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1461 1462 1463 1464 1465 1466 1467 1468
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1469 1470 1471
		}
	}

N
Nick Piggin 已提交
1472
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1473 1474 1475
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1476
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1477
	 */
N
Nick Piggin 已提交
1478 1479 1480
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1481

1482 1483
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1484 1485
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1486

N
Nick Piggin 已提交
1487 1488
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1489 1490
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1491 1492 1493
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1494

L
Linus Torvalds 已提交
1495
			/*
1496 1497 1498
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1499
			 */
1500
			if (sync)
I
Ingo Molnar 已提交
1501
				tl -= current->se.load.weight;
1502 1503

			if ((tl <= load &&
1504
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1505
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1539
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1540 1541 1542 1543 1544 1545 1546 1547
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1548
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1549
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1550 1551 1552 1553 1554 1555 1556 1557
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1558 1559
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1570
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1571 1572 1573 1574 1575 1576
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1577
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1578 1579 1580 1581 1582 1583 1584
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1585 1586 1587 1588 1589 1590 1591 1592
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.wait_start_fair		= 0;
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1593
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1594
	p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
1595 1596 1597 1598
	p->se.sleep_start_fair		= 0;

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1599 1600 1601 1602 1603 1604 1605
	p->se.sum_wait_runtime		= 0;
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1606
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1607 1608 1609
	p->se.wait_max			= 0;
	p->se.wait_runtime_overruns	= 0;
	p->se.wait_runtime_underruns	= 0;
I
Ingo Molnar 已提交
1610
#endif
N
Nick Piggin 已提交
1611

I
Ingo Molnar 已提交
1612 1613
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1614

1615 1616 1617 1618
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1619 1620 1621 1622 1623 1624 1625
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1641 1642 1643 1644 1645 1646

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1647
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1648
	if (likely(sched_info_on()))
1649
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1650
#endif
1651
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1652 1653
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1654
#ifdef CONFIG_PREEMPT
1655
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1656
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1657
#endif
N
Nick Piggin 已提交
1658
	put_cpu();
L
Linus Torvalds 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1668
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1669 1670
{
	unsigned long flags;
I
Ingo Molnar 已提交
1671 1672
	struct rq *rq;
	int this_cpu;
L
Linus Torvalds 已提交
1673 1674

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1675
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1676
	this_cpu = smp_processor_id(); /* parent's CPU */
I
Ingo Molnar 已提交
1677
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1678 1679 1680

	p->prio = effective_prio(p);

1681 1682 1683 1684 1685
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

1686 1687
	if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
							!current->se.on_rq) {
I
Ingo Molnar 已提交
1688
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1689 1690
	} else {
		/*
I
Ingo Molnar 已提交
1691 1692
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1693
		 */
1694
		p->sched_class->task_new(rq, p);
1695
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1696
	}
I
Ingo Molnar 已提交
1697 1698
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1699 1700
}

1701 1702 1703
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1704 1705
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1706 1707 1708 1709 1710 1711 1712 1713 1714
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1715
 * @notifier: notifier struct to unregister
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1759 1760 1761
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1762
 * @prev: the current task that is being switched out
1763 1764 1765 1766 1767 1768 1769 1770 1771
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1772 1773 1774
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1775
{
1776
	fire_sched_out_preempt_notifiers(prev, next);
1777 1778 1779 1780
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1781 1782
/**
 * finish_task_switch - clean up after a task-switch
1783
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1784 1785
 * @prev: the thread we just switched away from.
 *
1786 1787 1788 1789
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1790 1791 1792 1793 1794 1795
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1796
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1797 1798 1799
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1800
	long prev_state;
L
Linus Torvalds 已提交
1801 1802 1803 1804 1805

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1806
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1807 1808
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1809
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1810 1811 1812 1813 1814
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1815
	prev_state = prev->state;
1816 1817
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1818
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1819 1820
	if (mm)
		mmdrop(mm);
1821
	if (unlikely(prev_state == TASK_DEAD)) {
1822 1823 1824
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1825
		 */
1826
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1827
		put_task_struct(prev);
1828
	}
L
Linus Torvalds 已提交
1829 1830 1831 1832 1833 1834
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1835
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1836 1837
	__releases(rq->lock)
{
1838 1839
	struct rq *rq = this_rq();

1840 1841 1842 1843 1844
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1845 1846 1847 1848 1849 1850 1851 1852
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1853
static inline void
1854
context_switch(struct rq *rq, struct task_struct *prev,
1855
	       struct task_struct *next)
L
Linus Torvalds 已提交
1856
{
I
Ingo Molnar 已提交
1857
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1858

1859
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1860 1861
	mm = next->mm;
	oldmm = prev->active_mm;
1862 1863 1864 1865 1866 1867 1868
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1869
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1870 1871 1872 1873 1874 1875
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1876
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1877 1878 1879
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1880 1881 1882 1883 1884 1885 1886
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1887
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1888
#endif
L
Linus Torvalds 已提交
1889 1890 1891 1892

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1893 1894 1895 1896 1897 1898 1899
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1923
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1938 1939
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1940

1941
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1951
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1952 1953 1954 1955 1956
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1972
/*
I
Ingo Molnar 已提交
1973 1974
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1975
 */
I
Ingo Molnar 已提交
1976
static void update_cpu_load(struct rq *this_rq)
1977
{
1978
	unsigned long this_load = this_rq->ls.load.weight;
I
Ingo Molnar 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
1991 1992 1993 1994 1995 1996 1997
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
1998 1999
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2000 2001
}

I
Ingo Molnar 已提交
2002 2003
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2004 2005 2006 2007 2008 2009
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2010
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2011 2012 2013
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2014
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2015 2016 2017 2018
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2019
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2020 2021 2022 2023 2024 2025 2026
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2027 2028
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2029 2030 2031 2032 2033 2034 2035 2036
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2037
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2051
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2052 2053 2054 2055
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2056 2057 2058 2059 2060
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2061
	if (unlikely(!spin_trylock(&busiest->lock))) {
2062
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2077
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2078
{
2079
	struct migration_req req;
L
Linus Torvalds 已提交
2080
	unsigned long flags;
2081
	struct rq *rq;
L
Linus Torvalds 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2092

L
Linus Torvalds 已提交
2093 2094 2095 2096 2097
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2098

L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104 2105
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2106 2107
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2108 2109 2110 2111
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2112
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2113
	put_cpu();
N
Nick Piggin 已提交
2114 2115
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2116 2117 2118 2119 2120 2121
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2122 2123
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2124
{
2125
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2126
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2127
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2128 2129 2130 2131
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2132
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2133 2134 2135 2136 2137
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2138
static
2139
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2140
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2141
		     int *all_pinned)
L
Linus Torvalds 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2151 2152 2153 2154
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2155 2156 2157 2158

	return 1;
}

I
Ingo Molnar 已提交
2159
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2160
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2161
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2162
		      int *all_pinned, unsigned long *load_moved,
2163
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2164
{
I
Ingo Molnar 已提交
2165 2166 2167
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2168

2169
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2170 2171
		goto out;

2172 2173
	pinned = 1;

L
Linus Torvalds 已提交
2174
	/*
I
Ingo Molnar 已提交
2175
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2176
	 */
I
Ingo Molnar 已提交
2177 2178 2179
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2180
		goto out;
2181 2182 2183 2184 2185
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2186 2187
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2188
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2189 2190 2191
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2192 2193
	}

I
Ingo Molnar 已提交
2194
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2195
	pulled++;
I
Ingo Molnar 已提交
2196
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2197

2198 2199 2200 2201 2202
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2203 2204
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2205 2206
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2207 2208 2209 2210 2211 2212 2213 2214
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2215 2216 2217

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2218
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2219 2220 2221
	return pulled;
}

I
Ingo Molnar 已提交
2222
/*
P
Peter Williams 已提交
2223 2224 2225
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2226 2227 2228 2229
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2230
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2231 2232 2233 2234
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2235
	unsigned long total_load_moved = 0;
2236
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2237 2238

	do {
P
Peter Williams 已提交
2239 2240 2241
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2242
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2243
		class = class->next;
P
Peter Williams 已提交
2244
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2245

P
Peter Williams 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct sched_class *class;
2260
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2261 2262 2263

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2264 2265
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2266 2267 2268
			return 1;

	return 0;
I
Ingo Molnar 已提交
2269 2270
}

L
Linus Torvalds 已提交
2271 2272
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2273 2274
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2275 2276 2277
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2278 2279
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2280 2281 2282
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2283
	unsigned long max_pull;
2284 2285
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2286
	int load_idx;
2287 2288 2289 2290 2291 2292
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2293 2294

	max_load = this_load = total_load = total_pwr = 0;
2295 2296
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2297
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2298
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2299
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2300 2301 2302
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2303 2304

	do {
2305
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2306 2307
		int local_group;
		int i;
2308
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2309
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2310 2311 2312

		local_group = cpu_isset(this_cpu, group->cpumask);

2313 2314 2315
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2316
		/* Tally up the load of all CPUs in the group */
2317
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2318 2319

		for_each_cpu_mask(i, group->cpumask) {
2320 2321 2322 2323 2324 2325
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2326

2327
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2328 2329
				*sd_idle = 0;

L
Linus Torvalds 已提交
2330
			/* Bias balancing toward cpus of our domain */
2331 2332 2333 2334 2335 2336
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2337
				load = target_load(i, load_idx);
2338
			} else
N
Nick Piggin 已提交
2339
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2340 2341

			avg_load += load;
2342
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2343
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2344 2345
		}

2346 2347 2348
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2349 2350
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2351
		 */
2352 2353
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2354 2355 2356 2357
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2358
		total_load += avg_load;
2359
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2360 2361

		/* Adjust by relative CPU power of the group */
2362 2363
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2364

2365
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2366

L
Linus Torvalds 已提交
2367 2368 2369
		if (local_group) {
			this_load = avg_load;
			this = group;
2370 2371 2372
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2373
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2374 2375
			max_load = avg_load;
			busiest = group;
2376 2377
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2378
		}
2379 2380 2381 2382 2383 2384

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2385 2386 2387
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2388 2389 2390 2391 2392 2393 2394 2395 2396

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2397
		/*
2398 2399
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2400 2401
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2402
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2403
			goto group_next;
2404

I
Ingo Molnar 已提交
2405
		/*
2406
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2407 2408 2409 2410 2411
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2412 2413
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2414 2415
			group_min = group;
			min_nr_running = sum_nr_running;
2416 2417
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2418
		}
2419

I
Ingo Molnar 已提交
2420
		/*
2421
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2433
		}
2434 2435
group_next:
#endif
L
Linus Torvalds 已提交
2436 2437 2438
		group = group->next;
	} while (group != sd->groups);

2439
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2440 2441 2442 2443 2444 2445 2446 2447
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2448
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2472 2473

	/* Don't want to pull so many tasks that a group would go idle */
2474
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2475

L
Linus Torvalds 已提交
2476
	/* How much load to actually move to equalise the imbalance */
2477 2478
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2479 2480
			/ SCHED_LOAD_SCALE;

2481 2482 2483 2484 2485 2486
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2487
	if (*imbalance < busiest_load_per_task) {
2488
		unsigned long tmp, pwr_now, pwr_move;
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2500

I
Ingo Molnar 已提交
2501 2502
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2503
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2504 2505 2506 2507 2508 2509 2510 2511 2512
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2513 2514 2515 2516
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2517 2518 2519
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2520 2521
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2522
		if (max_load > tmp)
2523
			pwr_move += busiest->__cpu_power *
2524
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2525 2526

		/* Amount of load we'd add */
2527
		if (max_load * busiest->__cpu_power <
2528
				busiest_load_per_task * SCHED_LOAD_SCALE)
2529 2530
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2531
		else
2532 2533 2534 2535
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2536 2537 2538
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2539 2540
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2541 2542 2543 2544 2545
	}

	return busiest;

out_balanced:
2546
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2547
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2548
		goto ret;
L
Linus Torvalds 已提交
2549

2550 2551 2552 2553 2554
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2555
ret:
L
Linus Torvalds 已提交
2556 2557 2558 2559 2560 2561 2562
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2563
static struct rq *
I
Ingo Molnar 已提交
2564
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2565
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2566
{
2567
	struct rq *busiest = NULL, *rq;
2568
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2569 2570 2571
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2572
		unsigned long wl;
2573 2574 2575 2576

		if (!cpu_isset(i, *cpus))
			continue;

2577
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2578
		wl = weighted_cpuload(i);
2579

I
Ingo Molnar 已提交
2580
		if (rq->nr_running == 1 && wl > imbalance)
2581
			continue;
L
Linus Torvalds 已提交
2582

I
Ingo Molnar 已提交
2583 2584
		if (wl > max_load) {
			max_load = wl;
2585
			busiest = rq;
L
Linus Torvalds 已提交
2586 2587 2588 2589 2590 2591
		}
	}

	return busiest;
}

2592 2593 2594 2595 2596 2597
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2598 2599 2600 2601
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2602
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2603
			struct sched_domain *sd, enum cpu_idle_type idle,
2604
			int *balance)
L
Linus Torvalds 已提交
2605
{
P
Peter Williams 已提交
2606
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2607 2608
	struct sched_group *group;
	unsigned long imbalance;
2609
	struct rq *busiest;
2610
	cpumask_t cpus = CPU_MASK_ALL;
2611
	unsigned long flags;
N
Nick Piggin 已提交
2612

2613 2614 2615
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2616
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2617
	 * portraying it as CPU_NOT_IDLE.
2618
	 */
I
Ingo Molnar 已提交
2619
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2620
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2621
		sd_idle = 1;
L
Linus Torvalds 已提交
2622 2623 2624

	schedstat_inc(sd, lb_cnt[idle]);

2625 2626
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2627 2628
				   &cpus, balance);

2629
	if (*balance == 0)
2630 2631
		goto out_balanced;

L
Linus Torvalds 已提交
2632 2633 2634 2635 2636
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2637
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2638 2639 2640 2641 2642
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2643
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2644 2645 2646

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2647
	ld_moved = 0;
L
Linus Torvalds 已提交
2648 2649 2650 2651
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2652
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2653 2654
		 * correctly treated as an imbalance.
		 */
2655
		local_irq_save(flags);
N
Nick Piggin 已提交
2656
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2657
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2658
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2659
		double_rq_unlock(this_rq, busiest);
2660
		local_irq_restore(flags);
2661

2662 2663 2664
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2665
		if (ld_moved && this_cpu != smp_processor_id())
2666 2667
			resched_cpu(this_cpu);

2668
		/* All tasks on this runqueue were pinned by CPU affinity */
2669 2670 2671 2672
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2673
			goto out_balanced;
2674
		}
L
Linus Torvalds 已提交
2675
	}
2676

P
Peter Williams 已提交
2677
	if (!ld_moved) {
L
Linus Torvalds 已提交
2678 2679 2680 2681 2682
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2683
			spin_lock_irqsave(&busiest->lock, flags);
2684 2685 2686 2687 2688

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2689
				spin_unlock_irqrestore(&busiest->lock, flags);
2690 2691 2692 2693
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2694 2695 2696
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2697
				active_balance = 1;
L
Linus Torvalds 已提交
2698
			}
2699
			spin_unlock_irqrestore(&busiest->lock, flags);
2700
			if (active_balance)
L
Linus Torvalds 已提交
2701 2702 2703 2704 2705 2706
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2707
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2708
		}
2709
	} else
L
Linus Torvalds 已提交
2710 2711
		sd->nr_balance_failed = 0;

2712
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2713 2714
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2715 2716 2717 2718 2719 2720 2721 2722 2723
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2724 2725
	}

P
Peter Williams 已提交
2726
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2727
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2728
		return -1;
P
Peter Williams 已提交
2729
	return ld_moved;
L
Linus Torvalds 已提交
2730 2731 2732 2733

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2734
	sd->nr_balance_failed = 0;
2735 2736

out_one_pinned:
L
Linus Torvalds 已提交
2737
	/* tune up the balancing interval */
2738 2739
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2740 2741
		sd->balance_interval *= 2;

2742
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2743
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2744
		return -1;
L
Linus Torvalds 已提交
2745 2746 2747 2748 2749 2750 2751
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2752
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2753 2754
 * this_rq is locked.
 */
2755
static int
2756
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2757 2758
{
	struct sched_group *group;
2759
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2760
	unsigned long imbalance;
P
Peter Williams 已提交
2761
	int ld_moved = 0;
N
Nick Piggin 已提交
2762
	int sd_idle = 0;
2763
	int all_pinned = 0;
2764
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2765

2766 2767 2768 2769
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2770
	 * portraying it as CPU_NOT_IDLE.
2771 2772 2773
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2774
		sd_idle = 1;
L
Linus Torvalds 已提交
2775

I
Ingo Molnar 已提交
2776
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2777
redo:
I
Ingo Molnar 已提交
2778
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2779
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2780
	if (!group) {
I
Ingo Molnar 已提交
2781
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2782
		goto out_balanced;
L
Linus Torvalds 已提交
2783 2784
	}

I
Ingo Molnar 已提交
2785
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2786
				&cpus);
N
Nick Piggin 已提交
2787
	if (!busiest) {
I
Ingo Molnar 已提交
2788
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2789
		goto out_balanced;
L
Linus Torvalds 已提交
2790 2791
	}

N
Nick Piggin 已提交
2792 2793
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2794
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2795

P
Peter Williams 已提交
2796
	ld_moved = 0;
2797 2798 2799
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2800 2801
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2802
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2803 2804
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2805
		spin_unlock(&busiest->lock);
2806

2807
		if (unlikely(all_pinned)) {
2808 2809 2810 2811
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2812 2813
	}

P
Peter Williams 已提交
2814
	if (!ld_moved) {
I
Ingo Molnar 已提交
2815
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2816 2817
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2818 2819
			return -1;
	} else
2820
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2821

P
Peter Williams 已提交
2822
	return ld_moved;
2823 2824

out_balanced:
I
Ingo Molnar 已提交
2825
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2826
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2827
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2828
		return -1;
2829
	sd->nr_balance_failed = 0;
2830

2831
	return 0;
L
Linus Torvalds 已提交
2832 2833 2834 2835 2836 2837
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2838
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2839 2840
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2841 2842
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2843 2844

	for_each_domain(this_cpu, sd) {
2845 2846 2847 2848 2849 2850
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2851
			/* If we've pulled tasks over stop searching: */
2852
			pulled_task = load_balance_newidle(this_cpu,
2853 2854 2855 2856 2857 2858 2859
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2860
	}
I
Ingo Molnar 已提交
2861
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2862 2863 2864 2865 2866
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2867
	}
L
Linus Torvalds 已提交
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2878
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2879
{
2880
	int target_cpu = busiest_rq->push_cpu;
2881 2882
	struct sched_domain *sd;
	struct rq *target_rq;
2883

2884
	/* Is there any task to move? */
2885 2886 2887 2888
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2889 2890

	/*
2891 2892 2893
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2894
	 */
2895
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2896

2897 2898
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2899 2900
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2901 2902

	/* Search for an sd spanning us and the target CPU. */
2903
	for_each_domain(target_cpu, sd) {
2904
		if ((sd->flags & SD_LOAD_BALANCE) &&
2905
		    cpu_isset(busiest_cpu, sd->span))
2906
				break;
2907
	}
2908

2909 2910
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2911

P
Peter Williams 已提交
2912 2913
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2914 2915 2916 2917
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2918
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2919 2920
}

2921 2922 2923 2924 2925 2926 2927 2928 2929
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2930
/*
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2941
 *
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
2998 2999 3000 3001 3002
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
3003
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3004
{
3005 3006
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3007 3008
	unsigned long interval;
	struct sched_domain *sd;
3009
	/* Earliest time when we have to do rebalance again */
3010
	unsigned long next_balance = jiffies + 60*HZ;
3011
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3012

3013
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3014 3015 3016 3017
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3018
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3019 3020 3021 3022 3023 3024
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3025 3026 3027
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3028

3029 3030 3031 3032 3033
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3034
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3035
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3036 3037
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3038 3039 3040
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3041
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3042
			}
3043
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3044
		}
3045 3046 3047
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3048
		if (time_after(next_balance, sd->last_balance + interval)) {
3049
			next_balance = sd->last_balance + interval;
3050 3051
			update_next_balance = 1;
		}
3052 3053 3054 3055 3056 3057 3058 3059

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3060
	}
3061 3062 3063 3064 3065 3066 3067 3068

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3069 3070 3071 3072 3073 3074 3075 3076 3077
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3078 3079 3080 3081
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3082

I
Ingo Molnar 已提交
3083
	rebalance_domains(this_cpu, idle);
3084 3085 3086 3087 3088 3089 3090

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3091 3092
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3093 3094 3095 3096
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3097
		cpu_clear(this_cpu, cpus);
3098 3099 3100 3101 3102 3103 3104 3105 3106
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3107
			rebalance_domains(balance_cpu, CPU_IDLE);
3108 3109

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3110 3111
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3124
static inline void trigger_load_balance(struct rq *rq, int cpu)
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3176
}
I
Ingo Molnar 已提交
3177 3178 3179

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3180 3181 3182
/*
 * on UP we do not need to balance between CPUs:
 */
3183
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3184 3185
{
}
I
Ingo Molnar 已提交
3186 3187 3188 3189 3190 3191

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3192
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3193 3194 3195 3196 3197 3198
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3199 3200 3201 3202 3203 3204 3205
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3206 3207
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3208
 */
3209
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3210 3211
{
	unsigned long flags;
3212 3213
	u64 ns, delta_exec;
	struct rq *rq;
3214

3215 3216 3217
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3218 3219
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3220 3221 3222 3223
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3224

L
Linus Torvalds 已提交
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3259
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3289
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3312
	struct task_struct *curr = rq->curr;
3313
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3314 3315

	spin_lock(&rq->lock);
3316
	__update_rq_clock(rq);
3317 3318 3319 3320 3321 3322
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3323
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3324 3325 3326
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3327

3328
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3329 3330
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3331
#endif
L
Linus Torvalds 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3341 3342
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3343 3344 3345 3346
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3347 3348
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3349 3350 3351 3352 3353 3354 3355 3356
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3357 3358
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3359 3360 3361
	/*
	 * Is the spinlock portion underflowing?
	 */
3362 3363 3364 3365
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3366 3367 3368 3369 3370 3371 3372
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3373
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3374
 */
I
Ingo Molnar 已提交
3375
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3376
{
I
Ingo Molnar 已提交
3377 3378 3379 3380 3381 3382 3383
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3384

I
Ingo Molnar 已提交
3385 3386 3387 3388 3389
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3390 3391 3392 3393 3394
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3395 3396 3397
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3398 3399
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3400 3401 3402 3403 3404 3405 3406
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3407
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3408 3409 3410
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3411 3412

	/*
I
Ingo Molnar 已提交
3413 3414
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3415
	 */
I
Ingo Molnar 已提交
3416
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3417
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3418 3419
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3420 3421
	}

I
Ingo Molnar 已提交
3422 3423
	class = sched_class_highest;
	for ( ; ; ) {
3424
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3425 3426 3427 3428 3429 3430 3431 3432 3433
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3434

I
Ingo Molnar 已提交
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3457 3458

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3459
	clear_tsk_need_resched(prev);
I
Ingo Molnar 已提交
3460
	__update_rq_clock(rq);
L
Linus Torvalds 已提交
3461 3462 3463

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3464
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3465
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3466
		} else {
3467
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3468
		}
I
Ingo Molnar 已提交
3469
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3470 3471
	}

I
Ingo Molnar 已提交
3472
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3473 3474
		idle_balance(cpu, rq);

3475
	prev->sched_class->put_prev_task(rq, prev);
3476
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3477 3478

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3479

L
Linus Torvalds 已提交
3480 3481 3482 3483 3484
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3485
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3486 3487 3488
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3489 3490 3491
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3492
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3493
	}
L
Linus Torvalds 已提交
3494 3495 3496 3497 3498 3499 3500 3501
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3502
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3517
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3545
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3557
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3587 3588
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3589
{
3590
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3606
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3607

3608
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3609 3610
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3611
		if (curr->func(curr, mode, sync, key) &&
3612
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3613 3614 3615 3616 3617 3618 3619 3620 3621
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3622
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3623 3624
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3625
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3644
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3656 3657
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3701

L
Linus Torvalds 已提交
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3820 3821 3822 3823 3824
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3825
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3826
}
L
Linus Torvalds 已提交
3827

I
Ingo Molnar 已提交
3828 3829 3830 3831 3832 3833 3834
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3835

I
Ingo Molnar 已提交
3836
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3837
{
I
Ingo Molnar 已提交
3838 3839 3840 3841
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3842 3843 3844

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3845
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3846
	schedule();
I
Ingo Molnar 已提交
3847
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3848 3849 3850
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3851
long __sched
I
Ingo Molnar 已提交
3852
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3853
{
I
Ingo Molnar 已提交
3854 3855 3856 3857
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3858 3859 3860

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3861
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3862
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3863
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3864 3865 3866 3867 3868

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3869
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3870
{
I
Ingo Molnar 已提交
3871 3872 3873 3874
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3875 3876 3877

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3878
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3879
	schedule();
I
Ingo Molnar 已提交
3880
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3881 3882 3883
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3884
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3885
{
I
Ingo Molnar 已提交
3886 3887 3888 3889
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3890 3891 3892

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3893
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3894
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3895
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3896 3897 3898 3899 3900

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3913
void rt_mutex_setprio(struct task_struct *p, int prio)
3914 3915
{
	unsigned long flags;
I
Ingo Molnar 已提交
3916
	int oldprio, on_rq;
3917
	struct rq *rq;
3918 3919 3920 3921

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3922
	update_rq_clock(rq);
3923

3924
	oldprio = p->prio;
I
Ingo Molnar 已提交
3925 3926
	on_rq = p->se.on_rq;
	if (on_rq)
3927
		dequeue_task(rq, p, 0);
I
Ingo Molnar 已提交
3928 3929 3930 3931 3932 3933

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3934 3935
	p->prio = prio;

I
Ingo Molnar 已提交
3936
	if (on_rq) {
3937
		enqueue_task(rq, p, 0);
3938 3939
		/*
		 * Reschedule if we are currently running on this runqueue and
3940 3941
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3942
		 */
3943 3944 3945
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3946 3947 3948
		} else {
			check_preempt_curr(rq, p);
		}
3949 3950 3951 3952 3953 3954
	}
	task_rq_unlock(rq, &flags);
}

#endif

3955
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3956
{
I
Ingo Molnar 已提交
3957
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3958
	unsigned long flags;
3959
	struct rq *rq;
L
Linus Torvalds 已提交
3960 3961 3962 3963 3964 3965 3966 3967

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3968
	update_rq_clock(rq);
L
Linus Torvalds 已提交
3969 3970 3971 3972
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3973
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3974
	 */
3975
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3976 3977 3978
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3979 3980
	on_rq = p->se.on_rq;
	if (on_rq) {
3981
		dequeue_task(rq, p, 0);
3982
		dec_load(rq, p);
3983
	}
L
Linus Torvalds 已提交
3984 3985

	p->static_prio = NICE_TO_PRIO(nice);
3986
	set_load_weight(p);
3987 3988 3989
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3990

I
Ingo Molnar 已提交
3991
	if (on_rq) {
3992
		enqueue_task(rq, p, 0);
3993
		inc_load(rq, p);
L
Linus Torvalds 已提交
3994
		/*
3995 3996
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3997
		 */
3998
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3999 4000 4001 4002 4003 4004 4005
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4006 4007 4008 4009 4010
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4011
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4012
{
4013 4014
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4015

M
Matt Mackall 已提交
4016 4017 4018 4019
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4031
	long nice, retval;
L
Linus Torvalds 已提交
4032 4033 4034 4035 4036 4037

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4038 4039
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4040 4041 4042 4043 4044 4045 4046 4047 4048
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4049 4050 4051
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4070
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4071 4072 4073 4074 4075 4076 4077 4078
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4079
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4098
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4099 4100 4101 4102 4103 4104 4105 4106
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4107
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4108 4109 4110 4111 4112
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4113 4114
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4115
{
I
Ingo Molnar 已提交
4116
	BUG_ON(p->se.on_rq);
4117

L
Linus Torvalds 已提交
4118
	p->policy = policy;
I
Ingo Molnar 已提交
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4131
	p->rt_priority = prio;
4132 4133 4134
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4135
	set_load_weight(p);
L
Linus Torvalds 已提交
4136 4137 4138
}

/**
4139
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4140 4141 4142
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4143
 *
4144
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4145
 */
I
Ingo Molnar 已提交
4146 4147
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4148
{
I
Ingo Molnar 已提交
4149
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4150
	unsigned long flags;
4151
	struct rq *rq;
L
Linus Torvalds 已提交
4152

4153 4154
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4155 4156 4157 4158 4159
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4160 4161
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4162
		return -EINVAL;
L
Linus Torvalds 已提交
4163 4164
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4165 4166
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4167 4168
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4169
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4170
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4171
		return -EINVAL;
4172
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4173 4174
		return -EINVAL;

4175 4176 4177 4178
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4179
		if (rt_policy(policy)) {
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4196 4197 4198 4199 4200 4201
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4202

4203 4204 4205 4206 4207
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4208 4209 4210 4211

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4212 4213 4214 4215 4216
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4217 4218 4219 4220
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4221
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4222 4223 4224
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4225 4226
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4227 4228
		goto recheck;
	}
I
Ingo Molnar 已提交
4229
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4230
	on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
4231
	if (on_rq)
4232
		deactivate_task(rq, p, 0);
L
Linus Torvalds 已提交
4233
	oldprio = p->prio;
I
Ingo Molnar 已提交
4234 4235 4236
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4237 4238
		/*
		 * Reschedule if we are currently running on this runqueue and
4239 4240
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4241
		 */
4242 4243 4244
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4245 4246 4247
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4248
	}
4249 4250 4251
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4252 4253
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4254 4255 4256 4257
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4258 4259
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4260 4261 4262
{
	struct sched_param lparam;
	struct task_struct *p;
4263
	int retval;
L
Linus Torvalds 已提交
4264 4265 4266 4267 4268

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4269 4270 4271

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4272
	p = find_process_by_pid(pid);
4273 4274 4275
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4276

L
Linus Torvalds 已提交
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4289 4290 4291 4292
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4312
	struct task_struct *p;
L
Linus Torvalds 已提交
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4340
	struct task_struct *p;
L
Linus Torvalds 已提交
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4375 4376
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4377

4378
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4379 4380 4381 4382 4383
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4384
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4401 4402 4403 4404
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4405 4406 4407 4408 4409 4410
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4411
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4452
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4453 4454 4455
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4456
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4457 4458
EXPORT_SYMBOL(cpu_online_map);

4459
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4460
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4461 4462 4463 4464
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4465
	struct task_struct *p;
L
Linus Torvalds 已提交
4466 4467
	int retval;

4468
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4469 4470 4471 4472 4473 4474 4475
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4476 4477 4478 4479
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4480
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4481 4482 4483

out_unlock:
	read_unlock(&tasklist_lock);
4484
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4485

4486
	return retval;
L
Linus Torvalds 已提交
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4517 4518
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4519 4520 4521
 */
asmlinkage long sys_sched_yield(void)
{
4522
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4523 4524

	schedstat_inc(rq, yld_cnt);
4525
	current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4526 4527 4528 4529 4530 4531

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4532
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4533 4534 4535 4536 4537 4538 4539 4540
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4541
static void __cond_resched(void)
L
Linus Torvalds 已提交
4542
{
4543 4544 4545
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4546 4547 4548 4549 4550
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4551 4552 4553 4554 4555 4556 4557 4558 4559
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4560 4561
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4577
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4578
{
J
Jan Kara 已提交
4579 4580
	int ret = 0;

L
Linus Torvalds 已提交
4581 4582 4583
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4584
		ret = 1;
L
Linus Torvalds 已提交
4585 4586
		spin_lock(lock);
	}
4587
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4588
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4589 4590 4591
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4592
		ret = 1;
L
Linus Torvalds 已提交
4593 4594
		spin_lock(lock);
	}
J
Jan Kara 已提交
4595
	return ret;
L
Linus Torvalds 已提交
4596 4597 4598 4599 4600 4601 4602
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4603
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4604
		local_bh_enable();
L
Linus Torvalds 已提交
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4616
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4635
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4636

4637
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4638 4639 4640
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4641
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4642 4643 4644 4645 4646
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4647
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4648 4649
	long ret;

4650
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4651 4652 4653
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4654
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4675
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4676
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4700
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4701
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4718
	struct task_struct *p;
L
Linus Torvalds 已提交
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4735
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4736
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4737 4738 4739 4740 4741 4742 4743 4744 4745
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4746
static const char stat_nam[] = "RSDTtZX";
4747 4748

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4749 4750
{
	unsigned long free = 0;
4751
	unsigned state;
L
Linus Torvalds 已提交
4752 4753

	state = p->state ? __ffs(p->state) + 1 : 0;
4754 4755
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4756
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4757
	if (state == TASK_RUNNING)
4758
		printk(" running  ");
L
Linus Torvalds 已提交
4759
	else
4760
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4761 4762
#else
	if (state == TASK_RUNNING)
4763
		printk("  running task    ");
L
Linus Torvalds 已提交
4764 4765 4766 4767 4768
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4769
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4770 4771
		while (!*n)
			n++;
4772
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4773 4774
	}
#endif
4775
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4776 4777 4778 4779 4780

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4781
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4782
{
4783
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4784

4785 4786 4787
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4788
#else
4789 4790
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4791 4792 4793 4794 4795 4796 4797 4798
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4799
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4800
			show_task(p);
L
Linus Torvalds 已提交
4801 4802
	} while_each_thread(g, p);

4803 4804
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4805 4806 4807
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4808
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4809 4810 4811 4812 4813
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4814 4815
}

I
Ingo Molnar 已提交
4816 4817
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4818
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4819 4820
}

4821 4822 4823 4824 4825 4826 4827 4828
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4829
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4830
{
4831
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4832 4833
	unsigned long flags;

I
Ingo Molnar 已提交
4834 4835 4836
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4837
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4838
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4839
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4840 4841 4842

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4843 4844 4845
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4846 4847 4848 4849
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4850
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4851
#else
A
Al Viro 已提交
4852
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4853
#endif
I
Ingo Molnar 已提交
4854 4855 4856 4857
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4873
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4895
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4896
{
4897
	struct migration_req req;
L
Linus Torvalds 已提交
4898
	unsigned long flags;
4899
	struct rq *rq;
4900
	int ret = 0;
L
Linus Torvalds 已提交
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4923

L
Linus Torvalds 已提交
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4936 4937
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4938
 */
4939
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4940
{
4941
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4942
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4943 4944

	if (unlikely(cpu_is_offline(dest_cpu)))
4945
		return ret;
L
Linus Torvalds 已提交
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4958
	on_rq = p->se.on_rq;
4959
	if (on_rq)
4960
		deactivate_task(rq_src, p, 0);
4961

L
Linus Torvalds 已提交
4962
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4963 4964 4965
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4966
	}
4967
	ret = 1;
L
Linus Torvalds 已提交
4968 4969
out:
	double_rq_unlock(rq_src, rq_dest);
4970
	return ret;
L
Linus Torvalds 已提交
4971 4972 4973 4974 4975 4976 4977
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4978
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4979 4980
{
	int cpu = (long)data;
4981
	struct rq *rq;
L
Linus Torvalds 已提交
4982 4983 4984 4985 4986 4987

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
4988
		struct migration_req *req;
L
Linus Torvalds 已提交
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5011
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5012 5013
		list_del_init(head->next);

N
Nick Piggin 已提交
5014 5015 5016
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5035 5036 5037 5038
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5039
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5040
{
5041
	unsigned long flags;
L
Linus Torvalds 已提交
5042
	cpumask_t mask;
5043 5044
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5045

5046
restart:
L
Linus Torvalds 已提交
5047 5048
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5049
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5050 5051 5052 5053
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5054
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5055 5056 5057

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5058 5059 5060
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5061
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5062 5063 5064 5065 5066 5067

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5068
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5069 5070
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5071
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5072
	}
5073
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5074
		goto restart;
L
Linus Torvalds 已提交
5075 5076 5077 5078 5079 5080 5081 5082 5083
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5084
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5085
{
5086
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5100
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5101 5102 5103

	write_lock_irq(&tasklist_lock);

5104 5105
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5106 5107
			continue;

5108 5109 5110
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5111 5112 5113 5114

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5115 5116
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5117
 * It does so by boosting its priority to highest possible and adding it to
5118
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5119 5120 5121
 */
void sched_idle_next(void)
{
5122
	int this_cpu = smp_processor_id();
5123
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5124 5125 5126 5127
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5128
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5129

5130 5131 5132
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5133 5134 5135
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5136
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5137 5138

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5139
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5140 5141 5142 5143

	spin_unlock_irqrestore(&rq->lock, flags);
}

5144 5145
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5159
/* called under rq->lock with disabled interrupts */
5160
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5161
{
5162
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5163 5164

	/* Must be exiting, otherwise would be on tasklist. */
5165
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5166 5167

	/* Cannot have done final schedule yet: would have vanished. */
5168
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5169

5170
	get_task_struct(p);
L
Linus Torvalds 已提交
5171 5172 5173 5174 5175

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5176
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5177
	 */
5178
	spin_unlock(&rq->lock);
5179
	move_task_off_dead_cpu(dead_cpu, p);
5180
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5181

5182
	put_task_struct(p);
L
Linus Torvalds 已提交
5183 5184 5185 5186 5187
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5188
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5189
	struct task_struct *next;
5190

I
Ingo Molnar 已提交
5191 5192 5193
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5194
		update_rq_clock(rq);
5195
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5196 5197 5198
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5199

L
Linus Torvalds 已提交
5200 5201 5202 5203
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5204 5205 5206
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5207 5208
	{
		.procname	= "sched_domain",
5209
		.mode		= 0555,
5210
	},
5211 5212 5213 5214
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5215
	{
5216
		.ctl_name	= CTL_KERN,
5217
		.procname	= "kernel",
5218
		.mode		= 0555,
5219 5220
		.child		= sd_ctl_dir,
	},
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
5236
set_table_entry(struct ctl_table *entry,
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
	struct ctl_table *table = sd_alloc_ctl_entry(14);

5252
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5253
		sizeof(long), 0644, proc_doulongvec_minmax);
5254
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5255
		sizeof(long), 0644, proc_doulongvec_minmax);
5256
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5257
		sizeof(int), 0644, proc_dointvec_minmax);
5258
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5259
		sizeof(int), 0644, proc_dointvec_minmax);
5260
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5261
		sizeof(int), 0644, proc_dointvec_minmax);
5262
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5263
		sizeof(int), 0644, proc_dointvec_minmax);
5264
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5265
		sizeof(int), 0644, proc_dointvec_minmax);
5266
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5267
		sizeof(int), 0644, proc_dointvec_minmax);
5268
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5269
		sizeof(int), 0644, proc_dointvec_minmax);
5270
	set_table_entry(&table[10], "cache_nice_tries",
5271 5272
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5273
	set_table_entry(&table[12], "flags", &sd->flags,
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5294
		entry->mode = 0555;
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5314
		entry->mode = 0555;
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5325 5326 5327 5328
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5329 5330
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5331 5332
{
	struct task_struct *p;
5333
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5334
	unsigned long flags;
5335
	struct rq *rq;
L
Linus Torvalds 已提交
5336 5337

	switch (action) {
5338 5339 5340 5341
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5342
	case CPU_UP_PREPARE:
5343
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5344
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5345 5346 5347 5348 5349
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5350
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5351 5352 5353
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5354

L
Linus Torvalds 已提交
5355
	case CPU_ONLINE:
5356
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5357 5358 5359
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5360

L
Linus Torvalds 已提交
5361 5362
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5363
	case CPU_UP_CANCELED_FROZEN:
5364 5365
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5366
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5367 5368
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5369 5370 5371
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5372

L
Linus Torvalds 已提交
5373
	case CPU_DEAD:
5374
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5375 5376 5377 5378 5379 5380
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5381
		update_rq_clock(rq);
5382
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5383
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5384 5385
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5386 5387 5388 5389 5390 5391
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5392
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5393 5394 5395
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5396 5397
			struct migration_req *req;

L
Linus Torvalds 已提交
5398
			req = list_entry(rq->migration_queue.next,
5399
					 struct migration_req, list);
L
Linus Torvalds 已提交
5400 5401 5402 5403 5404 5405
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5406 5407 5408
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5409 5410 5411 5412 5413 5414 5415
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5416
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5417 5418 5419 5420 5421 5422 5423
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5424
	int err;
5425 5426

	/* Start one for the boot CPU: */
5427 5428
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5429 5430
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5431

L
Linus Torvalds 已提交
5432 5433 5434 5435 5436
	return 0;
}
#endif

#ifdef CONFIG_SMP
5437 5438 5439 5440 5441

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5442
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5443 5444 5445 5446 5447
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5448 5449 5450 5451 5452
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5472 5473
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5474 5475 5476 5477 5478 5479
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5480 5481
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5482
		if (!cpu_isset(cpu, group->cpumask))
5483 5484
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5497
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5498
				printk("\n");
5499 5500
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5523 5524
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5525 5526 5527

		level++;
		sd = sd->parent;
5528 5529
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5530

5531 5532 5533
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5534 5535 5536 5537

	} while (sd);
}
#else
5538
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5539 5540
#endif

5541
static int sd_degenerate(struct sched_domain *sd)
5542 5543 5544 5545 5546 5547 5548 5549
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5550 5551 5552
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5566 5567
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5586 5587 5588
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5589 5590 5591 5592 5593 5594 5595
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5596 5597 5598 5599
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5600
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5601
{
5602
	struct rq *rq = cpu_rq(cpu);
5603 5604 5605 5606 5607 5608 5609
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5610
		if (sd_parent_degenerate(tmp, parent)) {
5611
			tmp->parent = parent->parent;
5612 5613 5614
			if (parent->parent)
				parent->parent->child = tmp;
		}
5615 5616
	}

5617
	if (sd && sd_degenerate(sd)) {
5618
		sd = sd->parent;
5619 5620 5621
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5622 5623 5624

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5625
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5626 5627 5628
}

/* cpus with isolated domains */
5629
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5647 5648 5649 5650
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5651 5652 5653 5654 5655
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5656
static void
5657 5658 5659
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5660 5661 5662 5663 5664 5665
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5666 5667
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5668 5669 5670 5671 5672 5673
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5674
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5675 5676

		for_each_cpu_mask(j, span) {
5677
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5692
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5693

5694
#ifdef CONFIG_NUMA
5695

5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5748 5749
	cpumask_t span, nodemask;
	int i;
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5760

5761 5762 5763 5764 5765 5766 5767 5768
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5769
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5770

5771
/*
5772
 * SMT sched-domains:
5773
 */
L
Linus Torvalds 已提交
5774 5775
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5776
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5777

5778 5779
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5780
{
5781 5782
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5783 5784 5785 5786
	return cpu;
}
#endif

5787 5788 5789
/*
 * multi-core sched-domains:
 */
5790 5791
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5792
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5793 5794 5795
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5796 5797
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5798
{
5799
	int group;
5800 5801
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5802 5803 5804 5805
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5806 5807
}
#elif defined(CONFIG_SCHED_MC)
5808 5809
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5810
{
5811 5812
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5813 5814 5815 5816
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5817
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5818
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5819

5820 5821
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5822
{
5823
	int group;
5824
#ifdef CONFIG_SCHED_MC
5825
	cpumask_t mask = cpu_coregroup_map(cpu);
5826
	cpus_and(mask, mask, *cpu_map);
5827
	group = first_cpu(mask);
5828
#elif defined(CONFIG_SCHED_SMT)
5829 5830
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5831
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5832
#else
5833
	group = cpu;
L
Linus Torvalds 已提交
5834
#endif
5835 5836 5837
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5838 5839 5840 5841
}

#ifdef CONFIG_NUMA
/*
5842 5843 5844
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5845
 */
5846
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5847
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5848

5849
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5850
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5851

5852 5853
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5854
{
5855 5856 5857 5858 5859 5860 5861 5862 5863
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5864
}
5865

5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5886
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5887 5888 5889 5890 5891
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5892 5893
#endif

5894
#ifdef CONFIG_NUMA
5895 5896 5897
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5898
	int cpu, i;
5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5929 5930 5931 5932 5933
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5934

5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5961 5962
	sd->groups->__cpu_power = 0;

5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5973
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5974 5975 5976 5977 5978 5979 5980 5981
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5982
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5983 5984 5985 5986
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
5987
/*
5988 5989
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
5990
 */
5991
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
5992 5993
{
	int i;
5994 5995
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
5996
	int sd_allnodes = 0;
5997 5998 5999 6000

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
6001
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6002
					   GFP_KERNEL);
6003 6004
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6005
		return -ENOMEM;
6006 6007 6008
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6009 6010

	/*
6011
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6012
	 */
6013
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6014 6015 6016
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6017
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6018 6019

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6020 6021
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6022 6023 6024
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6025
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6026
			p = sd;
6027
			sd_allnodes = 1;
6028 6029 6030
		} else
			p = NULL;

L
Linus Torvalds 已提交
6031 6032
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6033 6034
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6035 6036
		if (p)
			p->child = sd;
6037
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6038 6039 6040 6041 6042 6043 6044
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6045 6046
		if (p)
			p->child = sd;
6047
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6048

6049 6050 6051 6052 6053 6054 6055
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6056
		p->child = sd;
6057
		cpu_to_core_group(i, cpu_map, &sd->groups);
6058 6059
#endif

L
Linus Torvalds 已提交
6060 6061 6062 6063 6064
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6065
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6066
		sd->parent = p;
6067
		p->child = sd;
6068
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6069 6070 6071 6072 6073
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6074
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6075
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6076
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6077 6078 6079
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6080 6081
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6082 6083 6084
	}
#endif

6085 6086 6087 6088 6089 6090 6091
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6092 6093
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6094 6095 6096
	}
#endif

L
Linus Torvalds 已提交
6097 6098 6099 6100
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6101
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6102 6103 6104
		if (cpus_empty(nodemask))
			continue;

6105
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6106 6107 6108 6109
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6110
	if (sd_allnodes)
I
Ingo Molnar 已提交
6111 6112
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6113 6114 6115 6116 6117 6118 6119 6120 6121 6122

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6123 6124
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6125
			continue;
6126
		}
6127 6128 6129 6130

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6131
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6132 6133 6134 6135 6136
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6137 6138 6139
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6140

6141 6142 6143
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6144
		sg->__cpu_power = 0;
6145
		sg->cpumask = nodemask;
6146
		sg->next = sg;
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6165 6166
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6167 6168 6169
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6170
				goto error;
6171
			}
6172
			sg->__cpu_power = 0;
6173
			sg->cpumask = tmp;
6174
			sg->next = prev->next;
6175 6176 6177 6178 6179
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6180 6181 6182
#endif

	/* Calculate CPU power for physical packages and nodes */
6183
#ifdef CONFIG_SCHED_SMT
6184
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6185 6186
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6187
		init_sched_groups_power(i, sd);
6188
	}
L
Linus Torvalds 已提交
6189
#endif
6190
#ifdef CONFIG_SCHED_MC
6191
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6192 6193
		struct sched_domain *sd = &per_cpu(core_domains, i);

6194
		init_sched_groups_power(i, sd);
6195 6196
	}
#endif
6197

6198
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6199 6200
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6201
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6202 6203
	}

6204
#ifdef CONFIG_NUMA
6205 6206
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6207

6208 6209
	if (sd_allnodes) {
		struct sched_group *sg;
6210

6211
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6212 6213
		init_numa_sched_groups_power(sg);
	}
6214 6215
#endif

L
Linus Torvalds 已提交
6216
	/* Attach the domains */
6217
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6218 6219 6220
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6221 6222
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6223 6224 6225 6226 6227
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6228 6229 6230

	return 0;

6231
#ifdef CONFIG_NUMA
6232 6233 6234
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6235
#endif
L
Linus Torvalds 已提交
6236
}
6237 6238 6239
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6240
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6241 6242
{
	cpumask_t cpu_default_map;
6243
	int err;
L
Linus Torvalds 已提交
6244

6245 6246 6247 6248 6249 6250 6251
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6252 6253 6254
	err = build_sched_domains(&cpu_default_map);

	return err;
6255 6256 6257
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6258
{
6259
	free_sched_groups(cpu_map);
6260
}
L
Linus Torvalds 已提交
6261

6262 6263 6264 6265
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6266
static void detach_destroy_domains(const cpumask_t *cpu_map)
6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6284
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6285 6286
{
	cpumask_t change_map;
6287
	int err = 0;
6288 6289 6290 6291 6292 6293 6294 6295

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6296 6297 6298 6299 6300
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6301 6302
}

6303
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6304
static int arch_reinit_sched_domains(void)
6305 6306 6307
{
	int err;

6308
	mutex_lock(&sched_hotcpu_mutex);
6309 6310
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6311
	mutex_unlock(&sched_hotcpu_mutex);
6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6338 6339
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6340 6341 6342
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6343 6344
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6345 6346 6347 6348 6349 6350 6351
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6352 6353
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6354 6355 6356
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6377 6378
#endif

L
Linus Torvalds 已提交
6379 6380 6381
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6382
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6383 6384 6385 6386 6387 6388 6389
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6390
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6391
	case CPU_DOWN_PREPARE:
6392
	case CPU_DOWN_PREPARE_FROZEN:
6393
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6394 6395 6396
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6397
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6398
	case CPU_DOWN_FAILED:
6399
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6400
	case CPU_ONLINE:
6401
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6402
	case CPU_DEAD:
6403
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6404 6405 6406 6407 6408 6409 6410 6411 6412
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6413
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6414 6415 6416 6417 6418 6419

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6420 6421
	cpumask_t non_isolated_cpus;

6422
	mutex_lock(&sched_hotcpu_mutex);
6423
	arch_init_sched_domains(&cpu_online_map);
6424
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6425 6426
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6427
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6428 6429
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6430

6431 6432
	init_sched_domain_sysctl();

6433 6434 6435
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6447

L
Linus Torvalds 已提交
6448 6449 6450 6451 6452
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6453 6454 6455 6456 6457 6458 6459 6460 6461
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->fair_clock = 1;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6462 6463
void __init sched_init(void)
{
6464
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6465 6466 6467 6468 6469 6470 6471 6472
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6473

6474
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6475
		struct rt_prio_array *array;
6476
		struct rq *rq;
L
Linus Torvalds 已提交
6477 6478 6479

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6480
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6481
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6482 6483 6484 6485 6486 6487
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
L
Linus Torvalds 已提交
6488

I
Ingo Molnar 已提交
6489 6490
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6491
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6492
		rq->sd = NULL;
L
Linus Torvalds 已提交
6493
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6494
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6495
		rq->push_cpu = 0;
6496
		rq->cpu = i;
L
Linus Torvalds 已提交
6497 6498 6499 6500 6501
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6502 6503 6504 6505
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6506
		}
6507
		highest_cpu = i;
I
Ingo Molnar 已提交
6508 6509
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6510 6511
	}

6512
	set_load_weight(&init_task);
6513

6514 6515 6516 6517
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6518
#ifdef CONFIG_SMP
6519
	nr_cpu_ids = highest_cpu + 1;
6520 6521 6522
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6523 6524 6525 6526
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6540 6541 6542 6543
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6544 6545 6546 6547 6548
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6549
#ifdef in_atomic
L
Linus Torvalds 已提交
6550 6551 6552 6553 6554 6555 6556
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6557
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6558 6559 6560
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6561
		debug_show_held_locks(current);
6562 6563
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6574
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6575
	unsigned long flags;
6576
	struct rq *rq;
I
Ingo Molnar 已提交
6577
	int on_rq;
L
Linus Torvalds 已提交
6578 6579

	read_lock_irq(&tasklist_lock);
6580
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6581 6582
		p->se.fair_key			= 0;
		p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
6583
		p->se.exec_start		= 0;
I
Ingo Molnar 已提交
6584
		p->se.wait_start_fair		= 0;
I
Ingo Molnar 已提交
6585 6586
		p->se.sleep_start_fair		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6587 6588 6589
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6590
#endif
I
Ingo Molnar 已提交
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600
		task_rq(p)->cfs.fair_clock	= 0;
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6601
			continue;
I
Ingo Molnar 已提交
6602
		}
L
Linus Torvalds 已提交
6603

6604 6605
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6606 6607 6608 6609 6610 6611 6612
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6613

I
Ingo Molnar 已提交
6614
		update_rq_clock(rq);
I
Ingo Molnar 已提交
6615
		on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
6616 6617
		if (on_rq)
			deactivate_task(rq, p, 0);
I
Ingo Molnar 已提交
6618 6619
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
I
Ingo Molnar 已提交
6620
			activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6621 6622
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6623 6624 6625
#ifdef CONFIG_SMP
 out_unlock:
#endif
6626 6627
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6628 6629
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6630 6631 6632 6633
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6652
struct task_struct *curr_task(int cpu)
6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6672
void set_curr_task(int cpu, struct task_struct *p)
6673 6674 6675 6676 6677
{
	cpu_curr(cpu) = p;
}

#endif