ordered-data.c 27.5 KB
Newer Older
C
Chris Mason 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/slab.h>
20
#include <linux/blkdev.h>
21 22
#include <linux/writeback.h>
#include <linux/pagevec.h>
C
Chris Mason 已提交
23 24 25
#include "ctree.h"
#include "transaction.h"
#include "btrfs_inode.h"
26
#include "extent_io.h"
C
Chris Mason 已提交
27

28 29
static struct kmem_cache *btrfs_ordered_extent_cache;

30
static u64 entry_end(struct btrfs_ordered_extent *entry)
C
Chris Mason 已提交
31
{
32 33 34
	if (entry->file_offset + entry->len < entry->file_offset)
		return (u64)-1;
	return entry->file_offset + entry->len;
C
Chris Mason 已提交
35 36
}

C
Chris Mason 已提交
37 38 39
/* returns NULL if the insertion worked, or it returns the node it did find
 * in the tree
 */
40 41
static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
				   struct rb_node *node)
C
Chris Mason 已提交
42
{
C
Chris Mason 已提交
43 44
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
45
	struct btrfs_ordered_extent *entry;
C
Chris Mason 已提交
46

C
Chris Mason 已提交
47
	while (*p) {
C
Chris Mason 已提交
48
		parent = *p;
49
		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
C
Chris Mason 已提交
50

51
		if (file_offset < entry->file_offset)
C
Chris Mason 已提交
52
			p = &(*p)->rb_left;
53
		else if (file_offset >= entry_end(entry))
C
Chris Mason 已提交
54 55 56 57 58 59 60 61 62 63
			p = &(*p)->rb_right;
		else
			return parent;
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

64 65 66 67 68 69 70 71
static void ordered_data_tree_panic(struct inode *inode, int errno,
					       u64 offset)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
		    "%llu\n", (unsigned long long)offset);
}

C
Chris Mason 已提交
72 73 74 75
/*
 * look for a given offset in the tree, and if it can't be found return the
 * first lesser offset
 */
76 77
static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
				     struct rb_node **prev_ret)
C
Chris Mason 已提交
78
{
C
Chris Mason 已提交
79
	struct rb_node *n = root->rb_node;
C
Chris Mason 已提交
80
	struct rb_node *prev = NULL;
81 82 83
	struct rb_node *test;
	struct btrfs_ordered_extent *entry;
	struct btrfs_ordered_extent *prev_entry = NULL;
C
Chris Mason 已提交
84

C
Chris Mason 已提交
85
	while (n) {
86
		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
C
Chris Mason 已提交
87 88 89
		prev = n;
		prev_entry = entry;

90
		if (file_offset < entry->file_offset)
C
Chris Mason 已提交
91
			n = n->rb_left;
92
		else if (file_offset >= entry_end(entry))
C
Chris Mason 已提交
93 94 95 96 97 98 99
			n = n->rb_right;
		else
			return n;
	}
	if (!prev_ret)
		return NULL;

C
Chris Mason 已提交
100
	while (prev && file_offset >= entry_end(prev_entry)) {
101 102 103 104 105 106 107 108 109 110 111 112 113
		test = rb_next(prev);
		if (!test)
			break;
		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
				      rb_node);
		if (file_offset < entry_end(prev_entry))
			break;

		prev = test;
	}
	if (prev)
		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
				      rb_node);
C
Chris Mason 已提交
114
	while (prev && file_offset < entry_end(prev_entry)) {
115 116 117 118 119 120
		test = rb_prev(prev);
		if (!test)
			break;
		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
				      rb_node);
		prev = test;
C
Chris Mason 已提交
121 122 123 124 125
	}
	*prev_ret = prev;
	return NULL;
}

C
Chris Mason 已提交
126 127 128
/*
 * helper to check if a given offset is inside a given entry
 */
129 130 131 132 133 134 135 136
static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
{
	if (file_offset < entry->file_offset ||
	    entry->file_offset + entry->len <= file_offset)
		return 0;
	return 1;
}

137 138 139 140 141 142 143 144 145
static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
			  u64 len)
{
	if (file_offset + len <= entry->file_offset ||
	    entry->file_offset + entry->len <= file_offset)
		return 0;
	return 1;
}

C
Chris Mason 已提交
146 147 148 149
/*
 * look find the first ordered struct that has this offset, otherwise
 * the first one less than this offset
 */
150 151
static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
					  u64 file_offset)
C
Chris Mason 已提交
152
{
153
	struct rb_root *root = &tree->tree;
154
	struct rb_node *prev = NULL;
C
Chris Mason 已提交
155
	struct rb_node *ret;
156 157 158 159 160 161 162 163 164
	struct btrfs_ordered_extent *entry;

	if (tree->last) {
		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
				 rb_node);
		if (offset_in_entry(entry, file_offset))
			return tree->last;
	}
	ret = __tree_search(root, file_offset, &prev);
C
Chris Mason 已提交
165
	if (!ret)
166 167 168
		ret = prev;
	if (ret)
		tree->last = ret;
C
Chris Mason 已提交
169 170 171
	return ret;
}

172 173 174 175 176 177 178 179 180 181 182
/* allocate and add a new ordered_extent into the per-inode tree.
 * file_offset is the logical offset in the file
 *
 * start is the disk block number of an extent already reserved in the
 * extent allocation tree
 *
 * len is the length of the extent
 *
 * The tree is given a single reference on the ordered extent that was
 * inserted.
 */
183 184
static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
				      u64 start, u64 len, u64 disk_len,
185
				      int type, int dio, int compress_type)
C
Chris Mason 已提交
186 187
{
	struct btrfs_ordered_inode_tree *tree;
188 189
	struct rb_node *node;
	struct btrfs_ordered_extent *entry;
C
Chris Mason 已提交
190

191
	tree = &BTRFS_I(inode)->ordered_tree;
192
	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
C
Chris Mason 已提交
193 194 195
	if (!entry)
		return -ENOMEM;

196 197 198
	entry->file_offset = file_offset;
	entry->start = start;
	entry->len = len;
C
Chris Mason 已提交
199
	entry->disk_len = disk_len;
200
	entry->bytes_left = len;
201
	entry->inode = igrab(inode);
202
	entry->compress_type = compress_type;
Y
Yan Zheng 已提交
203
	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
Y
Yan Zheng 已提交
204
		set_bit(type, &entry->flags);
205

206 207 208
	if (dio)
		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);

209 210 211 212
	/* one ref for the tree */
	atomic_set(&entry->refs, 1);
	init_waitqueue_head(&entry->wait);
	INIT_LIST_HEAD(&entry->list);
213
	INIT_LIST_HEAD(&entry->root_extent_list);
214 215
	INIT_LIST_HEAD(&entry->work_list);
	init_completion(&entry->completion);
C
Chris Mason 已提交
216

217 218
	trace_btrfs_ordered_extent_add(inode, entry);

219
	spin_lock_irq(&tree->lock);
220 221
	node = tree_insert(&tree->tree, file_offset,
			   &entry->rb_node);
222 223
	if (node)
		ordered_data_tree_panic(inode, -EEXIST, file_offset);
224
	spin_unlock_irq(&tree->lock);
C
Chris Mason 已提交
225

226 227 228 229 230
	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
	list_add_tail(&entry->root_extent_list,
		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);

C
Chris Mason 已提交
231 232 233
	return 0;
}

234 235 236 237
int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
			     u64 start, u64 len, u64 disk_len, int type)
{
	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
238 239
					  disk_len, type, 0,
					  BTRFS_COMPRESS_NONE);
240 241 242 243 244 245
}

int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
				 u64 start, u64 len, u64 disk_len, int type)
{
	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
246 247 248 249 250 251 252 253 254 255 256
					  disk_len, type, 1,
					  BTRFS_COMPRESS_NONE);
}

int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
				      u64 start, u64 len, u64 disk_len,
				      int type, int compress_type)
{
	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
					  disk_len, type, 0,
					  compress_type);
257 258
}

259 260
/*
 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
261 262
 * when an ordered extent is finished.  If the list covers more than one
 * ordered extent, it is split across multiples.
263
 */
264 265 266
void btrfs_add_ordered_sum(struct inode *inode,
			   struct btrfs_ordered_extent *entry,
			   struct btrfs_ordered_sum *sum)
C
Chris Mason 已提交
267
{
268
	struct btrfs_ordered_inode_tree *tree;
C
Chris Mason 已提交
269

270
	tree = &BTRFS_I(inode)->ordered_tree;
271
	spin_lock_irq(&tree->lock);
272
	list_add_tail(&sum->list, &entry->list);
273
	spin_unlock_irq(&tree->lock);
C
Chris Mason 已提交
274 275
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289
/*
 * this is used to account for finished IO across a given range
 * of the file.  The IO may span ordered extents.  If
 * a given ordered_extent is completely done, 1 is returned, otherwise
 * 0.
 *
 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 * to make sure this function only returns 1 once for a given ordered extent.
 *
 * file_offset is updated to one byte past the range that is recorded as
 * complete.  This allows you to walk forward in the file.
 */
int btrfs_dec_test_first_ordered_pending(struct inode *inode,
				   struct btrfs_ordered_extent **cached,
290
				   u64 *file_offset, u64 io_size, int uptodate)
291 292 293 294 295
{
	struct btrfs_ordered_inode_tree *tree;
	struct rb_node *node;
	struct btrfs_ordered_extent *entry = NULL;
	int ret;
296
	unsigned long flags;
297 298 299 300 301
	u64 dec_end;
	u64 dec_start;
	u64 to_dec;

	tree = &BTRFS_I(inode)->ordered_tree;
302
	spin_lock_irqsave(&tree->lock, flags);
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	node = tree_search(tree, *file_offset);
	if (!node) {
		ret = 1;
		goto out;
	}

	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
	if (!offset_in_entry(entry, *file_offset)) {
		ret = 1;
		goto out;
	}

	dec_start = max(*file_offset, entry->file_offset);
	dec_end = min(*file_offset + io_size, entry->file_offset +
		      entry->len);
	*file_offset = dec_end;
	if (dec_start > dec_end) {
		printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
		       (unsigned long long)dec_start,
		       (unsigned long long)dec_end);
	}
	to_dec = dec_end - dec_start;
	if (to_dec > entry->bytes_left) {
		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
		       (unsigned long long)entry->bytes_left,
		       (unsigned long long)to_dec);
	}
	entry->bytes_left -= to_dec;
331 332 333
	if (!uptodate)
		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);

334 335 336 337 338 339 340 341 342
	if (entry->bytes_left == 0)
		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
	else
		ret = 1;
out:
	if (!ret && cached && entry) {
		*cached = entry;
		atomic_inc(&entry->refs);
	}
343
	spin_unlock_irqrestore(&tree->lock, flags);
344 345 346
	return ret == 0;
}

347 348 349 350 351 352 353 354 355
/*
 * this is used to account for finished IO across a given range
 * of the file.  The IO should not span ordered extents.  If
 * a given ordered_extent is completely done, 1 is returned, otherwise
 * 0.
 *
 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 * to make sure this function only returns 1 once for a given ordered extent.
 */
356
int btrfs_dec_test_ordered_pending(struct inode *inode,
357
				   struct btrfs_ordered_extent **cached,
358
				   u64 file_offset, u64 io_size, int uptodate)
C
Chris Mason 已提交
359
{
360
	struct btrfs_ordered_inode_tree *tree;
C
Chris Mason 已提交
361
	struct rb_node *node;
362
	struct btrfs_ordered_extent *entry = NULL;
363
	unsigned long flags;
364 365 366
	int ret;

	tree = &BTRFS_I(inode)->ordered_tree;
367 368 369 370 371 372
	spin_lock_irqsave(&tree->lock, flags);
	if (cached && *cached) {
		entry = *cached;
		goto have_entry;
	}

373
	node = tree_search(tree, file_offset);
C
Chris Mason 已提交
374
	if (!node) {
375 376
		ret = 1;
		goto out;
C
Chris Mason 已提交
377 378
	}

379
	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
380
have_entry:
381 382 383
	if (!offset_in_entry(entry, file_offset)) {
		ret = 1;
		goto out;
C
Chris Mason 已提交
384
	}
385

386 387 388 389 390 391
	if (io_size > entry->bytes_left) {
		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
		       (unsigned long long)entry->bytes_left,
		       (unsigned long long)io_size);
	}
	entry->bytes_left -= io_size;
392 393 394
	if (!uptodate)
		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);

395
	if (entry->bytes_left == 0)
396
		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
397 398
	else
		ret = 1;
399
out:
400 401 402 403
	if (!ret && cached && entry) {
		*cached = entry;
		atomic_inc(&entry->refs);
	}
404
	spin_unlock_irqrestore(&tree->lock, flags);
405 406
	return ret == 0;
}
C
Chris Mason 已提交
407

408 409 410 411
/*
 * used to drop a reference on an ordered extent.  This will free
 * the extent if the last reference is dropped
 */
412
void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
413
{
414 415 416
	struct list_head *cur;
	struct btrfs_ordered_sum *sum;

417 418
	trace_btrfs_ordered_extent_put(entry->inode, entry);

419
	if (atomic_dec_and_test(&entry->refs)) {
420 421
		if (entry->inode)
			btrfs_add_delayed_iput(entry->inode);
C
Chris Mason 已提交
422
		while (!list_empty(&entry->list)) {
423 424 425 426 427
			cur = entry->list.next;
			sum = list_entry(cur, struct btrfs_ordered_sum, list);
			list_del(&sum->list);
			kfree(sum);
		}
428
		kmem_cache_free(btrfs_ordered_extent_cache, entry);
429
	}
C
Chris Mason 已提交
430
}
431

432 433
/*
 * remove an ordered extent from the tree.  No references are dropped
434
 * and waiters are woken up.
435
 */
436 437
void btrfs_remove_ordered_extent(struct inode *inode,
				 struct btrfs_ordered_extent *entry)
438
{
439
	struct btrfs_ordered_inode_tree *tree;
440
	struct btrfs_root *root = BTRFS_I(inode)->root;
441 442
	struct rb_node *node;

443
	tree = &BTRFS_I(inode)->ordered_tree;
444
	spin_lock_irq(&tree->lock);
445
	node = &entry->rb_node;
446
	rb_erase(node, &tree->tree);
447 448
	tree->last = NULL;
	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
449
	spin_unlock_irq(&tree->lock);
450

451
	spin_lock(&root->fs_info->ordered_extent_lock);
452
	list_del_init(&entry->root_extent_list);
453

454 455
	trace_btrfs_ordered_extent_remove(inode, entry);

456 457 458 459 460 461 462 463 464
	/*
	 * we have no more ordered extents for this inode and
	 * no dirty pages.  We can safely remove it from the
	 * list of ordered extents
	 */
	if (RB_EMPTY_ROOT(&tree->tree) &&
	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		list_del_init(&BTRFS_I(inode)->ordered_operations);
	}
465
	spin_unlock(&root->fs_info->ordered_extent_lock);
466
	wake_up(&entry->wait);
467 468
}

469 470 471 472 473 474 475 476 477
static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
{
	struct btrfs_ordered_extent *ordered;

	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
	complete(&ordered->completion);
}

C
Chris Mason 已提交
478 479 480 481
/*
 * wait for all the ordered extents in a root.  This is done when balancing
 * space between drives.
 */
482
void btrfs_wait_ordered_extents(struct btrfs_root *root, int delay_iput)
483
{
484
	struct list_head splice, works;
485
	struct list_head *cur;
486
	struct btrfs_ordered_extent *ordered, *next;
487 488 489
	struct inode *inode;

	INIT_LIST_HEAD(&splice);
490
	INIT_LIST_HEAD(&works);
491 492 493

	spin_lock(&root->fs_info->ordered_extent_lock);
	list_splice_init(&root->fs_info->ordered_extents, &splice);
494
	while (!list_empty(&splice)) {
495 496 497 498 499 500 501
		cur = splice.next;
		ordered = list_entry(cur, struct btrfs_ordered_extent,
				     root_extent_list);
		list_del_init(&ordered->root_extent_list);
		atomic_inc(&ordered->refs);

		/*
502
		 * the inode may be getting freed (in sys_unlink path).
503
		 */
504 505
		inode = igrab(ordered->inode);

506 507
		spin_unlock(&root->fs_info->ordered_extent_lock);

508
		if (inode) {
509 510 511 512
			ordered->flush_work.func = btrfs_run_ordered_extent_work;
			list_add_tail(&ordered->work_list, &works);
			btrfs_queue_worker(&root->fs_info->flush_workers,
					   &ordered->flush_work);
513 514 515
		} else {
			btrfs_put_ordered_extent(ordered);
		}
516

517
		cond_resched();
518 519 520
		spin_lock(&root->fs_info->ordered_extent_lock);
	}
	spin_unlock(&root->fs_info->ordered_extent_lock);
521 522 523 524 525 526 527 528 529 530 531 532 533 534

	list_for_each_entry_safe(ordered, next, &works, work_list) {
		list_del_init(&ordered->work_list);
		wait_for_completion(&ordered->completion);

		inode = ordered->inode;
		btrfs_put_ordered_extent(ordered);
		if (delay_iput)
			btrfs_add_delayed_iput(inode);
		else
			iput(inode);

		cond_resched();
	}
535 536
}

537 538 539 540 541 542 543 544 545 546
/*
 * this is used during transaction commit to write all the inodes
 * added to the ordered operation list.  These files must be fully on
 * disk before the transaction commits.
 *
 * we have two modes here, one is to just start the IO via filemap_flush
 * and the other is to wait for all the io.  When we wait, we have an
 * extra check to make sure the ordered operation list really is empty
 * before we return
 */
547
int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
548 549 550 551
{
	struct btrfs_inode *btrfs_inode;
	struct inode *inode;
	struct list_head splice;
552 553 554
	struct list_head works;
	struct btrfs_delalloc_work *work, *next;
	int ret = 0;
555 556

	INIT_LIST_HEAD(&splice);
557
	INIT_LIST_HEAD(&works);
558 559 560 561 562 563 564

	mutex_lock(&root->fs_info->ordered_operations_mutex);
	spin_lock(&root->fs_info->ordered_extent_lock);
again:
	list_splice_init(&root->fs_info->ordered_operations, &splice);

	while (!list_empty(&splice)) {
565

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
				   ordered_operations);

		inode = &btrfs_inode->vfs_inode;

		list_del_init(&btrfs_inode->ordered_operations);

		/*
		 * the inode may be getting freed (in sys_unlink path).
		 */
		inode = igrab(inode);

		if (!wait && inode) {
			list_add_tail(&BTRFS_I(inode)->ordered_operations,
			      &root->fs_info->ordered_operations);
		}
582 583 584

		if (!inode)
			continue;
585 586
		spin_unlock(&root->fs_info->ordered_extent_lock);

587 588 589 590 591 592 593 594 595 596 597
		work = btrfs_alloc_delalloc_work(inode, wait, 1);
		if (!work) {
			if (list_empty(&BTRFS_I(inode)->ordered_operations))
				list_add_tail(&btrfs_inode->ordered_operations,
					      &splice);
			spin_lock(&root->fs_info->ordered_extent_lock);
			list_splice_tail(&splice,
					 &root->fs_info->ordered_operations);
			spin_unlock(&root->fs_info->ordered_extent_lock);
			ret = -ENOMEM;
			goto out;
598
		}
599 600 601
		list_add_tail(&work->list, &works);
		btrfs_queue_worker(&root->fs_info->flush_workers,
				   &work->work);
602 603 604 605 606 607 608 609

		cond_resched();
		spin_lock(&root->fs_info->ordered_extent_lock);
	}
	if (wait && !list_empty(&root->fs_info->ordered_operations))
		goto again;

	spin_unlock(&root->fs_info->ordered_extent_lock);
610 611 612 613 614
out:
	list_for_each_entry_safe(work, next, &works, list) {
		list_del_init(&work->list);
		btrfs_wait_and_free_delalloc_work(work);
	}
615
	mutex_unlock(&root->fs_info->ordered_operations_mutex);
616
	return ret;
617 618
}

619 620 621 622 623 624 625 626 627 628
/*
 * Used to start IO or wait for a given ordered extent to finish.
 *
 * If wait is one, this effectively waits on page writeback for all the pages
 * in the extent, and it waits on the io completion code to insert
 * metadata into the btree corresponding to the extent
 */
void btrfs_start_ordered_extent(struct inode *inode,
				       struct btrfs_ordered_extent *entry,
				       int wait)
629 630 631
{
	u64 start = entry->file_offset;
	u64 end = start + entry->len - 1;
632

633 634
	trace_btrfs_ordered_extent_start(inode, entry);

635 636 637
	/*
	 * pages in the range can be dirty, clean or writeback.  We
	 * start IO on any dirty ones so the wait doesn't stall waiting
638
	 * for the flusher thread to find them
639
	 */
640 641
	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
		filemap_fdatawrite_range(inode->i_mapping, start, end);
C
Chris Mason 已提交
642
	if (wait) {
643 644
		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
						 &entry->flags));
C
Chris Mason 已提交
645
	}
646
}
647

648 649 650
/*
 * Used to wait on ordered extents across a large range of bytes.
 */
651
void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
652 653
{
	u64 end;
654
	u64 orig_end;
655
	struct btrfs_ordered_extent *ordered;
656 657

	if (start + len < start) {
658
		orig_end = INT_LIMIT(loff_t);
659 660
	} else {
		orig_end = start + len - 1;
661 662
		if (orig_end > INT_LIMIT(loff_t))
			orig_end = INT_LIMIT(loff_t);
663
	}
664

665 666 667
	/* start IO across the range first to instantiate any delalloc
	 * extents
	 */
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);

	/*
	 * So with compression we will find and lock a dirty page and clear the
	 * first one as dirty, setup an async extent, and immediately return
	 * with the entire range locked but with nobody actually marked with
	 * writeback.  So we can't just filemap_write_and_wait_range() and
	 * expect it to work since it will just kick off a thread to do the
	 * actual work.  So we need to call filemap_fdatawrite_range _again_
	 * since it will wait on the page lock, which won't be unlocked until
	 * after the pages have been marked as writeback and so we're good to go
	 * from there.  We have to do this otherwise we'll miss the ordered
	 * extents and that results in badness.  Please Josef, do not think you
	 * know better and pull this out at some point in the future, it is
	 * right and you are wrong.
	 */
	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
		     &BTRFS_I(inode)->runtime_flags))
		filemap_fdatawrite_range(inode->i_mapping, start, orig_end);

	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
689

690
	end = orig_end;
C
Chris Mason 已提交
691
	while (1) {
692
		ordered = btrfs_lookup_first_ordered_extent(inode, end);
C
Chris Mason 已提交
693
		if (!ordered)
694
			break;
695
		if (ordered->file_offset > orig_end) {
696 697 698 699 700 701 702
			btrfs_put_ordered_extent(ordered);
			break;
		}
		if (ordered->file_offset + ordered->len < start) {
			btrfs_put_ordered_extent(ordered);
			break;
		}
703
		btrfs_start_ordered_extent(inode, ordered, 1);
704 705
		end = ordered->file_offset;
		btrfs_put_ordered_extent(ordered);
706
		if (end == 0 || end == start)
707 708 709
			break;
		end--;
	}
710 711
}

712 713 714 715
/*
 * find an ordered extent corresponding to file_offset.  return NULL if
 * nothing is found, otherwise take a reference on the extent and return it
 */
716 717 718 719 720 721 722 723
struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
							 u64 file_offset)
{
	struct btrfs_ordered_inode_tree *tree;
	struct rb_node *node;
	struct btrfs_ordered_extent *entry = NULL;

	tree = &BTRFS_I(inode)->ordered_tree;
724
	spin_lock_irq(&tree->lock);
725 726 727 728 729 730 731 732 733 734
	node = tree_search(tree, file_offset);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
	if (!offset_in_entry(entry, file_offset))
		entry = NULL;
	if (entry)
		atomic_inc(&entry->refs);
out:
735
	spin_unlock_irq(&tree->lock);
736 737 738
	return entry;
}

739 740 741 742 743 744 745 746 747 748 749 750
/* Since the DIO code tries to lock a wide area we need to look for any ordered
 * extents that exist in the range, rather than just the start of the range.
 */
struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
							u64 file_offset,
							u64 len)
{
	struct btrfs_ordered_inode_tree *tree;
	struct rb_node *node;
	struct btrfs_ordered_extent *entry = NULL;

	tree = &BTRFS_I(inode)->ordered_tree;
751
	spin_lock_irq(&tree->lock);
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	node = tree_search(tree, file_offset);
	if (!node) {
		node = tree_search(tree, file_offset + len);
		if (!node)
			goto out;
	}

	while (1) {
		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
		if (range_overlaps(entry, file_offset, len))
			break;

		if (entry->file_offset >= file_offset + len) {
			entry = NULL;
			break;
		}
		entry = NULL;
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	if (entry)
		atomic_inc(&entry->refs);
776
	spin_unlock_irq(&tree->lock);
777 778 779
	return entry;
}

780 781 782 783
/*
 * lookup and return any extent before 'file_offset'.  NULL is returned
 * if none is found
 */
784
struct btrfs_ordered_extent *
C
Chris Mason 已提交
785
btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
786 787 788 789 790 791
{
	struct btrfs_ordered_inode_tree *tree;
	struct rb_node *node;
	struct btrfs_ordered_extent *entry = NULL;

	tree = &BTRFS_I(inode)->ordered_tree;
792
	spin_lock_irq(&tree->lock);
793 794 795 796 797 798 799
	node = tree_search(tree, file_offset);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
	atomic_inc(&entry->refs);
out:
800
	spin_unlock_irq(&tree->lock);
801
	return entry;
802
}
803

804 805 806 807
/*
 * After an extent is done, call this to conditionally update the on disk
 * i_size.  i_size is updated to cover any fully written part of the file.
 */
808
int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
809 810 811 812 813
				struct btrfs_ordered_extent *ordered)
{
	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
	u64 disk_i_size;
	u64 new_i_size;
814
	u64 i_size = i_size_read(inode);
815
	struct rb_node *node;
816
	struct rb_node *prev = NULL;
817
	struct btrfs_ordered_extent *test;
818 819 820 821
	int ret = 1;

	if (ordered)
		offset = entry_end(ordered);
822 823
	else
		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
824

825
	spin_lock_irq(&tree->lock);
826 827
	disk_i_size = BTRFS_I(inode)->disk_i_size;

828 829 830 831 832 833 834
	/* truncate file */
	if (disk_i_size > i_size) {
		BTRFS_I(inode)->disk_i_size = i_size;
		ret = 0;
		goto out;
	}

835 836 837 838
	/*
	 * if the disk i_size is already at the inode->i_size, or
	 * this ordered extent is inside the disk i_size, we're done
	 */
J
Josef Bacik 已提交
839 840 841 842 843 844 845 846 847
	if (disk_i_size == i_size)
		goto out;

	/*
	 * We still need to update disk_i_size if outstanding_isize is greater
	 * than disk_i_size.
	 */
	if (offset <= disk_i_size &&
	    (!ordered || ordered->outstanding_isize <= disk_i_size))
848 849 850 851 852 853 854
		goto out;

	/*
	 * walk backward from this ordered extent to disk_i_size.
	 * if we find an ordered extent then we can't update disk i_size
	 * yet
	 */
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	if (ordered) {
		node = rb_prev(&ordered->rb_node);
	} else {
		prev = tree_search(tree, offset);
		/*
		 * we insert file extents without involving ordered struct,
		 * so there should be no ordered struct cover this offset
		 */
		if (prev) {
			test = rb_entry(prev, struct btrfs_ordered_extent,
					rb_node);
			BUG_ON(offset_in_entry(test, offset));
		}
		node = prev;
	}
870
	for (; node; node = rb_prev(node)) {
871
		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
872 873 874 875

		/* We treat this entry as if it doesnt exist */
		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
			continue;
876 877
		if (test->file_offset + test->len <= disk_i_size)
			break;
878
		if (test->file_offset >= i_size)
879
			break;
880
		if (entry_end(test) > disk_i_size) {
881 882 883 884 885 886 887 888 889 890 891 892
			/*
			 * we don't update disk_i_size now, so record this
			 * undealt i_size. Or we will not know the real
			 * i_size.
			 */
			if (test->outstanding_isize < offset)
				test->outstanding_isize = offset;
			if (ordered &&
			    ordered->outstanding_isize >
			    test->outstanding_isize)
				test->outstanding_isize =
						ordered->outstanding_isize;
893
			goto out;
894
		}
895
	}
896
	new_i_size = min_t(u64, offset, i_size);
897 898

	/*
899 900
	 * Some ordered extents may completed before the current one, and
	 * we hold the real i_size in ->outstanding_isize.
901
	 */
902 903
	if (ordered && ordered->outstanding_isize > new_i_size)
		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
904
	BTRFS_I(inode)->disk_i_size = new_i_size;
905
	ret = 0;
906
out:
907
	/*
908 909 910 911 912
	 * We need to do this because we can't remove ordered extents until
	 * after the i_disk_size has been updated and then the inode has been
	 * updated to reflect the change, so we need to tell anybody who finds
	 * this ordered extent that we've already done all the real work, we
	 * just haven't completed all the other work.
913 914
	 */
	if (ordered)
915 916
		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
	spin_unlock_irq(&tree->lock);
917
	return ret;
918
}
919

920 921 922 923 924
/*
 * search the ordered extents for one corresponding to 'offset' and
 * try to find a checksum.  This is used because we allow pages to
 * be reclaimed before their checksum is actually put into the btree
 */
925 926
int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
			   u32 *sum)
927 928 929 930 931
{
	struct btrfs_ordered_sum *ordered_sum;
	struct btrfs_sector_sum *sector_sums;
	struct btrfs_ordered_extent *ordered;
	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
932 933 934
	unsigned long num_sectors;
	unsigned long i;
	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
935 936 937 938 939 940
	int ret = 1;

	ordered = btrfs_lookup_ordered_extent(inode, offset);
	if (!ordered)
		return 1;

941
	spin_lock_irq(&tree->lock);
Q
Qinghuang Feng 已提交
942
	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
943
		if (disk_bytenr >= ordered_sum->bytenr) {
944
			num_sectors = ordered_sum->len / sectorsize;
945
			sector_sums = ordered_sum->sums;
946
			for (i = 0; i < num_sectors; i++) {
947
				if (sector_sums[i].bytenr == disk_bytenr) {
948 949 950 951 952
					*sum = sector_sums[i].sum;
					ret = 0;
					goto out;
				}
			}
953 954 955
		}
	}
out:
956
	spin_unlock_irq(&tree->lock);
957
	btrfs_put_ordered_extent(ordered);
958 959 960
	return ret;
}

961

962 963 964 965 966 967 968 969 970 971 972 973
/*
 * add a given inode to the list of inodes that must be fully on
 * disk before a transaction commit finishes.
 *
 * This basically gives us the ext3 style data=ordered mode, and it is mostly
 * used to make sure renamed files are fully on disk.
 *
 * It is a noop if the inode is already fully on disk.
 *
 * If trans is not null, we'll do a friendly check for a transaction that
 * is already flushing things and force the IO down ourselves.
 */
974 975
void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
				 struct btrfs_root *root, struct inode *inode)
976 977 978 979 980 981 982 983 984 985
{
	u64 last_mod;

	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);

	/*
	 * if this file hasn't been changed since the last transaction
	 * commit, we can safely return without doing anything
	 */
	if (last_mod < root->fs_info->last_trans_committed)
986
		return;
987 988 989 990 991 992 993 994

	spin_lock(&root->fs_info->ordered_extent_lock);
	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
		list_add_tail(&BTRFS_I(inode)->ordered_operations,
			      &root->fs_info->ordered_operations);
	}
	spin_unlock(&root->fs_info->ordered_extent_lock);
}
995 996 997 998 999 1000 1001 1002 1003

int __init ordered_data_init(void)
{
	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
				     sizeof(struct btrfs_ordered_extent), 0,
				     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
				     NULL);
	if (!btrfs_ordered_extent_cache)
		return -ENOMEM;
1004

1005 1006 1007 1008 1009 1010 1011 1012
	return 0;
}

void ordered_data_exit(void)
{
	if (btrfs_ordered_extent_cache)
		kmem_cache_destroy(btrfs_ordered_extent_cache);
}