bitops.h 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * include/asm-xtensa/bitops.h
 *
 * Atomic operations that C can't guarantee us.Useful for resource counting etc.
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 2001 - 2005 Tensilica Inc.
 */

#ifndef _XTENSA_BITOPS_H
#define _XTENSA_BITOPS_H

#ifdef __KERNEL__

#include <asm/processor.h>
#include <asm/byteorder.h>
#include <asm/system.h>

#ifdef CONFIG_SMP
# error SMP not supported on this architecture
#endif

static __inline__ void set_bit(int nr, volatile void * addr)
{
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
	unsigned long flags;

	local_irq_save(flags);
	*a |= mask;
	local_irq_restore(flags);
}

static __inline__ void __set_bit(int nr, volatile unsigned long * addr)
{
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);

	*a |= mask;
}

static __inline__ void clear_bit(int nr, volatile void * addr)
{
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
	unsigned long flags;

	local_irq_save(flags);
	*a &= ~mask;
	local_irq_restore(flags);
}

static __inline__ void __clear_bit(int nr, volatile unsigned long *addr)
{
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);

	*a &= ~mask;
}

/*
 * clear_bit() doesn't provide any barrier for the compiler.
 */

#define smp_mb__before_clear_bit()	barrier()
#define smp_mb__after_clear_bit()	barrier()

static __inline__ void change_bit(int nr, volatile void * addr)
{
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
	unsigned long flags;

	local_irq_save(flags);
	*a ^= mask;
	local_irq_restore(flags);
}

static __inline__ void __change_bit(int nr, volatile void * addr)
{
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);

	*a ^= mask;
}

static __inline__ int test_and_set_bit(int nr, volatile void * addr)
{
  	unsigned long retval;
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
	unsigned long flags;

	local_irq_save(flags);
	retval = (mask & *a) != 0;
	*a |= mask;
	local_irq_restore(flags);

	return retval;
}

static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
{
  	unsigned long retval;
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);

	retval = (mask & *a) != 0;
	*a |= mask;

	return retval;
}

static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
{
  	unsigned long retval;
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
	unsigned long flags;

	local_irq_save(flags);
	retval = (mask & *a) != 0;
	*a &= ~mask;
	local_irq_restore(flags);

	return retval;
}

static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
{
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
  	unsigned long old = *a;

	*a = old & ~mask;
	return (old & mask) != 0;
}

static __inline__ int test_and_change_bit(int nr, volatile void * addr)
{
  	unsigned long retval;
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
	unsigned long flags;

	local_irq_save(flags);

	retval = (mask & *a) != 0;
	*a ^= mask;
	local_irq_restore(flags);

	return retval;
}

/*
 * non-atomic version; can be reordered
 */

static __inline__ int __test_and_change_bit(int nr, volatile void *addr)
{
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
	unsigned long old = *a;

	*a = old ^ mask;
	return (old & mask) != 0;
}

static __inline__ int test_bit(int nr, const volatile void *addr)
{
	return 1UL & (((const volatile unsigned int *)addr)[nr>>5] >> (nr&31));
}

177
#if XCHAL_HAVE_NSA
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

static __inline__ int __cntlz (unsigned long x)
{
	int lz;
	asm ("nsau %0, %1" : "=r" (lz) : "r" (x));
	return 31 - lz;
}

#else

static __inline__ int __cntlz (unsigned long x)
{
	unsigned long sum, x1, x2, x4, x8, x16;
	x1  = x & 0xAAAAAAAA;
	x2  = x & 0xCCCCCCCC;
	x4  = x & 0xF0F0F0F0;
	x8  = x & 0xFF00FF00;
	x16 = x & 0xFFFF0000;
	sum = x2 ? 2 : 0;
	sum += (x16 != 0) * 16;
	sum += (x8 != 0) * 8;
	sum += (x4 != 0) * 4;
	sum += (x1 != 0);

	return sum;
}

#endif

/*
 * ffz: Find first zero in word. Undefined if no zero exists.
 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
 */

static __inline__ int ffz(unsigned long x)
{
	if ((x = ~x) == 0)
		return 32;
	return __cntlz(x & -x);
}

/*
 * __ffs: Find first bit set in word. Return 0 for bit 0
 */

static __inline__ int __ffs(unsigned long x)
{
	return __cntlz(x & -x);
}

/*
 * ffs: Find first bit set in word. This is defined the same way as
 * the libc and compiler builtin ffs routines, therefore
 * differs in spirit from the above ffz (man ffs).
 */

static __inline__ int ffs(unsigned long x)
{
	return __cntlz(x & -x) + 1;
}

/*
 * fls: Find last (most-significant) bit set in word.
 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
 */

static __inline__ int fls (unsigned int x)
{
	return __cntlz(x);
}

static __inline__ int
find_next_bit(const unsigned long *addr, int size, int offset)
{
	const unsigned long *p = addr + (offset >> 5);
	unsigned long result = offset & ~31UL;
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 31UL;
	if (offset) {
		tmp = *p++;
		tmp &= ~0UL << offset;
		if (size < 32)
			goto found_first;
		if (tmp)
			goto found_middle;
		size -= 32;
		result += 32;
	}
	while (size >= 32) {
		if ((tmp = *p++) != 0)
			goto found_middle;
		result += 32;
		size -= 32;
	}
	if (!size)
		return result;
	tmp = *p;

found_first:
	tmp &= ~0UL >> (32 - size);
	if (tmp == 0UL)	/* Are any bits set? */
		return result + size;	/* Nope. */
found_middle:
	return result + __ffs(tmp);
}

/**
 * find_first_bit - find the first set bit in a memory region
 * @addr: The address to start the search at
 * @size: The maximum size to search
 *
 * Returns the bit-number of the first set bit, not the number of the byte
 * containing a bit.
 */

#define find_first_bit(addr, size) \
        find_next_bit((addr), (size), 0)

static __inline__ int
find_next_zero_bit(const unsigned long *addr, int size, int offset)
{
	const unsigned long *p = addr + (offset >> 5);
	unsigned long result = offset & ~31UL;
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 31UL;
	if (offset) {
		tmp = *p++;
		tmp |= ~0UL >> (32-offset);
		if (size < 32)
			goto found_first;
		if (~tmp)
			goto found_middle;
		size -= 32;
		result += 32;
	}
	while (size & ~31UL) {
		if (~(tmp = *p++))
			goto found_middle;
		result += 32;
		size -= 32;
	}
	if (!size)
		return result;
	tmp = *p;

found_first:
	tmp |= ~0UL << size;
found_middle:
	return result + ffz(tmp);
}

#define find_first_zero_bit(addr, size) \
        find_next_zero_bit((addr), (size), 0)

#ifdef __XTENSA_EL__
# define ext2_set_bit(nr,addr) __test_and_set_bit((nr), (addr))
# define ext2_set_bit_atomic(lock,nr,addr) test_and_set_bit((nr),(addr))
# define ext2_clear_bit(nr,addr) __test_and_clear_bit((nr), (addr))
# define ext2_clear_bit_atomic(lock,nr,addr) test_and_clear_bit((nr),(addr))
# define ext2_test_bit(nr,addr) test_bit((nr), (addr))
# define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr),(size))
# define ext2_find_next_zero_bit(addr, size, offset) \
                find_next_zero_bit((addr), (size), (offset))
#elif defined(__XTENSA_EB__)
# define ext2_set_bit(nr,addr) __test_and_set_bit((nr) ^ 0x18, (addr))
# define ext2_set_bit_atomic(lock,nr,addr) test_and_set_bit((nr) ^ 0x18, (addr))
# define ext2_clear_bit(nr,addr) __test_and_clear_bit((nr) ^ 18, (addr))
# define ext2_clear_bit_atomic(lock,nr,addr) test_and_clear_bit((nr)^0x18,(addr))
# define ext2_test_bit(nr,addr) test_bit((nr) ^ 0x18, (addr))
# define ext2_find_first_zero_bit(addr, size) \
        ext2_find_next_zero_bit((addr), (size), 0)

static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
{
	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
	unsigned long result = offset & ~31UL;
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 31UL;
	if(offset) {
		/* We hold the little endian value in tmp, but then the
		 * shift is illegal. So we could keep a big endian value
		 * in tmp, like this:
		 *
		 * tmp = __swab32(*(p++));
		 * tmp |= ~0UL >> (32-offset);
		 *
		 * but this would decrease preformance, so we change the
		 * shift:
		 */
		tmp = *(p++);
		tmp |= __swab32(~0UL >> (32-offset));
		if(size < 32)
			goto found_first;
		if(~tmp)
			goto found_middle;
		size -= 32;
		result += 32;
	}
	while(size & ~31UL) {
		if(~(tmp = *(p++)))
			goto found_middle;
		result += 32;
		size -= 32;
	}
	if(!size)
		return result;
	tmp = *p;

found_first:
	/* tmp is little endian, so we would have to swab the shift,
	 * see above. But then we have to swab tmp below for ffz, so
	 * we might as well do this here.
	 */
	return result + ffz(__swab32(tmp) | (~0UL << size));
found_middle:
	return result + ffz(__swab32(tmp));
}

#else
# error processor byte order undefined!
#endif


#define hweight32(x)	generic_hweight32(x)
#define hweight16(x)	generic_hweight16(x)
#define hweight8(x)	generic_hweight8(x)

/*
 * Find the first bit set in a 140-bit bitmap.
 * The first 100 bits are unlikely to be set.
 */

static inline int sched_find_first_bit(const unsigned long *b)
{
	if (unlikely(b[0]))
		return __ffs(b[0]);
	if (unlikely(b[1]))
		return __ffs(b[1]) + 32;
	if (unlikely(b[2]))
		return __ffs(b[2]) + 64;
	if (b[3])
		return __ffs(b[3]) + 96;
	return __ffs(b[4]) + 128;
}


/* Bitmap functions for the minix filesystem.  */

#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
#define minix_set_bit(nr,addr) set_bit(nr,addr)
#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)

#endif	/* __KERNEL__ */

#endif	/* _XTENSA_BITOPS_H */