process.c 13.1 KB
Newer Older
1 2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

3 4 5 6
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
7
#include <linux/prctl.h>
8 9
#include <linux/slab.h>
#include <linux/sched.h>
10 11
#include <linux/module.h>
#include <linux/pm.h>
12
#include <linux/tick.h>
A
Amerigo Wang 已提交
13
#include <linux/random.h>
A
Avi Kivity 已提交
14
#include <linux/user-return-notifier.h>
15 16
#include <linux/dmi.h>
#include <linux/utsname.h>
17 18 19
#include <linux/stackprotector.h>
#include <linux/tick.h>
#include <linux/cpuidle.h>
20
#include <trace/events/power.h>
21
#include <linux/hw_breakpoint.h>
22
#include <asm/cpu.h>
23
#include <asm/apic.h>
24
#include <asm/syscalls.h>
25 26
#include <asm/idle.h>
#include <asm/uaccess.h>
27
#include <asm/mwait.h>
28
#include <asm/fpu/internal.h>
29
#include <asm/debugreg.h>
30
#include <asm/nmi.h>
A
Andy Lutomirski 已提交
31
#include <asm/tlbflush.h>
32
#include <asm/mce.h>
33
#include <asm/vm86.h>
34

T
Thomas Gleixner 已提交
35 36 37 38 39 40 41
/*
 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 * so they are allowed to end up in the .data..cacheline_aligned
 * section. Since TSS's are completely CPU-local, we want them
 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 */
42 43
__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
	.x86_tss = {
44
		.sp0 = TOP_OF_INIT_STACK,
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#ifdef CONFIG_X86_32
		.ss0 = __KERNEL_DS,
		.ss1 = __KERNEL_CS,
		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
#endif
	 },
#ifdef CONFIG_X86_32
	 /*
	  * Note that the .io_bitmap member must be extra-big. This is because
	  * the CPU will access an additional byte beyond the end of the IO
	  * permission bitmap. The extra byte must be all 1 bits, and must
	  * be within the limit.
	  */
	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
#endif
};
61
EXPORT_PER_CPU_SYMBOL(cpu_tss);
T
Thomas Gleixner 已提交
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#ifdef CONFIG_X86_64
static DEFINE_PER_CPU(unsigned char, is_idle);
static ATOMIC_NOTIFIER_HEAD(idle_notifier);

void idle_notifier_register(struct notifier_block *n)
{
	atomic_notifier_chain_register(&idle_notifier, n);
}
EXPORT_SYMBOL_GPL(idle_notifier_register);

void idle_notifier_unregister(struct notifier_block *n)
{
	atomic_notifier_chain_unregister(&idle_notifier, n);
}
EXPORT_SYMBOL_GPL(idle_notifier_unregister);
#endif
Z
Zhao Yakui 已提交
79

80 81 82 83
/*
 * this gets called so that we can store lazy state into memory and copy the
 * current task into the new thread.
 */
84 85
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
86
	memcpy(dst, src, arch_task_struct_size);
87 88 89
#ifdef CONFIG_VM86
	dst->thread.vm86 = NULL;
#endif
90

91
	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
92
}
93

94 95 96 97 98 99 100
/*
 * Free current thread data structures etc..
 */
void exit_thread(void)
{
	struct task_struct *me = current;
	struct thread_struct *t = &me->thread;
101
	unsigned long *bp = t->io_bitmap_ptr;
102
	struct fpu *fpu = &t->fpu;
103

104
	if (bp) {
105
		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
106 107 108 109 110 111 112 113 114

		t->io_bitmap_ptr = NULL;
		clear_thread_flag(TIF_IO_BITMAP);
		/*
		 * Careful, clear this in the TSS too:
		 */
		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
		t->io_bitmap_max = 0;
		put_cpu();
115
		kfree(bp);
116
	}
117

118 119
	free_vm86(t);

120
	fpu__drop(fpu);
121 122 123 124 125 126
}

void flush_thread(void)
{
	struct task_struct *tsk = current;

127
	flush_ptrace_hw_breakpoint(tsk);
128
	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
129

130
	fpu__clear(&tsk->thread.fpu);
131 132 133 134
}

static void hard_disable_TSC(void)
{
A
Andy Lutomirski 已提交
135
	cr4_set_bits(X86_CR4_TSD);
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
}

void disable_TSC(void)
{
	preempt_disable();
	if (!test_and_set_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
		hard_disable_TSC();
	preempt_enable();
}

static void hard_enable_TSC(void)
{
A
Andy Lutomirski 已提交
152
	cr4_clear_bits(X86_CR4_TSD);
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
}

static void enable_TSC(void)
{
	preempt_disable();
	if (test_and_clear_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
		hard_enable_TSC();
	preempt_enable();
}

int get_tsc_mode(unsigned long adr)
{
	unsigned int val;

	if (test_thread_flag(TIF_NOTSC))
		val = PR_TSC_SIGSEGV;
	else
		val = PR_TSC_ENABLE;

	return put_user(val, (unsigned int __user *)adr);
}

int set_tsc_mode(unsigned int val)
{
	if (val == PR_TSC_SIGSEGV)
		disable_TSC();
	else if (val == PR_TSC_ENABLE)
		enable_TSC();
	else
		return -EINVAL;

	return 0;
}

void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
		      struct tss_struct *tss)
{
	struct thread_struct *prev, *next;

	prev = &prev_p->thread;
	next = &next_p->thread;

P
Peter Zijlstra 已提交
199 200 201 202 203 204 205 206 207 208
	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
		unsigned long debugctl = get_debugctlmsr();

		debugctl &= ~DEBUGCTLMSR_BTF;
		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
			debugctl |= DEBUGCTLMSR_BTF;

		update_debugctlmsr(debugctl);
	}
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
		/* prev and next are different */
		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
			hard_disable_TSC();
		else
			hard_enable_TSC();
	}

	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
		/*
		 * Copy the relevant range of the IO bitmap.
		 * Normally this is 128 bytes or less:
		 */
		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
		       max(prev->io_bitmap_max, next->io_bitmap_max));
	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
		/*
		 * Clear any possible leftover bits:
		 */
		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
	}
A
Avi Kivity 已提交
232
	propagate_user_return_notify(prev_p, next_p);
233 234
}

235 236 237
/*
 * Idle related variables and functions
 */
238
unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
239 240
EXPORT_SYMBOL(boot_option_idle_override);

241
static void (*x86_idle)(void);
242

243 244 245 246 247 248 249 250 251 252
#ifndef CONFIG_SMP
static inline void play_dead(void)
{
	BUG();
}
#endif

#ifdef CONFIG_X86_64
void enter_idle(void)
{
253
	this_cpu_write(is_idle, 1);
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
}

static void __exit_idle(void)
{
	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
		return;
	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
}

/* Called from interrupts to signify idle end */
void exit_idle(void)
{
	/* idle loop has pid 0 */
	if (current->pid)
		return;
	__exit_idle();
}
#endif

T
Thomas Gleixner 已提交
274 275 276 277 278
void arch_cpu_idle_enter(void)
{
	local_touch_nmi();
	enter_idle();
}
279

T
Thomas Gleixner 已提交
280 281 282 283
void arch_cpu_idle_exit(void)
{
	__exit_idle();
}
284

T
Thomas Gleixner 已提交
285 286 287 288
void arch_cpu_idle_dead(void)
{
	play_dead();
}
289

T
Thomas Gleixner 已提交
290 291 292 293 294
/*
 * Called from the generic idle code.
 */
void arch_cpu_idle(void)
{
295
	x86_idle();
296 297
}

298
/*
T
Thomas Gleixner 已提交
299
 * We use this if we don't have any better idle routine..
300 301 302
 */
void default_idle(void)
{
303
	trace_cpu_idle_rcuidle(1, smp_processor_id());
T
Thomas Gleixner 已提交
304
	safe_halt();
305
	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
306
}
307
#ifdef CONFIG_APM_MODULE
308 309 310
EXPORT_SYMBOL(default_idle);
#endif

311 312
#ifdef CONFIG_XEN
bool xen_set_default_idle(void)
313
{
314
	bool ret = !!x86_idle;
315

316
	x86_idle = default_idle;
317 318 319

	return ret;
}
320
#endif
321 322 323 324 325 326
void stop_this_cpu(void *dummy)
{
	local_irq_disable();
	/*
	 * Remove this CPU:
	 */
327
	set_cpu_online(smp_processor_id(), false);
328
	disable_local_APIC();
329
	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
330

331 332
	for (;;)
		halt();
333 334
}

335 336
bool amd_e400_c1e_detected;
EXPORT_SYMBOL(amd_e400_c1e_detected);
337

338
static cpumask_var_t amd_e400_c1e_mask;
339

340
void amd_e400_remove_cpu(int cpu)
341
{
342 343
	if (amd_e400_c1e_mask != NULL)
		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
344 345
}

346
/*
347
 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
348 349 350
 * pending message MSR. If we detect C1E, then we handle it the same
 * way as C3 power states (local apic timer and TSC stop)
 */
351
static void amd_e400_idle(void)
352
{
353
	if (!amd_e400_c1e_detected) {
354 355 356
		u32 lo, hi;

		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
357

358
		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
359
			amd_e400_c1e_detected = true;
360
			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
361
				mark_tsc_unstable("TSC halt in AMD C1E");
362
			pr_info("System has AMD C1E enabled\n");
363 364 365
		}
	}

366
	if (amd_e400_c1e_detected) {
367 368
		int cpu = smp_processor_id();

369 370
		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
371 372
			/* Force broadcast so ACPI can not interfere. */
			tick_broadcast_force();
373
			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
374
		}
375
		tick_broadcast_enter();
376

377
		default_idle();
378 379 380 381 382

		/*
		 * The switch back from broadcast mode needs to be
		 * called with interrupts disabled.
		 */
383
		local_irq_disable();
384
		tick_broadcast_exit();
385
		local_irq_enable();
386 387 388 389
	} else
		default_idle();
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
/*
 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 * We can't rely on cpuidle installing MWAIT, because it will not load
 * on systems that support only C1 -- so the boot default must be MWAIT.
 *
 * Some AMD machines are the opposite, they depend on using HALT.
 *
 * So for default C1, which is used during boot until cpuidle loads,
 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 */
static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
{
	if (c->x86_vendor != X86_VENDOR_INTEL)
		return 0;

	if (!cpu_has(c, X86_FEATURE_MWAIT))
		return 0;

	return 1;
}

/*
412 413 414
 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 * with interrupts enabled and no flags, which is backwards compatible with the
 * original MWAIT implementation.
415 416 417
 */
static void mwait_idle(void)
{
418
	if (!current_set_polling_and_test()) {
419
		trace_cpu_idle_rcuidle(1, smp_processor_id());
420 421
		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
			smp_mb(); /* quirk */
422
			clflush((void *)&current_thread_info()->flags);
423 424
			smp_mb(); /* quirk */
		}
425 426 427 428 429 430

		__monitor((void *)&current_thread_info()->flags, 0, 0);
		if (!need_resched())
			__sti_mwait(0, 0);
		else
			local_irq_enable();
431
		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
432
	} else {
433
		local_irq_enable();
434 435
	}
	__current_clr_polling();
436 437
}

438
void select_idle_routine(const struct cpuinfo_x86 *c)
439
{
440
#ifdef CONFIG_SMP
T
Thomas Gleixner 已提交
441
	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
442
		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
443
#endif
T
Thomas Gleixner 已提交
444
	if (x86_idle || boot_option_idle_override == IDLE_POLL)
T
Thomas Gleixner 已提交
445 446
		return;

447
	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
448
		/* E400: APIC timer interrupt does not wake up CPU from C1e */
449
		pr_info("using AMD E400 aware idle routine\n");
450
		x86_idle = amd_e400_idle;
451 452 453
	} else if (prefer_mwait_c1_over_halt(c)) {
		pr_info("using mwait in idle threads\n");
		x86_idle = mwait_idle;
T
Thomas Gleixner 已提交
454
	} else
455
		x86_idle = default_idle;
456 457
}

458
void __init init_amd_e400_c1e_mask(void)
459
{
460
	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
461
	if (x86_idle == amd_e400_idle)
462
		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
463 464
}

465 466
static int __init idle_setup(char *str)
{
467 468 469
	if (!str)
		return -EINVAL;

470
	if (!strcmp(str, "poll")) {
471
		pr_info("using polling idle threads\n");
472
		boot_option_idle_override = IDLE_POLL;
T
Thomas Gleixner 已提交
473
		cpu_idle_poll_ctrl(true);
474
	} else if (!strcmp(str, "halt")) {
Z
Zhao Yakui 已提交
475 476 477 478 479 480 481
		/*
		 * When the boot option of idle=halt is added, halt is
		 * forced to be used for CPU idle. In such case CPU C2/C3
		 * won't be used again.
		 * To continue to load the CPU idle driver, don't touch
		 * the boot_option_idle_override.
		 */
482
		x86_idle = default_idle;
483
		boot_option_idle_override = IDLE_HALT;
484 485 486 487 488 489 490
	} else if (!strcmp(str, "nomwait")) {
		/*
		 * If the boot option of "idle=nomwait" is added,
		 * it means that mwait will be disabled for CPU C2/C3
		 * states. In such case it won't touch the variable
		 * of boot_option_idle_override.
		 */
491
		boot_option_idle_override = IDLE_NOMWAIT;
Z
Zhao Yakui 已提交
492
	} else
493 494 495 496 497 498
		return -1;

	return 0;
}
early_param("idle", idle_setup);

A
Amerigo Wang 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() % 8192;
	return sp & ~0xf;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
	unsigned long range_end = mm->brk + 0x02000000;
	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
/*
 * Called from fs/proc with a reference on @p to find the function
 * which called into schedule(). This needs to be done carefully
 * because the task might wake up and we might look at a stack
 * changing under us.
 */
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long start, bottom, top, sp, fp, ip;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	start = (unsigned long)task_stack_page(p);
	if (!start)
		return 0;

	/*
	 * Layout of the stack page:
	 *
	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
	 * PADDING
	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
	 * stack
	 * ----------- bottom = start + sizeof(thread_info)
	 * thread_info
	 * ----------- start
	 *
	 * The tasks stack pointer points at the location where the
	 * framepointer is stored. The data on the stack is:
	 * ... IP FP ... IP FP
	 *
	 * We need to read FP and IP, so we need to adjust the upper
	 * bound by another unsigned long.
	 */
	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
	top -= 2 * sizeof(unsigned long);
	bottom = start + sizeof(struct thread_info);

	sp = READ_ONCE(p->thread.sp);
	if (sp < bottom || sp > top)
		return 0;

556
	fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
557 558 559
	do {
		if (fp < bottom || fp > top)
			return 0;
560
		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
561 562
		if (!in_sched_functions(ip))
			return ip;
563
		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
564 565 566
	} while (count++ < 16 && p->state != TASK_RUNNING);
	return 0;
}