xc5000.c 36.3 KB
Newer Older
1 2 3 4
/*
 *  Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
 *
 *  Copyright (c) 2007 Xceive Corporation
5
 *  Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6
 *  Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
26
#include <linux/videodev2.h>
27
#include <linux/delay.h>
28
#include <linux/workqueue.h>
29 30 31 32 33 34
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>

#include "dvb_frontend.h"

#include "xc5000.h"
35
#include "tuner-i2c.h"
36 37 38 39 40

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");

41 42 43 44 45 46
static int no_poweroff;
module_param(no_poweroff, int, 0644);
MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
	"\t\t1 keep device energized and with tuner ready all the times.\n"
	"\t\tFaster, but consumes more power and keeps the device hotter");

47 48 49
static DEFINE_MUTEX(xc5000_list_mutex);
static LIST_HEAD(hybrid_tuner_instance_list);

50
#define dprintk(level, fmt, arg...) if (debug >= level) \
51 52
	printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)

53
struct xc5000_priv {
54 55
	struct tuner_i2c_props i2c_props;
	struct list_head hybrid_tuner_instance_list;
56

57
	u32 if_khz;
58
	u16 xtal_khz;
59
	u32 freq_hz, freq_offset;
60 61
	u32 bandwidth;
	u8  video_standard;
62
	unsigned int mode;
63
	u8  rf_mode;
64
	u8  radio_input;
65

66
	int chip_id;
67
	u16 pll_register_no;
68 69
	u8 init_status_supported;
	u8 fw_checksum_supported;
70 71 72

	struct dvb_frontend *fe;
	struct delayed_work timer_sleep;
73 74

	const struct firmware   *firmware;
75 76
};

77
/* Misc Defines */
78
#define MAX_TV_STANDARD			24
79 80
#define XC_MAX_I2C_WRITE_LENGTH		64

81 82 83
/* Time to suspend after the .sleep callback is called */
#define XC5000_SLEEP_TIME		5000 /* ms */

84 85 86 87
/* Signal Types */
#define XC_RF_MODE_AIR			0
#define XC_RF_MODE_CABLE		1

88 89
/* Product id */
#define XC_PRODUCT_ID_FW_NOT_LOADED	0x2000
90
#define XC_PRODUCT_ID_FW_LOADED	0x1388
91

92 93 94 95 96 97 98 99
/* Registers */
#define XREG_INIT         0x00
#define XREG_VIDEO_MODE   0x01
#define XREG_AUDIO_MODE   0x02
#define XREG_RF_FREQ      0x03
#define XREG_D_CODE       0x04
#define XREG_IF_OUT       0x05
#define XREG_SEEK_MODE    0x07
100
#define XREG_POWER_DOWN   0x0A /* Obsolete */
101 102
/* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */
#define XREG_OUTPUT_AMP   0x0B
103 104 105
#define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
#define XREG_SMOOTHEDCVBS 0x0E
#define XREG_XTALFREQ     0x0F
106
#define XREG_FINERFREQ    0x10
107 108 109 110 111 112 113 114 115 116 117 118
#define XREG_DDIMODE      0x11

#define XREG_ADC_ENV      0x00
#define XREG_QUALITY      0x01
#define XREG_FRAME_LINES  0x02
#define XREG_HSYNC_FREQ   0x03
#define XREG_LOCK         0x04
#define XREG_FREQ_ERROR   0x05
#define XREG_SNR          0x06
#define XREG_VERSION      0x07
#define XREG_PRODUCT_ID   0x08
#define XREG_BUSY         0x09
119
#define XREG_BUILD        0x0D
120
#define XREG_TOTALGAIN    0x0F
121 122
#define XREG_FW_CHECKSUM  0x12
#define XREG_INIT_STATUS  0x13
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

/*
   Basic firmware description. This will remain with
   the driver for documentation purposes.

   This represents an I2C firmware file encoded as a
   string of unsigned char. Format is as follows:

   char[0  ]=len0_MSB  -> len = len_MSB * 256 + len_LSB
   char[1  ]=len0_LSB  -> length of first write transaction
   char[2  ]=data0 -> first byte to be sent
   char[3  ]=data1
   char[4  ]=data2
   char[   ]=...
   char[M  ]=dataN  -> last byte to be sent
   char[M+1]=len1_MSB  -> len = len_MSB * 256 + len_LSB
   char[M+2]=len1_LSB  -> length of second write transaction
   char[M+3]=data0
   char[M+4]=data1
   ...
   etc.

   The [len] value should be interpreted as follows:

   len= len_MSB _ len_LSB
   len=1111_1111_1111_1111   : End of I2C_SEQUENCE
   len=0000_0000_0000_0000   : Reset command: Do hardware reset
   len=0NNN_NNNN_NNNN_NNNN   : Normal transaction: number of bytes = {1:32767)
   len=1WWW_WWWW_WWWW_WWWW   : Wait command: wait for {1:32767} ms

   For the RESET and WAIT commands, the two following bytes will contain
   immediately the length of the following transaction.

*/
157
struct XC_TV_STANDARD {
158 159 160
	char *name;
	u16 audio_mode;
	u16 video_mode;
161
};
162 163

/* Tuner standards */
164 165 166
#define MN_NTSC_PAL_BTSC	0
#define MN_NTSC_PAL_A2		1
#define MN_NTSC_PAL_EIAJ	2
167
#define MN_NTSC_PAL_MONO	3
168 169 170 171 172 173 174 175 176
#define BG_PAL_A2		4
#define BG_PAL_NICAM		5
#define BG_PAL_MONO		6
#define I_PAL_NICAM		7
#define I_PAL_NICAM_MONO	8
#define DK_PAL_A2		9
#define DK_PAL_NICAM		10
#define DK_PAL_MONO		11
#define DK_SECAM_A2DK1		12
177 178
#define DK_SECAM_A2LDK3		13
#define DK_SECAM_A2MONO		14
179 180 181 182 183 184
#define L_SECAM_NICAM		15
#define LC_SECAM_NICAM		16
#define DTV6			17
#define DTV8			18
#define DTV7_8			19
#define DTV7			20
185 186
#define FM_RADIO_INPUT2		21
#define FM_RADIO_INPUT1		22
187
#define FM_RADIO_INPUT1_MONO	23
188

189
static struct XC_TV_STANDARD xc5000_standard[MAX_TV_STANDARD] = {
190 191 192 193 194 195 196 197 198 199 200 201 202
	{"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
	{"M/N-NTSC/PAL-A2",   0x0600, 0x8020},
	{"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
	{"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
	{"B/G-PAL-A2",        0x0A00, 0x8049},
	{"B/G-PAL-NICAM",     0x0C04, 0x8049},
	{"B/G-PAL-MONO",      0x0878, 0x8059},
	{"I-PAL-NICAM",       0x1080, 0x8009},
	{"I-PAL-NICAM-MONO",  0x0E78, 0x8009},
	{"D/K-PAL-A2",        0x1600, 0x8009},
	{"D/K-PAL-NICAM",     0x0E80, 0x8009},
	{"D/K-PAL-MONO",      0x1478, 0x8009},
	{"D/K-SECAM-A2 DK1",  0x1200, 0x8009},
203
	{"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
204 205 206 207 208 209 210 211
	{"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
	{"L-SECAM-NICAM",     0x8E82, 0x0009},
	{"L'-SECAM-NICAM",    0x8E82, 0x4009},
	{"DTV6",              0x00C0, 0x8002},
	{"DTV8",              0x00C0, 0x800B},
	{"DTV7/8",            0x00C0, 0x801B},
	{"DTV7",              0x00C0, 0x8007},
	{"FM Radio-INPUT2",   0x9802, 0x9002},
212 213
	{"FM Radio-INPUT1",   0x0208, 0x9002},
	{"FM Radio-INPUT1_MONO", 0x0278, 0x9002}
214 215
};

216 217 218 219

struct xc5000_fw_cfg {
	char *name;
	u16 size;
220
	u16 pll_reg;
221 222
	u8 init_status_supported;
	u8 fw_checksum_supported;
223 224
};

225
#define XC5000A_FIRMWARE "dvb-fe-xc5000-1.6.114.fw"
226
static const struct xc5000_fw_cfg xc5000a_1_6_114 = {
227
	.name = XC5000A_FIRMWARE,
228
	.size = 12401,
229
	.pll_reg = 0x806c,
230 231
};

232
#define XC5000C_FIRMWARE "dvb-fe-xc5000c-4.1.30.7.fw"
233
static const struct xc5000_fw_cfg xc5000c_41_024_5 = {
234
	.name = XC5000C_FIRMWARE,
235
	.size = 16497,
236
	.pll_reg = 0x13,
237 238
	.init_status_supported = 1,
	.fw_checksum_supported = 1,
239 240
};

241
static inline const struct xc5000_fw_cfg *xc5000_assign_firmware(int chip_id)
242
{
243
	switch (chip_id) {
244
	default:
245
	case XC5000A:
246
		return &xc5000a_1_6_114;
247
	case XC5000C:
248
		return &xc5000c_41_024_5;
249 250 251
	}
}

252
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force);
253
static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
254
static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val);
255
static int xc5000_tuner_reset(struct dvb_frontend *fe);
256

257
static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
258
{
259 260 261 262 263
	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
			       .flags = 0, .buf = buf, .len = len };

	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
		printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len);
264
		return -EREMOTEIO;
265
	}
266
	return 0;
267 268
}

269
#if 0
270 271 272
/* This routine is never used because the only time we read data from the
   i2c bus is when we read registers, and we want that to be an atomic i2c
   transaction in case we are on a multi-master bus */
273
static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
274
{
275 276 277 278 279 280 281 282
	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
		.flags = I2C_M_RD, .buf = buf, .len = len };

	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
		printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len);
		return -EREMOTEIO;
	}
	return 0;
283
}
284
#endif
285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
{
	u8 buf[2] = { reg >> 8, reg & 0xff };
	u8 bval[2] = { 0, 0 };
	struct i2c_msg msg[2] = {
		{ .addr = priv->i2c_props.addr,
			.flags = 0, .buf = &buf[0], .len = 2 },
		{ .addr = priv->i2c_props.addr,
			.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
	};

	if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
		printk(KERN_WARNING "xc5000: I2C read failed\n");
		return -EREMOTEIO;
	}

	*val = (bval[0] << 8) | bval[1];
303
	return 0;
304 305
}

306
static int xc5000_tuner_reset(struct dvb_frontend *fe)
307 308 309 310
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;

311
	dprintk(1, "%s()\n", __func__);
312

313 314
	if (fe->callback) {
		ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
315 316
					   fe->dvb->priv :
					   priv->i2c_props.adap->algo_data,
317
					   DVB_FRONTEND_COMPONENT_TUNER,
318
					   XC5000_TUNER_RESET, 0);
319
		if (ret) {
320
			printk(KERN_ERR "xc5000: reset failed\n");
321
			return ret;
322 323
		}
	} else {
324
		printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
325
		return -EINVAL;
326
	}
327
	return 0;
328 329
}

330
static int xc_write_reg(struct xc5000_priv *priv, u16 reg_addr, u16 i2c_data)
331
{
332
	u8 buf[4];
333
	int watch_dog_timer = 100;
334 335
	int result;

336 337 338 339
	buf[0] = (reg_addr >> 8) & 0xFF;
	buf[1] = reg_addr & 0xFF;
	buf[2] = (i2c_data >> 8) & 0xFF;
	buf[3] = i2c_data & 0xFF;
340
	result = xc_send_i2c_data(priv, buf, 4);
341
	if (result == 0) {
342
		/* wait for busy flag to clear */
343
		while ((watch_dog_timer > 0) && (result == 0)) {
344
			result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf);
345
			if (result == 0) {
346 347
				if ((buf[0] == 0) && (buf[1] == 0)) {
					/* busy flag cleared */
348
					break;
349
				} else {
350
					msleep(5); /* wait 5 ms */
351
					watch_dog_timer--;
352 353 354 355
				}
			}
		}
	}
356
	if (watch_dog_timer <= 0)
357
		result = -EREMOTEIO;
358 359 360 361

	return result;
}

362
static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
363 364 365 366 367
{
	struct xc5000_priv *priv = fe->tuner_priv;

	int i, nbytes_to_send, result;
	unsigned int len, pos, index;
368
	u8 buf[XC_MAX_I2C_WRITE_LENGTH];
369

370 371 372 373
	index = 0;
	while ((i2c_sequence[index] != 0xFF) ||
		(i2c_sequence[index + 1] != 0xFF)) {
		len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
374
		if (len == 0x0000) {
375
			/* RESET command */
376
			result = xc5000_tuner_reset(fe);
377
			index += 2;
378
			if (result != 0)
379 380 381
				return result;
		} else if (len & 0x8000) {
			/* WAIT command */
382
			msleep(len & 0x7FFF);
383 384 385 386 387 388 389 390 391 392
			index += 2;
		} else {
			/* Send i2c data whilst ensuring individual transactions
			 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
			 */
			index += 2;
			buf[0] = i2c_sequence[index];
			buf[1] = i2c_sequence[index + 1];
			pos = 2;
			while (pos < len) {
393 394 395 396
				if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
					nbytes_to_send =
						XC_MAX_I2C_WRITE_LENGTH;
				else
397
					nbytes_to_send = (len - pos + 2);
398 399 400
				for (i = 2; i < nbytes_to_send; i++) {
					buf[i] = i2c_sequence[index + pos +
						i - 2];
401
				}
402 403
				result = xc_send_i2c_data(priv, buf,
					nbytes_to_send);
404

405
				if (result != 0)
406 407 408 409 410 411 412
					return result;

				pos += nbytes_to_send - 2;
			}
			index += len;
		}
	}
413
	return 0;
414 415
}

416
static int xc_initialize(struct xc5000_priv *priv)
417
{
418
	dprintk(1, "%s()\n", __func__);
419 420 421
	return xc_write_reg(priv, XREG_INIT, 0);
}

422 423
static int xc_set_tv_standard(struct xc5000_priv *priv,
	u16 video_mode, u16 audio_mode, u8 radio_mode)
424 425
{
	int ret;
426 427
	dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, video_mode, audio_mode);
	if (radio_mode) {
428 429
		dprintk(1, "%s() Standard = %s\n",
			__func__,
430
			xc5000_standard[radio_mode].name);
431 432 433
	} else {
		dprintk(1, "%s() Standard = %s\n",
			__func__,
434
			xc5000_standard[priv->video_standard].name);
435
	}
436

437
	ret = xc_write_reg(priv, XREG_VIDEO_MODE, video_mode);
438
	if (ret == 0)
439
		ret = xc_write_reg(priv, XREG_AUDIO_MODE, audio_mode);
440 441 442 443

	return ret;
}

444
static int xc_set_signal_source(struct xc5000_priv *priv, u16 rf_mode)
445
{
446
	dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
447 448
		rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");

449
	if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
450 451 452
		rf_mode = XC_RF_MODE_CABLE;
		printk(KERN_ERR
			"%s(), Invalid mode, defaulting to CABLE",
453
			__func__);
454 455 456 457
	}
	return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
}

458
static const struct dvb_tuner_ops xc5000_tuner_ops;
459

460
static int xc_set_rf_frequency(struct xc5000_priv *priv, u32 freq_hz)
461 462
{
	u16 freq_code;
463

464
	dprintk(1, "%s(%u)\n", __func__, freq_hz);
465

466 467
	if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
		(freq_hz < xc5000_tuner_ops.info.frequency_min))
468
		return -EINVAL;
469

470 471
	freq_code = (u16)(freq_hz / 15625);

472 473 474 475
	/* Starting in firmware version 1.1.44, Xceive recommends using the
	   FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
	   only be used for fast scanning for channel lock) */
	return xc_write_reg(priv, XREG_FINERFREQ, freq_code);
476 477 478
}


479 480 481 482
static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
{
	u32 freq_code = (freq_khz * 1024)/1000;
	dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
483
		__func__, freq_khz, freq_code);
484

485
	return xc_write_reg(priv, XREG_IF_OUT, freq_code);
486 487 488
}


489
static int xc_get_adc_envelope(struct xc5000_priv *priv, u16 *adc_envelope)
490
{
491
	return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope);
492 493
}

494
static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
495 496
{
	int result;
497
	u16 reg_data;
498 499
	u32 tmp;

500
	result = xc5000_readreg(priv, XREG_FREQ_ERROR, &reg_data);
501
	if (result != 0)
502 503
		return result;

504
	tmp = (u32)reg_data;
505
	(*freq_error_hz) = (tmp * 15625) / 1000;
506 507 508
	return result;
}

509
static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
510
{
511
	return xc5000_readreg(priv, XREG_LOCK, lock_status);
512 513
}

514 515 516
static int xc_get_version(struct xc5000_priv *priv,
	u8 *hw_majorversion, u8 *hw_minorversion,
	u8 *fw_majorversion, u8 *fw_minorversion)
517
{
518
	u16 data;
519 520
	int result;

521
	result = xc5000_readreg(priv, XREG_VERSION, &data);
522
	if (result != 0)
523 524
		return result;

525 526 527 528
	(*hw_majorversion) = (data >> 12) & 0x0F;
	(*hw_minorversion) = (data >>  8) & 0x0F;
	(*fw_majorversion) = (data >>  4) & 0x0F;
	(*fw_minorversion) = data & 0x0F;
529 530 531 532

	return 0;
}

533 534 535 536 537
static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev)
{
	return xc5000_readreg(priv, XREG_BUILD, buildrev);
}

538
static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
539
{
540
	u16 reg_data;
541 542
	int result;

543
	result = xc5000_readreg(priv, XREG_HSYNC_FREQ, &reg_data);
544
	if (result != 0)
545 546
		return result;

547
	(*hsync_freq_hz) = ((reg_data & 0x0fff) * 763)/100;
548 549 550
	return result;
}

551
static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
552
{
553
	return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines);
554 555
}

556
static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
557
{
558
	return xc5000_readreg(priv, XREG_QUALITY, quality);
559 560
}

561 562 563 564 565 566 567 568 569 570
static int xc_get_analogsnr(struct xc5000_priv *priv, u16 *snr)
{
	return xc5000_readreg(priv, XREG_SNR, snr);
}

static int xc_get_totalgain(struct xc5000_priv *priv, u16 *totalgain)
{
	return xc5000_readreg(priv, XREG_TOTALGAIN, totalgain);
}

571
static u16 wait_for_lock(struct xc5000_priv *priv)
572
{
573 574
	u16 lock_state = 0;
	int watch_dog_count = 40;
575

576 577 578
	while ((lock_state == 0) && (watch_dog_count > 0)) {
		xc_get_lock_status(priv, &lock_state);
		if (lock_state != 1) {
579
			msleep(5);
580
			watch_dog_count--;
581 582
		}
	}
583
	return lock_state;
584 585
}

586 587 588
#define XC_TUNE_ANALOG  0
#define XC_TUNE_DIGITAL 1
static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode)
589 590 591
{
	int found = 0;

592
	dprintk(1, "%s(%u)\n", __func__, freq_hz);
593

594
	if (xc_set_rf_frequency(priv, freq_hz) != 0)
595 596
		return 0;

597
	if (mode == XC_TUNE_ANALOG) {
598
		if (wait_for_lock(priv) == 1)
599 600
			found = 1;
	}
601 602 603 604

	return found;
}

605 606 607
static int xc_set_xtal(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
608
	int ret = 0;
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

	switch (priv->chip_id) {
	default:
	case XC5000A:
		/* 32.000 MHz xtal is default */
		break;
	case XC5000C:
		switch (priv->xtal_khz) {
		default:
		case 32000:
			/* 32.000 MHz xtal is default */
			break;
		case 31875:
			/* 31.875 MHz xtal configuration */
			ret = xc_write_reg(priv, 0x000f, 0x8081);
			break;
		}
		break;
	}
	return ret;
}
630

631 632 633
static int xc5000_fwupload(struct dvb_frontend *fe,
			   const struct xc5000_fw_cfg *desired_fw,
			   const struct firmware *fw)
634 635 636 637
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;

638
	/* request the firmware, this will block and timeout */
639
	dprintk(1, "waiting for firmware upload (%s)...\n",
640
		desired_fw->name);
641

642 643 644
	priv->pll_register_no = desired_fw->pll_reg;
	priv->init_status_supported = desired_fw->init_status_supported;
	priv->fw_checksum_supported = desired_fw->fw_checksum_supported;
645 646


647 648 649 650 651 652 653 654
	dprintk(1, "firmware uploading...\n");
	ret = xc_load_i2c_sequence(fe,  fw->data);
	if (!ret) {
		ret = xc_set_xtal(fe);
		dprintk(1, "Firmware upload complete...\n");
	} else
		printk(KERN_ERR "xc5000: firmware upload failed...\n");

655 656 657
	return ret;
}

658
static void xc_debug_dump(struct xc5000_priv *priv)
659
{
660 661 662 663 664 665
	u16 adc_envelope;
	u32 freq_error_hz = 0;
	u16 lock_status;
	u32 hsync_freq_hz = 0;
	u16 frame_lines;
	u16 quality;
666 667
	u16 snr;
	u16 totalgain;
668 669
	u8 hw_majorversion = 0, hw_minorversion = 0;
	u8 fw_majorversion = 0, fw_minorversion = 0;
670
	u16 fw_buildversion = 0;
671
	u16 regval;
672 673 674 675 676

	/* Wait for stats to stabilize.
	 * Frame Lines needs two frame times after initial lock
	 * before it is valid.
	 */
677
	msleep(100);
678

679
	xc_get_adc_envelope(priv,  &adc_envelope);
680
	dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
681

682 683
	xc_get_frequency_error(priv, &freq_error_hz);
	dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
684

685 686
	xc_get_lock_status(priv,  &lock_status);
	dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
687 688 689
		lock_status);

	xc_get_version(priv,  &hw_majorversion, &hw_minorversion,
690
		&fw_majorversion, &fw_minorversion);
691
	xc_get_buildversion(priv,  &fw_buildversion);
692
	dprintk(1, "*** HW: V%d.%d, FW: V %d.%d.%d\n",
693
		hw_majorversion, hw_minorversion,
694
		fw_majorversion, fw_minorversion, fw_buildversion);
695

696 697
	xc_get_hsync_freq(priv,  &hsync_freq_hz);
	dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
698

699 700
	xc_get_frame_lines(priv,  &frame_lines);
	dprintk(1, "*** Frame lines = %d\n", frame_lines);
701

702
	xc_get_quality(priv,  &quality);
703
	dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality & 0x07);
704 705 706 707 708 709 710

	xc_get_analogsnr(priv,  &snr);
	dprintk(1, "*** Unweighted analog SNR = %d dB\n", snr & 0x3f);

	xc_get_totalgain(priv,  &totalgain);
	dprintk(1, "*** Total gain = %d.%d dB\n", totalgain / 256,
		(totalgain % 256) * 100 / 256);
711 712 713 714 715

	if (priv->pll_register_no) {
		xc5000_readreg(priv, priv->pll_register_no, &regval);
		dprintk(1, "*** PLL lock status = 0x%04x\n", regval);
	}
716 717
}

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
static int xc5000_tune_digital(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;
	u32 bw = fe->dtv_property_cache.bandwidth_hz;

	ret = xc_set_signal_source(priv, priv->rf_mode);
	if (ret != 0) {
		printk(KERN_ERR
			"xc5000: xc_set_signal_source(%d) failed\n",
			priv->rf_mode);
		return -EREMOTEIO;
	}

	ret = xc_set_tv_standard(priv,
		xc5000_standard[priv->video_standard].video_mode,
		xc5000_standard[priv->video_standard].audio_mode, 0);
	if (ret != 0) {
		printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n");
		return -EREMOTEIO;
	}

	ret = xc_set_IF_frequency(priv, priv->if_khz);
	if (ret != 0) {
		printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
		       priv->if_khz);
		return -EIO;
	}

	xc_write_reg(priv, XREG_OUTPUT_AMP, 0x8a);

	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);

	if (debug)
		xc_debug_dump(priv);

	priv->bandwidth = bw;

	return 0;
}

759
static int xc5000_set_digital_params(struct dvb_frontend *fe)
760
{
761
	int b;
762
	struct xc5000_priv *priv = fe->tuner_priv;
763 764 765
	u32 bw = fe->dtv_property_cache.bandwidth_hz;
	u32 freq = fe->dtv_property_cache.frequency;
	u32 delsys  = fe->dtv_property_cache.delivery_system;
766

767
	if (xc_load_fw_and_init_tuner(fe, 0) != 0) {
768 769
		dprintk(1, "Unable to load firmware and init tuner\n");
		return -EINVAL;
770
	}
771

772
	dprintk(1, "%s() frequency=%d (Hz)\n", __func__, freq);
773

774 775 776 777
	switch (delsys) {
	case SYS_ATSC:
		dprintk(1, "%s() VSB modulation\n", __func__);
		priv->rf_mode = XC_RF_MODE_AIR;
778
		priv->freq_offset = 1750000;
779 780 781 782 783
		priv->video_standard = DTV6;
		break;
	case SYS_DVBC_ANNEX_B:
		dprintk(1, "%s() QAM modulation\n", __func__);
		priv->rf_mode = XC_RF_MODE_CABLE;
784
		priv->freq_offset = 1750000;
785 786
		priv->video_standard = DTV6;
		break;
787 788 789 790 791 792
	case SYS_ISDBT:
		/* All ISDB-T are currently for 6 MHz bw */
		if (!bw)
			bw = 6000000;
		/* fall to OFDM handling */
	case SYS_DMBTH:
793 794
	case SYS_DVBT:
	case SYS_DVBT2:
795
		dprintk(1, "%s() OFDM\n", __func__);
796 797
		switch (bw) {
		case 6000000:
798
			priv->video_standard = DTV6;
799
			priv->freq_offset = 1750000;
800
			break;
801
		case 7000000:
802
			priv->video_standard = DTV7;
803
			priv->freq_offset = 2250000;
804
			break;
805
		case 8000000:
806
			priv->video_standard = DTV8;
807
			priv->freq_offset = 2750000;
808 809 810 811 812
			break;
		default:
			printk(KERN_ERR "xc5000 bandwidth not set!\n");
			return -EINVAL;
		}
813
		priv->rf_mode = XC_RF_MODE_AIR;
814
		break;
815 816 817 818 819 820
	case SYS_DVBC_ANNEX_A:
	case SYS_DVBC_ANNEX_C:
		dprintk(1, "%s() QAM modulation\n", __func__);
		priv->rf_mode = XC_RF_MODE_CABLE;
		if (bw <= 6000000) {
			priv->video_standard = DTV6;
821
			priv->freq_offset = 1750000;
822 823 824
			b = 6;
		} else if (bw <= 7000000) {
			priv->video_standard = DTV7;
825
			priv->freq_offset = 2250000;
826 827 828
			b = 7;
		} else {
			priv->video_standard = DTV7_8;
829
			priv->freq_offset = 2750000;
830
			b = 8;
831
		}
832 833 834 835 836
		dprintk(1, "%s() Bandwidth %dMHz (%d)\n", __func__,
			b, bw);
		break;
	default:
		printk(KERN_ERR "xc5000: delivery system is not supported!\n");
837 838 839
		return -EINVAL;
	}

840
	priv->freq_hz = freq - priv->freq_offset;
841
	priv->mode = V4L2_TUNER_DIGITAL_TV;
842

843 844
	dprintk(1, "%s() frequency=%d (compensated to %d)\n",
		__func__, freq, priv->freq_hz);
845

846
	return xc5000_tune_digital(fe);
847 848
}

849 850 851 852 853 854 855
static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;
	u16 id;

	ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
856
	if (ret == 0) {
857
		if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
858
			ret = -ENOENT;
859
		else
860
			ret = 0;
861 862 863
	}

	dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
864
		ret == 0 ? "True" : "False", id);
865 866 867
	return ret;
}

868 869
static void xc5000_config_tv(struct dvb_frontend *fe,
			     struct analog_parameters *params)
870 871 872 873
{
	struct xc5000_priv *priv = fe->tuner_priv;

	dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
874
		__func__, params->frequency);
875

876 877 878 879
	/* Fix me: it could be air. */
	priv->rf_mode = params->mode;
	if (params->mode > XC_RF_MODE_CABLE)
		priv->rf_mode = XC_RF_MODE_CABLE;
880 881 882 883 884 885 886

	/* params->frequency is in units of 62.5khz */
	priv->freq_hz = params->frequency * 62500;

	/* FIX ME: Some video standards may have several possible audio
		   standards. We simply default to one of them here.
	 */
887
	if (params->std & V4L2_STD_MN) {
888 889
		/* default to BTSC audio standard */
		priv->video_standard = MN_NTSC_PAL_BTSC;
890
		return;
891 892
	}

893
	if (params->std & V4L2_STD_PAL_BG) {
894 895
		/* default to NICAM audio standard */
		priv->video_standard = BG_PAL_NICAM;
896
		return;
897 898
	}

899
	if (params->std & V4L2_STD_PAL_I) {
900 901
		/* default to NICAM audio standard */
		priv->video_standard = I_PAL_NICAM;
902
		return;
903 904
	}

905
	if (params->std & V4L2_STD_PAL_DK) {
906 907
		/* default to NICAM audio standard */
		priv->video_standard = DK_PAL_NICAM;
908
		return;
909 910
	}

911
	if (params->std & V4L2_STD_SECAM_DK) {
912 913
		/* default to A2 DK1 audio standard */
		priv->video_standard = DK_SECAM_A2DK1;
914
		return;
915 916
	}

917
	if (params->std & V4L2_STD_SECAM_L) {
918
		priv->video_standard = L_SECAM_NICAM;
919
		return;
920 921
	}

922
	if (params->std & V4L2_STD_SECAM_LC) {
923
		priv->video_standard = LC_SECAM_NICAM;
924
		return;
925
	}
926 927 928 929 930 931 932
}

static int xc5000_set_tv_freq(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	u16 pll_lock_status;
	int ret;
933 934

tune_channel:
935
	ret = xc_set_signal_source(priv, priv->rf_mode);
936
	if (ret != 0) {
937
		printk(KERN_ERR
938
			"xc5000: xc_set_signal_source(%d) failed\n",
939 940 941 942
			priv->rf_mode);
		return -EREMOTEIO;
	}

943 944 945
	ret = xc_set_tv_standard(priv,
		xc5000_standard[priv->video_standard].video_mode,
		xc5000_standard[priv->video_standard].audio_mode, 0);
946
	if (ret != 0) {
947
		printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n");
948 949 950
		return -EREMOTEIO;
	}

951 952
	xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);

953
	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
954 955 956 957

	if (debug)
		xc_debug_dump(priv);

958 959 960 961 962 963 964
	if (priv->pll_register_no != 0) {
		msleep(20);
		xc5000_readreg(priv, priv->pll_register_no, &pll_lock_status);
		if (pll_lock_status > 63) {
			/* PLL is unlocked, force reload of the firmware */
			dprintk(1, "xc5000: PLL not locked (0x%x).  Reloading...\n",
				pll_lock_status);
965
			if (xc_load_fw_and_init_tuner(fe, 1) != 0) {
966 967 968 969 970 971 972
				printk(KERN_ERR "xc5000: Unable to reload fw\n");
				return -EREMOTEIO;
			}
			goto tune_channel;
		}
	}

973 974 975
	return 0;
}

976 977 978
static int xc5000_config_radio(struct dvb_frontend *fe,
			       struct analog_parameters *params)

979 980 981 982 983 984
{
	struct xc5000_priv *priv = fe->tuner_priv;

	dprintk(1, "%s() frequency=%d (in units of khz)\n",
		__func__, params->frequency);

985 986 987 988 989
	if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) {
		dprintk(1, "%s() radio input not configured\n", __func__);
		return -EINVAL;
	}

990 991 992 993 994 995 996 997 998 999 1000 1001
	priv->freq_hz = params->frequency * 125 / 2;
	priv->rf_mode = XC_RF_MODE_AIR;

	return 0;
}

static int xc5000_set_radio_freq(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;
	u8 radio_input;

1002
	if (priv->radio_input == XC5000_RADIO_FM1)
1003
		radio_input = FM_RADIO_INPUT1;
1004
	else if  (priv->radio_input == XC5000_RADIO_FM2)
1005
		radio_input = FM_RADIO_INPUT2;
1006
	else if  (priv->radio_input == XC5000_RADIO_FM1_MONO)
1007
		radio_input = FM_RADIO_INPUT1_MONO;
1008 1009 1010 1011 1012 1013
	else {
		dprintk(1, "%s() unknown radio input %d\n", __func__,
			priv->radio_input);
		return -EINVAL;
	}

1014 1015
	ret = xc_set_tv_standard(priv, xc5000_standard[radio_input].video_mode,
			       xc5000_standard[radio_input].audio_mode, radio_input);
1016

1017
	if (ret != 0) {
1018
		printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n");
1019 1020 1021
		return -EREMOTEIO;
	}

1022
	ret = xc_set_signal_source(priv, priv->rf_mode);
1023
	if (ret != 0) {
1024
		printk(KERN_ERR
1025
			"xc5000: xc_set_signal_source(%d) failed\n",
1026 1027 1028 1029
			priv->rf_mode);
		return -EREMOTEIO;
	}

1030 1031 1032 1033 1034 1035
	if ((priv->radio_input == XC5000_RADIO_FM1) ||
				(priv->radio_input == XC5000_RADIO_FM2))
		xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
	else if  (priv->radio_input == XC5000_RADIO_FM1_MONO)
		xc_write_reg(priv, XREG_OUTPUT_AMP, 0x06);

1036 1037 1038 1039 1040
	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);

	return 0;
}

1041
static int xc5000_set_params(struct dvb_frontend *fe)
1042 1043 1044
{
	struct xc5000_priv *priv = fe->tuner_priv;

1045 1046 1047 1048 1049
	if (xc_load_fw_and_init_tuner(fe, 0) != 0) {
		dprintk(1, "Unable to load firmware and init tuner\n");
		return -EINVAL;
	}

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	switch (priv->mode) {
	case V4L2_TUNER_RADIO:
		return xc5000_set_radio_freq(fe);
	case V4L2_TUNER_ANALOG_TV:
		return xc5000_set_tv_freq(fe);
	case V4L2_TUNER_DIGITAL_TV:
		return xc5000_tune_digital(fe);
	}

	return 0;
}

1062 1063 1064 1065
static int xc5000_set_analog_params(struct dvb_frontend *fe,
			     struct analog_parameters *params)
{
	struct xc5000_priv *priv = fe->tuner_priv;
1066
	int ret;
1067 1068 1069 1070 1071 1072

	if (priv->i2c_props.adap == NULL)
		return -EINVAL;

	switch (params->mode) {
	case V4L2_TUNER_RADIO:
1073 1074 1075
		ret = xc5000_config_radio(fe, params);
		if (ret)
			return ret;
1076 1077
		break;
	case V4L2_TUNER_ANALOG_TV:
1078 1079 1080
		xc5000_config_tv(fe, params);
		break;
	default:
1081 1082
		break;
	}
1083
	priv->mode = params->mode;
1084

1085
	return xc5000_set_params(fe);
1086 1087
}

1088 1089 1090
static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
{
	struct xc5000_priv *priv = fe->tuner_priv;
1091
	dprintk(1, "%s()\n", __func__);
1092
	*freq = priv->freq_hz + priv->freq_offset;
1093 1094 1095
	return 0;
}

1096 1097 1098 1099 1100 1101 1102 1103
static int xc5000_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	dprintk(1, "%s()\n", __func__);
	*freq = priv->if_khz * 1000;
	return 0;
}

1104 1105 1106
static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
{
	struct xc5000_priv *priv = fe->tuner_priv;
1107
	dprintk(1, "%s()\n", __func__);
1108

1109 1110 1111 1112 1113 1114 1115
	*bw = priv->bandwidth;
	return 0;
}

static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
{
	struct xc5000_priv *priv = fe->tuner_priv;
1116
	u16 lock_status = 0;
1117 1118 1119

	xc_get_lock_status(priv, &lock_status);

1120
	dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
1121 1122 1123 1124 1125 1126

	*status = lock_status;

	return 0;
}

1127
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force)
1128 1129
{
	struct xc5000_priv *priv = fe->tuner_priv;
1130 1131
	const struct xc5000_fw_cfg *desired_fw = xc5000_assign_firmware(priv->chip_id);
	const struct firmware *fw;
1132
	int ret, i;
1133
	u16 pll_lock_status;
1134
	u16 fw_ck;
1135

1136 1137
	cancel_delayed_work(&priv->timer_sleep);

1138 1139
	if (!force && xc5000_is_firmware_loaded(fe) == 0)
		return 0;
1140

1141 1142 1143 1144 1145 1146 1147 1148
	if (!priv->firmware) {
		ret = request_firmware(&fw, desired_fw->name,
					priv->i2c_props.adap->dev.parent);
		if (ret) {
			pr_err("xc5000: Upload failed. rc %d\n", ret);
			return ret;
		}
		dprintk(1, "firmware read %Zu bytes.\n", fw->size);
1149

1150 1151 1152 1153 1154 1155 1156 1157
		if (fw->size != desired_fw->size) {
			pr_err("xc5000: Firmware file with incorrect size\n");
			release_firmware(fw);
			return -EINVAL;
		}
		priv->firmware = fw;
	} else
		fw = priv->firmware;
1158

1159 1160
	/* Try up to 5 times to load firmware */
	for (i = 0; i < 5; i++) {
1161 1162 1163
		if (i)
			printk(KERN_CONT " - retrying to upload firmware.\n");

1164
		ret = xc5000_fwupload(fe, desired_fw, fw);
1165
		if (ret != 0)
1166
			goto err;
1167

1168 1169
		msleep(20);

1170
		if (priv->fw_checksum_supported) {
1171
			if (xc5000_readreg(priv, XREG_FW_CHECKSUM, &fw_ck)) {
1172 1173
				printk(KERN_ERR
				       "xc5000: FW checksum reading failed.");
1174
				continue;
1175 1176
			}

1177
			if (!fw_ck) {
1178 1179 1180
				printk(KERN_ERR
				       "xc5000: FW checksum failed = 0x%04x.",
				       fw_ck);
1181
				continue;
1182 1183 1184
			}
		}

1185
		/* Start the tuner self-calibration process */
1186 1187
		ret = xc_initialize(priv);
		if (ret) {
1188 1189
			printk(KERN_ERR
			       "xc5000: Can't request Self-callibration.");
1190 1191
			continue;
		}
1192

1193 1194 1195 1196 1197
		/* Wait for calibration to complete.
		 * We could continue but XC5000 will clock stretch subsequent
		 * I2C transactions until calibration is complete.  This way we
		 * don't have to rely on clock stretching working.
		 */
1198
		msleep(100);
1199

1200
		if (priv->init_status_supported) {
1201
			if (xc5000_readreg(priv, XREG_INIT_STATUS, &fw_ck)) {
1202 1203
				printk(KERN_ERR
				       "xc5000: FW failed reading init status.");
1204
				continue;
1205 1206
			}

1207
			if (!fw_ck) {
1208 1209 1210
				printk(KERN_ERR
				       "xc5000: FW init status failed = 0x%04x.",
				       fw_ck);
1211
				continue;
1212 1213 1214
			}
		}

1215 1216 1217 1218 1219
		if (priv->pll_register_no) {
			xc5000_readreg(priv, priv->pll_register_no,
				       &pll_lock_status);
			if (pll_lock_status > 63) {
				/* PLL is unlocked, force reload of the firmware */
1220 1221
				printk(KERN_ERR
				       "xc5000: PLL not running after fwload.");
1222
				continue;
1223 1224 1225
			}
		}

1226
		/* Default to "CABLE" mode */
1227
		ret = xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
1228 1229 1230
		if (!ret)
			break;
		printk(KERN_ERR "xc5000: can't set to cable mode.");
1231
	}
1232

1233
err:
1234 1235 1236 1237 1238 1239
	if (!ret)
		printk(KERN_INFO "xc5000: Firmware %s loaded and running.\n",
		       desired_fw->name);
	else
		printk(KERN_CONT " - too many retries. Giving up\n");

1240 1241 1242
	return ret;
}

1243
static void xc5000_do_timer_sleep(struct work_struct *timer_sleep)
1244
{
1245 1246 1247
	struct xc5000_priv *priv =container_of(timer_sleep, struct xc5000_priv,
					       timer_sleep.work);
	struct dvb_frontend *fe = priv->fe;
1248 1249
	int ret;

1250
	dprintk(1, "%s()\n", __func__);
1251

1252 1253 1254
	/* According to Xceive technical support, the "powerdown" register
	   was removed in newer versions of the firmware.  The "supported"
	   way to sleep the tuner is to pull the reset pin low for 10ms */
1255
	ret = xc5000_tuner_reset(fe);
1256
	if (ret != 0)
1257 1258
		printk(KERN_ERR
			"xc5000: %s() unable to shutdown tuner\n",
1259
			__func__);
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
}

static int xc5000_sleep(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;

	dprintk(1, "%s()\n", __func__);

	/* Avoid firmware reload on slow devices */
	if (no_poweroff)
1270
		return 0;
1271 1272 1273 1274 1275

	schedule_delayed_work(&priv->timer_sleep,
			      msecs_to_jiffies(XC5000_SLEEP_TIME));

	return 0;
1276 1277
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
static int xc5000_suspend(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;

	dprintk(1, "%s()\n", __func__);

	cancel_delayed_work(&priv->timer_sleep);

	ret = xc5000_tuner_reset(fe);
	if (ret != 0)
		printk(KERN_ERR
			"xc5000: %s() unable to shutdown tuner\n",
			__func__);

	return 0;
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
static int xc5000_resume(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;

	dprintk(1, "%s()\n", __func__);

	/* suspended before firmware is loaded.
	   Avoid firmware load in resume path. */
	if (!priv->firmware)
		return 0;

	return xc5000_set_params(fe);
}

1310 1311 1312
static int xc5000_init(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
1313
	dprintk(1, "%s()\n", __func__);
1314

1315
	if (xc_load_fw_and_init_tuner(fe, 0) != 0) {
1316 1317 1318 1319 1320 1321
		printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
		return -EREMOTEIO;
	}

	if (debug)
		xc_debug_dump(priv);
1322 1323 1324 1325 1326 1327

	return 0;
}

static int xc5000_release(struct dvb_frontend *fe)
{
1328 1329
	struct xc5000_priv *priv = fe->tuner_priv;

1330
	dprintk(1, "%s()\n", __func__);
1331 1332 1333

	mutex_lock(&xc5000_list_mutex);

1334 1335
	if (priv) {
		cancel_delayed_work(&priv->timer_sleep);
1336
		hybrid_tuner_release_state(priv);
1337 1338
		if (priv->firmware)
			release_firmware(priv->firmware);
1339
	}
1340 1341 1342

	mutex_unlock(&xc5000_list_mutex);

1343
	fe->tuner_priv = NULL;
1344

1345 1346 1347
	return 0;
}

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	struct xc5000_config *p = priv_cfg;

	dprintk(1, "%s()\n", __func__);

	if (p->if_khz)
		priv->if_khz = p->if_khz;

	if (p->radio_input)
		priv->radio_input = p->radio_input;

	return 0;
}


1365 1366 1367 1368 1369 1370 1371 1372
static const struct dvb_tuner_ops xc5000_tuner_ops = {
	.info = {
		.name           = "Xceive XC5000",
		.frequency_min  =    1000000,
		.frequency_max  = 1023000000,
		.frequency_step =      50000,
	},

1373 1374 1375
	.release	   = xc5000_release,
	.init		   = xc5000_init,
	.sleep		   = xc5000_sleep,
1376
	.suspend	   = xc5000_suspend,
1377
	.resume		   = xc5000_resume,
1378

1379
	.set_config	   = xc5000_set_config,
1380
	.set_params	   = xc5000_set_digital_params,
1381 1382
	.set_analog_params = xc5000_set_analog_params,
	.get_frequency	   = xc5000_get_frequency,
1383
	.get_if_frequency  = xc5000_get_if_frequency,
1384 1385
	.get_bandwidth	   = xc5000_get_bandwidth,
	.get_status	   = xc5000_get_status
1386 1387
};

1388 1389
struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
				   struct i2c_adapter *i2c,
1390
				   const struct xc5000_config *cfg)
1391 1392
{
	struct xc5000_priv *priv = NULL;
1393
	int instance;
1394 1395
	u16 id = 0;

1396 1397 1398
	dprintk(1, "%s(%d-%04x)\n", __func__,
		i2c ? i2c_adapter_id(i2c) : -1,
		cfg ? cfg->i2c_address : -1);
1399

1400
	mutex_lock(&xc5000_list_mutex);
1401

1402 1403 1404 1405 1406 1407 1408 1409
	instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
					      hybrid_tuner_instance_list,
					      i2c, cfg->i2c_address, "xc5000");
	switch (instance) {
	case 0:
		goto fail;
	case 1:
		/* new tuner instance */
1410
		priv->bandwidth = 6000000;
1411
		fe->tuner_priv = priv;
1412 1413
		priv->fe = fe;
		INIT_DELAYED_WORK(&priv->timer_sleep, xc5000_do_timer_sleep);
1414 1415 1416 1417 1418 1419
		break;
	default:
		/* existing tuner instance */
		fe->tuner_priv = priv;
		break;
	}
1420

1421 1422 1423 1424 1425 1426 1427
	if (priv->if_khz == 0) {
		/* If the IF hasn't been set yet, use the value provided by
		   the caller (occurs in hybrid devices where the analog
		   call to xc5000_attach occurs before the digital side) */
		priv->if_khz = cfg->if_khz;
	}

1428 1429 1430
	if (priv->xtal_khz == 0)
		priv->xtal_khz = cfg->xtal_khz;

1431 1432 1433
	if (priv->radio_input == 0)
		priv->radio_input = cfg->radio_input;

1434
	/* don't override chip id if it's already been set
1435
	   unless explicitly specified */
1436 1437 1438 1439
	if ((priv->chip_id == 0) || (cfg->chip_id))
		/* use default chip id if none specified, set to 0 so
		   it can be overridden if this is a hybrid driver */
		priv->chip_id = (cfg->chip_id) ? cfg->chip_id : 0;
1440

1441 1442 1443
	/* Check if firmware has been loaded. It is possible that another
	   instance of the driver has loaded the firmware.
	 */
1444
	if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0)
1445
		goto fail;
1446

1447
	switch (id) {
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	case XC_PRODUCT_ID_FW_LOADED:
		printk(KERN_INFO
			"xc5000: Successfully identified at address 0x%02x\n",
			cfg->i2c_address);
		printk(KERN_INFO
			"xc5000: Firmware has been loaded previously\n");
		break;
	case XC_PRODUCT_ID_FW_NOT_LOADED:
		printk(KERN_INFO
			"xc5000: Successfully identified at address 0x%02x\n",
			cfg->i2c_address);
		printk(KERN_INFO
			"xc5000: Firmware has not been loaded previously\n");
		break;
	default:
1463 1464 1465
		printk(KERN_ERR
			"xc5000: Device not found at addr 0x%02x (0x%x)\n",
			cfg->i2c_address, id);
1466
		goto fail;
1467 1468
	}

1469 1470
	mutex_unlock(&xc5000_list_mutex);

1471 1472 1473 1474
	memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
		sizeof(struct dvb_tuner_ops));

	return fe;
1475 1476 1477 1478 1479
fail:
	mutex_unlock(&xc5000_list_mutex);

	xc5000_release(fe);
	return NULL;
1480 1481 1482 1483
}
EXPORT_SYMBOL(xc5000_attach);

MODULE_AUTHOR("Steven Toth");
1484
MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
1485
MODULE_LICENSE("GPL");
1486 1487
MODULE_FIRMWARE(XC5000A_FIRMWARE);
MODULE_FIRMWARE(XC5000C_FIRMWARE);