xfs_btree.c 125.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2 3
 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
 * All Rights Reserved.
L
Linus Torvalds 已提交
4
 *
5 6
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
L
Linus Torvalds 已提交
7 8
 * published by the Free Software Foundation.
 *
9 10 11 12
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
L
Linus Torvalds 已提交
13
 *
14 15 16
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
L
Linus Torvalds 已提交
17 18
 */
#include "xfs.h"
19
#include "xfs_fs.h"
20
#include "xfs_shared.h"
21
#include "xfs_format.h"
22 23
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
24
#include "xfs_bit.h"
L
Linus Torvalds 已提交
25
#include "xfs_mount.h"
26
#include "xfs_defer.h"
L
Linus Torvalds 已提交
27
#include "xfs_inode.h"
28
#include "xfs_trans.h"
29
#include "xfs_inode_item.h"
30
#include "xfs_buf_item.h"
31
#include "xfs_btree.h"
L
Linus Torvalds 已提交
32
#include "xfs_error.h"
C
Christoph Hellwig 已提交
33
#include "xfs_trace.h"
34
#include "xfs_cksum.h"
35
#include "xfs_alloc.h"
36
#include "xfs_log.h"
L
Linus Torvalds 已提交
37 38 39 40 41 42 43 44 45

/*
 * Cursor allocation zone.
 */
kmem_zone_t	*xfs_btree_cur_zone;

/*
 * Btree magic numbers.
 */
46
static const __uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
47
	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
48
	  XFS_FIBT_MAGIC },
49
	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
50
	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC }
L
Linus Torvalds 已提交
51
};
52 53
#define xfs_btree_magic(cur) \
	xfs_magics[!!((cur)->bc_flags & XFS_BTREE_CRC_BLOCKS)][cur->bc_btnum]
L
Linus Torvalds 已提交
54

55
STATIC int				/* error (0 or EFSCORRUPTED) */
56 57
xfs_btree_check_lblock(
	struct xfs_btree_cur	*cur,	/* btree cursor */
58
	struct xfs_btree_block	*block,	/* btree long form block pointer */
59 60 61
	int			level,	/* level of the btree block */
	struct xfs_buf		*bp)	/* buffer for block, if any */
{
62
	int			lblock_ok = 1; /* block passes checks */
63 64 65
	struct xfs_mount	*mp;	/* file system mount point */

	mp = cur->bc_mp;
66 67 68

	if (xfs_sb_version_hascrc(&mp->m_sb)) {
		lblock_ok = lblock_ok &&
69 70
			uuid_equal(&block->bb_u.l.bb_uuid,
				   &mp->m_sb.sb_meta_uuid) &&
71 72 73 74 75 76
			block->bb_u.l.bb_blkno == cpu_to_be64(
				bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
	}

	lblock_ok = lblock_ok &&
		be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
77 78
		be16_to_cpu(block->bb_level) == level &&
		be16_to_cpu(block->bb_numrecs) <=
79
			cur->bc_ops->get_maxrecs(cur, level) &&
80
		block->bb_u.l.bb_leftsib &&
C
Christoph Hellwig 已提交
81
		(block->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK) ||
82
		 XFS_FSB_SANITY_CHECK(mp,
83
			be64_to_cpu(block->bb_u.l.bb_leftsib))) &&
84
		block->bb_u.l.bb_rightsib &&
C
Christoph Hellwig 已提交
85
		(block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK) ||
86
		 XFS_FSB_SANITY_CHECK(mp,
87 88
			be64_to_cpu(block->bb_u.l.bb_rightsib)));

89 90 91 92
	if (unlikely(XFS_TEST_ERROR(!lblock_ok, mp,
			XFS_ERRTAG_BTREE_CHECK_LBLOCK,
			XFS_RANDOM_BTREE_CHECK_LBLOCK))) {
		if (bp)
C
Christoph Hellwig 已提交
93
			trace_xfs_btree_corrupt(bp, _RET_IP_);
94
		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
D
Dave Chinner 已提交
95
		return -EFSCORRUPTED;
96 97 98 99
	}
	return 0;
}

100
STATIC int				/* error (0 or EFSCORRUPTED) */
L
Linus Torvalds 已提交
101
xfs_btree_check_sblock(
102
	struct xfs_btree_cur	*cur,	/* btree cursor */
103
	struct xfs_btree_block	*block,	/* btree short form block pointer */
L
Linus Torvalds 已提交
104
	int			level,	/* level of the btree block */
105
	struct xfs_buf		*bp)	/* buffer containing block */
L
Linus Torvalds 已提交
106
{
107
	struct xfs_mount	*mp;	/* file system mount point */
108 109
	struct xfs_buf		*agbp;	/* buffer for ag. freespace struct */
	struct xfs_agf		*agf;	/* ag. freespace structure */
L
Linus Torvalds 已提交
110
	xfs_agblock_t		agflen;	/* native ag. freespace length */
111
	int			sblock_ok = 1; /* block passes checks */
L
Linus Torvalds 已提交
112

113
	mp = cur->bc_mp;
L
Linus Torvalds 已提交
114 115
	agbp = cur->bc_private.a.agbp;
	agf = XFS_BUF_TO_AGF(agbp);
116
	agflen = be32_to_cpu(agf->agf_length);
117 118 119

	if (xfs_sb_version_hascrc(&mp->m_sb)) {
		sblock_ok = sblock_ok &&
120 121
			uuid_equal(&block->bb_u.s.bb_uuid,
				   &mp->m_sb.sb_meta_uuid) &&
122 123 124 125 126 127
			block->bb_u.s.bb_blkno == cpu_to_be64(
				bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
	}

	sblock_ok = sblock_ok &&
		be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
128 129
		be16_to_cpu(block->bb_level) == level &&
		be16_to_cpu(block->bb_numrecs) <=
130
			cur->bc_ops->get_maxrecs(cur, level) &&
131
		(block->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) ||
132 133
		 be32_to_cpu(block->bb_u.s.bb_leftsib) < agflen) &&
		block->bb_u.s.bb_leftsib &&
134
		(block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK) ||
135 136
		 be32_to_cpu(block->bb_u.s.bb_rightsib) < agflen) &&
		block->bb_u.s.bb_rightsib;
137 138

	if (unlikely(XFS_TEST_ERROR(!sblock_ok, mp,
L
Linus Torvalds 已提交
139 140 141
			XFS_ERRTAG_BTREE_CHECK_SBLOCK,
			XFS_RANDOM_BTREE_CHECK_SBLOCK))) {
		if (bp)
C
Christoph Hellwig 已提交
142
			trace_xfs_btree_corrupt(bp, _RET_IP_);
143
		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
D
Dave Chinner 已提交
144
		return -EFSCORRUPTED;
L
Linus Torvalds 已提交
145 146 147 148 149
	}
	return 0;
}

/*
150 151 152 153 154 155 156 157 158
 * Debug routine: check that block header is ok.
 */
int
xfs_btree_check_block(
	struct xfs_btree_cur	*cur,	/* btree cursor */
	struct xfs_btree_block	*block,	/* generic btree block pointer */
	int			level,	/* level of the btree block */
	struct xfs_buf		*bp)	/* buffer containing block, if any */
{
159 160 161 162
	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
		return xfs_btree_check_lblock(cur, block, level, bp);
	else
		return xfs_btree_check_sblock(cur, block, level, bp);
163 164 165 166 167 168 169 170
}

/*
 * Check that (long) pointer is ok.
 */
int					/* error (0 or EFSCORRUPTED) */
xfs_btree_check_lptr(
	struct xfs_btree_cur	*cur,	/* btree cursor */
C
Christoph Hellwig 已提交
171
	xfs_fsblock_t		bno,	/* btree block disk address */
172 173
	int			level)	/* btree block level */
{
174
	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
175
		level > 0 &&
C
Christoph Hellwig 已提交
176
		bno != NULLFSBLOCK &&
177 178 179 180
		XFS_FSB_SANITY_CHECK(cur->bc_mp, bno));
	return 0;
}

181
#ifdef DEBUG
182 183
/*
 * Check that (short) pointer is ok.
L
Linus Torvalds 已提交
184
 */
185
STATIC int				/* error (0 or EFSCORRUPTED) */
L
Linus Torvalds 已提交
186
xfs_btree_check_sptr(
187 188 189
	struct xfs_btree_cur	*cur,	/* btree cursor */
	xfs_agblock_t		bno,	/* btree block disk address */
	int			level)	/* btree block level */
L
Linus Torvalds 已提交
190
{
191
	xfs_agblock_t		agblocks = cur->bc_mp->m_sb.sb_agblocks;
L
Linus Torvalds 已提交
192

193
	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
L
Linus Torvalds 已提交
194
		level > 0 &&
195 196 197
		bno != NULLAGBLOCK &&
		bno != 0 &&
		bno < agblocks);
L
Linus Torvalds 已提交
198 199 200
	return 0;
}

201 202 203
/*
 * Check that block ptr is ok.
 */
204
STATIC int				/* error (0 or EFSCORRUPTED) */
205 206 207 208 209 210 211 212 213 214 215 216 217 218
xfs_btree_check_ptr(
	struct xfs_btree_cur	*cur,	/* btree cursor */
	union xfs_btree_ptr	*ptr,	/* btree block disk address */
	int			index,	/* offset from ptr to check */
	int			level)	/* btree block level */
{
	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
		return xfs_btree_check_lptr(cur,
				be64_to_cpu((&ptr->l)[index]), level);
	} else {
		return xfs_btree_check_sptr(cur,
				be32_to_cpu((&ptr->s)[index]), level);
	}
}
219
#endif
220

221 222 223 224 225
/*
 * Calculate CRC on the whole btree block and stuff it into the
 * long-form btree header.
 *
 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
G
Geliang Tang 已提交
226
 * it into the buffer so recovery knows what the last modification was that made
227 228 229 230 231 232 233 234 235 236 237 238 239
 * it to disk.
 */
void
xfs_btree_lblock_calc_crc(
	struct xfs_buf		*bp)
{
	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
	struct xfs_buf_log_item	*bip = bp->b_fspriv;

	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
		return;
	if (bip)
		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
240
	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
241 242 243 244 245 246
}

bool
xfs_btree_lblock_verify_crc(
	struct xfs_buf		*bp)
{
247 248 249 250 251 252
	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
	struct xfs_mount	*mp = bp->b_target->bt_mount;

	if (xfs_sb_version_hascrc(&mp->m_sb)) {
		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
			return false;
253
		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
254
	}
255

256 257 258 259 260 261 262 263
	return true;
}

/*
 * Calculate CRC on the whole btree block and stuff it into the
 * short-form btree header.
 *
 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
G
Geliang Tang 已提交
264
 * it into the buffer so recovery knows what the last modification was that made
265 266 267 268 269 270 271 272 273 274 275 276 277
 * it to disk.
 */
void
xfs_btree_sblock_calc_crc(
	struct xfs_buf		*bp)
{
	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
	struct xfs_buf_log_item	*bip = bp->b_fspriv;

	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
		return;
	if (bip)
		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
278
	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
279 280 281 282 283 284
}

bool
xfs_btree_sblock_verify_crc(
	struct xfs_buf		*bp)
{
285 286 287 288 289 290
	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
	struct xfs_mount	*mp = bp->b_target->bt_mount;

	if (xfs_sb_version_hascrc(&mp->m_sb)) {
		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
			return false;
291
		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
292
	}
293

294 295 296
	return true;
}

297 298 299 300 301 302 303 304
static int
xfs_btree_free_block(
	struct xfs_btree_cur	*cur,
	struct xfs_buf		*bp)
{
	int			error;

	error = cur->bc_ops->free_block(cur, bp);
305 306
	if (!error) {
		xfs_trans_binval(cur->bc_tp, bp);
307
		XFS_BTREE_STATS_INC(cur, free);
308
	}
309 310 311
	return error;
}

L
Linus Torvalds 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
/*
 * Delete the btree cursor.
 */
void
xfs_btree_del_cursor(
	xfs_btree_cur_t	*cur,		/* btree cursor */
	int		error)		/* del because of error */
{
	int		i;		/* btree level */

	/*
	 * Clear the buffer pointers, and release the buffers.
	 * If we're doing this in the face of an error, we
	 * need to make sure to inspect all of the entries
	 * in the bc_bufs array for buffers to be unlocked.
	 * This is because some of the btree code works from
	 * level n down to 0, and if we get an error along
	 * the way we won't have initialized all the entries
	 * down to 0.
	 */
	for (i = 0; i < cur->bc_nlevels; i++) {
		if (cur->bc_bufs[i])
334
			xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
L
Linus Torvalds 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
		else if (!error)
			break;
	}
	/*
	 * Can't free a bmap cursor without having dealt with the
	 * allocated indirect blocks' accounting.
	 */
	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
	       cur->bc_private.b.allocated == 0);
	/*
	 * Free the cursor.
	 */
	kmem_zone_free(xfs_btree_cur_zone, cur);
}

/*
 * Duplicate the btree cursor.
 * Allocate a new one, copy the record, re-get the buffers.
 */
int					/* error */
xfs_btree_dup_cursor(
	xfs_btree_cur_t	*cur,		/* input cursor */
	xfs_btree_cur_t	**ncur)		/* output cursor */
{
	xfs_buf_t	*bp;		/* btree block's buffer pointer */
	int		error;		/* error return value */
	int		i;		/* level number of btree block */
	xfs_mount_t	*mp;		/* mount structure for filesystem */
	xfs_btree_cur_t	*new;		/* new cursor value */
	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */

	tp = cur->bc_tp;
	mp = cur->bc_mp;
368

L
Linus Torvalds 已提交
369 370 371
	/*
	 * Allocate a new cursor like the old one.
	 */
372 373
	new = cur->bc_ops->dup_cursor(cur);

L
Linus Torvalds 已提交
374 375 376 377
	/*
	 * Copy the record currently in the cursor.
	 */
	new->bc_rec = cur->bc_rec;
378

L
Linus Torvalds 已提交
379 380 381 382 383 384
	/*
	 * For each level current, re-get the buffer and copy the ptr value.
	 */
	for (i = 0; i < new->bc_nlevels; i++) {
		new->bc_ptrs[i] = cur->bc_ptrs[i];
		new->bc_ra[i] = cur->bc_ra[i];
385 386 387 388
		bp = cur->bc_bufs[i];
		if (bp) {
			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
						   XFS_BUF_ADDR(bp), mp->m_bsize,
389
						   0, &bp,
390
						   cur->bc_ops->buf_ops);
391
			if (error) {
L
Linus Torvalds 已提交
392 393 394 395
				xfs_btree_del_cursor(new, error);
				*ncur = NULL;
				return error;
			}
396 397
		}
		new->bc_bufs[i] = bp;
L
Linus Torvalds 已提交
398 399 400 401 402
	}
	*ncur = new;
	return 0;
}

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
/*
 * XFS btree block layout and addressing:
 *
 * There are two types of blocks in the btree: leaf and non-leaf blocks.
 *
 * The leaf record start with a header then followed by records containing
 * the values.  A non-leaf block also starts with the same header, and
 * then first contains lookup keys followed by an equal number of pointers
 * to the btree blocks at the previous level.
 *
 *		+--------+-------+-------+-------+-------+-------+-------+
 * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
 *		+--------+-------+-------+-------+-------+-------+-------+
 *
 *		+--------+-------+-------+-------+-------+-------+-------+
 * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
 *		+--------+-------+-------+-------+-------+-------+-------+
 *
 * The header is called struct xfs_btree_block for reasons better left unknown
 * and comes in different versions for short (32bit) and long (64bit) block
 * pointers.  The record and key structures are defined by the btree instances
 * and opaque to the btree core.  The block pointers are simple disk endian
 * integers, available in a short (32bit) and long (64bit) variant.
 *
 * The helpers below calculate the offset of a given record, key or pointer
 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
 * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
 * inside the btree block is done using indices starting at one, not zero!
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
 *
 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
 * overlapping intervals.  In such a tree, records are still sorted lowest to
 * highest and indexed by the smallest key value that refers to the record.
 * However, nodes are different: each pointer has two associated keys -- one
 * indexing the lowest key available in the block(s) below (the same behavior
 * as the key in a regular btree) and another indexing the highest key
 * available in the block(s) below.  Because records are /not/ sorted by the
 * highest key, all leaf block updates require us to compute the highest key
 * that matches any record in the leaf and to recursively update the high keys
 * in the nodes going further up in the tree, if necessary.  Nodes look like
 * this:
 *
 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
 * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
 *
 * To perform an interval query on an overlapped tree, perform the usual
 * depth-first search and use the low and high keys to decide if we can skip
 * that particular node.  If a leaf node is reached, return the records that
 * intersect the interval.  Note that an interval query may return numerous
 * entries.  For a non-overlapped tree, simply search for the record associated
 * with the lowest key and iterate forward until a non-matching record is
 * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
 * more detail.
 *
 * Why do we care about overlapping intervals?  Let's say you have a bunch of
 * reverse mapping records on a reflink filesystem:
 *
 * 1: +- file A startblock B offset C length D -----------+
 * 2:      +- file E startblock F offset G length H --------------+
 * 3:      +- file I startblock F offset J length K --+
 * 4:                                                        +- file L... --+
 *
 * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
 * we'd simply increment the length of record 1.  But how do we find the record
 * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
 * record 3 because the keys are ordered first by startblock.  An interval
 * query would return records 1 and 2 because they both overlap (B+D-1), and
 * from that we can pick out record 1 as the appropriate left neighbor.
 *
 * In the non-overlapped case you can do a LE lookup and decrement the cursor
 * because a record's interval must end before the next record.
475 476 477 478 479 480 481
 */

/*
 * Return size of the btree block header for this btree instance.
 */
static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
{
482 483 484 485 486 487 488 489
	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
			return XFS_BTREE_LBLOCK_CRC_LEN;
		return XFS_BTREE_LBLOCK_LEN;
	}
	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
		return XFS_BTREE_SBLOCK_CRC_LEN;
	return XFS_BTREE_SBLOCK_LEN;
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
}

/*
 * Return size of btree block pointers for this btree instance.
 */
static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
{
	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
		sizeof(__be64) : sizeof(__be32);
}

/*
 * Calculate offset of the n-th record in a btree block.
 */
STATIC size_t
xfs_btree_rec_offset(
	struct xfs_btree_cur	*cur,
	int			n)
{
	return xfs_btree_block_len(cur) +
		(n - 1) * cur->bc_ops->rec_len;
}

/*
 * Calculate offset of the n-th key in a btree block.
 */
STATIC size_t
xfs_btree_key_offset(
	struct xfs_btree_cur	*cur,
	int			n)
{
	return xfs_btree_block_len(cur) +
		(n - 1) * cur->bc_ops->key_len;
}

525 526 527 528 529 530 531 532 533 534 535 536
/*
 * Calculate offset of the n-th high key in a btree block.
 */
STATIC size_t
xfs_btree_high_key_offset(
	struct xfs_btree_cur	*cur,
	int			n)
{
	return xfs_btree_block_len(cur) +
		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
/*
 * Calculate offset of the n-th block pointer in a btree block.
 */
STATIC size_t
xfs_btree_ptr_offset(
	struct xfs_btree_cur	*cur,
	int			n,
	int			level)
{
	return xfs_btree_block_len(cur) +
		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
		(n - 1) * xfs_btree_ptr_len(cur);
}

/*
 * Return a pointer to the n-th record in the btree block.
 */
STATIC union xfs_btree_rec *
xfs_btree_rec_addr(
	struct xfs_btree_cur	*cur,
	int			n,
	struct xfs_btree_block	*block)
{
	return (union xfs_btree_rec *)
		((char *)block + xfs_btree_rec_offset(cur, n));
}

/*
 * Return a pointer to the n-th key in the btree block.
 */
STATIC union xfs_btree_key *
xfs_btree_key_addr(
	struct xfs_btree_cur	*cur,
	int			n,
	struct xfs_btree_block	*block)
{
	return (union xfs_btree_key *)
		((char *)block + xfs_btree_key_offset(cur, n));
}

577 578 579 580 581 582 583 584 585 586 587 588 589
/*
 * Return a pointer to the n-th high key in the btree block.
 */
STATIC union xfs_btree_key *
xfs_btree_high_key_addr(
	struct xfs_btree_cur	*cur,
	int			n,
	struct xfs_btree_block	*block)
{
	return (union xfs_btree_key *)
		((char *)block + xfs_btree_high_key_offset(cur, n));
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
/*
 * Return a pointer to the n-th block pointer in the btree block.
 */
STATIC union xfs_btree_ptr *
xfs_btree_ptr_addr(
	struct xfs_btree_cur	*cur,
	int			n,
	struct xfs_btree_block	*block)
{
	int			level = xfs_btree_get_level(block);

	ASSERT(block->bb_level != 0);

	return (union xfs_btree_ptr *)
		((char *)block + xfs_btree_ptr_offset(cur, n, level));
}

607
/*
608
 * Get the root block which is stored in the inode.
609 610 611 612 613 614
 *
 * For now this btree implementation assumes the btree root is always
 * stored in the if_broot field of an inode fork.
 */
STATIC struct xfs_btree_block *
xfs_btree_get_iroot(
615
	struct xfs_btree_cur	*cur)
616
{
617
	struct xfs_ifork	*ifp;
618

619 620
	ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
	return (struct xfs_btree_block *)ifp->if_broot;
621 622
}

L
Linus Torvalds 已提交
623 624
/*
 * Retrieve the block pointer from the cursor at the given level.
625
 * This may be an inode btree root or from a buffer.
L
Linus Torvalds 已提交
626
 */
627
STATIC struct xfs_btree_block *		/* generic btree block pointer */
L
Linus Torvalds 已提交
628
xfs_btree_get_block(
629
	struct xfs_btree_cur	*cur,	/* btree cursor */
L
Linus Torvalds 已提交
630
	int			level,	/* level in btree */
631
	struct xfs_buf		**bpp)	/* buffer containing the block */
L
Linus Torvalds 已提交
632
{
633 634 635 636
	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
	    (level == cur->bc_nlevels - 1)) {
		*bpp = NULL;
		return xfs_btree_get_iroot(cur);
L
Linus Torvalds 已提交
637
	}
638 639 640

	*bpp = cur->bc_bufs[level];
	return XFS_BUF_TO_BLOCK(*bpp);
L
Linus Torvalds 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
}

/*
 * Get a buffer for the block, return it with no data read.
 * Long-form addressing.
 */
xfs_buf_t *				/* buffer for fsbno */
xfs_btree_get_bufl(
	xfs_mount_t	*mp,		/* file system mount point */
	xfs_trans_t	*tp,		/* transaction pointer */
	xfs_fsblock_t	fsbno,		/* file system block number */
	uint		lock)		/* lock flags for get_buf */
{
	xfs_daddr_t		d;		/* real disk block address */

	ASSERT(fsbno != NULLFSBLOCK);
	d = XFS_FSB_TO_DADDR(mp, fsbno);
D
Dave Chinner 已提交
658
	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
L
Linus Torvalds 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
}

/*
 * Get a buffer for the block, return it with no data read.
 * Short-form addressing.
 */
xfs_buf_t *				/* buffer for agno/agbno */
xfs_btree_get_bufs(
	xfs_mount_t	*mp,		/* file system mount point */
	xfs_trans_t	*tp,		/* transaction pointer */
	xfs_agnumber_t	agno,		/* allocation group number */
	xfs_agblock_t	agbno,		/* allocation group block number */
	uint		lock)		/* lock flags for get_buf */
{
	xfs_daddr_t		d;		/* real disk block address */

	ASSERT(agno != NULLAGNUMBER);
	ASSERT(agbno != NULLAGBLOCK);
	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
D
Dave Chinner 已提交
678
	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
L
Linus Torvalds 已提交
679 680 681 682 683 684 685 686 687 688
}

/*
 * Check for the cursor referring to the last block at the given level.
 */
int					/* 1=is last block, 0=not last block */
xfs_btree_islastblock(
	xfs_btree_cur_t		*cur,	/* btree cursor */
	int			level)	/* level to check */
{
689
	struct xfs_btree_block	*block;	/* generic btree block pointer */
L
Linus Torvalds 已提交
690 691 692 693
	xfs_buf_t		*bp;	/* buffer containing block */

	block = xfs_btree_get_block(cur, level, &bp);
	xfs_btree_check_block(cur, block, level, bp);
694
	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
C
Christoph Hellwig 已提交
695
		return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
L
Linus Torvalds 已提交
696
	else
697
		return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
L
Linus Torvalds 已提交
698 699
}

700 701 702 703
/*
 * Change the cursor to point to the first record at the given level.
 * Other levels are unaffected.
 */
704
STATIC int				/* success=1, failure=0 */
705 706 707 708
xfs_btree_firstrec(
	xfs_btree_cur_t		*cur,	/* btree cursor */
	int			level)	/* level to change */
{
709
	struct xfs_btree_block	*block;	/* generic btree block pointer */
710 711 712 713 714 715 716 717 718 719
	xfs_buf_t		*bp;	/* buffer containing block */

	/*
	 * Get the block pointer for this level.
	 */
	block = xfs_btree_get_block(cur, level, &bp);
	xfs_btree_check_block(cur, block, level, bp);
	/*
	 * It's empty, there is no such record.
	 */
720
	if (!block->bb_numrecs)
721 722 723 724 725 726 727 728
		return 0;
	/*
	 * Set the ptr value to 1, that's the first record/key.
	 */
	cur->bc_ptrs[level] = 1;
	return 1;
}

L
Linus Torvalds 已提交
729 730 731 732
/*
 * Change the cursor to point to the last record in the current block
 * at the given level.  Other levels are unaffected.
 */
733
STATIC int				/* success=1, failure=0 */
L
Linus Torvalds 已提交
734 735 736 737
xfs_btree_lastrec(
	xfs_btree_cur_t		*cur,	/* btree cursor */
	int			level)	/* level to change */
{
738
	struct xfs_btree_block	*block;	/* generic btree block pointer */
L
Linus Torvalds 已提交
739 740 741 742 743 744 745 746 747 748
	xfs_buf_t		*bp;	/* buffer containing block */

	/*
	 * Get the block pointer for this level.
	 */
	block = xfs_btree_get_block(cur, level, &bp);
	xfs_btree_check_block(cur, block, level, bp);
	/*
	 * It's empty, there is no such record.
	 */
749
	if (!block->bb_numrecs)
L
Linus Torvalds 已提交
750 751 752 753
		return 0;
	/*
	 * Set the ptr value to numrecs, that's the last record/key.
	 */
754
	cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
L
Linus Torvalds 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
	return 1;
}

/*
 * Compute first and last byte offsets for the fields given.
 * Interprets the offsets table, which contains struct field offsets.
 */
void
xfs_btree_offsets(
	__int64_t	fields,		/* bitmask of fields */
	const short	*offsets,	/* table of field offsets */
	int		nbits,		/* number of bits to inspect */
	int		*first,		/* output: first byte offset */
	int		*last)		/* output: last byte offset */
{
	int		i;		/* current bit number */
	__int64_t	imask;		/* mask for current bit number */

	ASSERT(fields != 0);
	/*
	 * Find the lowest bit, so the first byte offset.
	 */
	for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
		if (imask & fields) {
			*first = offsets[i];
			break;
		}
	}
	/*
	 * Find the highest bit, so the last byte offset.
	 */
	for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
		if (imask & fields) {
			*last = offsets[i + 1] - 1;
			break;
		}
	}
}

/*
 * Get a buffer for the block, return it read in.
 * Long-form addressing.
 */
798
int
L
Linus Torvalds 已提交
799
xfs_btree_read_bufl(
800 801 802 803 804 805
	struct xfs_mount	*mp,		/* file system mount point */
	struct xfs_trans	*tp,		/* transaction pointer */
	xfs_fsblock_t		fsbno,		/* file system block number */
	uint			lock,		/* lock flags for read_buf */
	struct xfs_buf		**bpp,		/* buffer for fsbno */
	int			refval,		/* ref count value for buffer */
806
	const struct xfs_buf_ops *ops)
L
Linus Torvalds 已提交
807
{
808
	struct xfs_buf		*bp;		/* return value */
L
Linus Torvalds 已提交
809
	xfs_daddr_t		d;		/* real disk block address */
810
	int			error;
L
Linus Torvalds 已提交
811 812 813

	ASSERT(fsbno != NULLFSBLOCK);
	d = XFS_FSB_TO_DADDR(mp, fsbno);
814
	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
815
				   mp->m_bsize, lock, &bp, ops);
816
	if (error)
L
Linus Torvalds 已提交
817
		return error;
818
	if (bp)
819
		xfs_buf_set_ref(bp, refval);
L
Linus Torvalds 已提交
820 821 822 823 824 825 826 827 828 829 830
	*bpp = bp;
	return 0;
}

/*
 * Read-ahead the block, don't wait for it, don't return a buffer.
 * Long-form addressing.
 */
/* ARGSUSED */
void
xfs_btree_reada_bufl(
831 832 833
	struct xfs_mount	*mp,		/* file system mount point */
	xfs_fsblock_t		fsbno,		/* file system block number */
	xfs_extlen_t		count,		/* count of filesystem blocks */
834
	const struct xfs_buf_ops *ops)
L
Linus Torvalds 已提交
835 836 837 838 839
{
	xfs_daddr_t		d;

	ASSERT(fsbno != NULLFSBLOCK);
	d = XFS_FSB_TO_DADDR(mp, fsbno);
840
	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
L
Linus Torvalds 已提交
841 842 843 844 845 846 847 848 849
}

/*
 * Read-ahead the block, don't wait for it, don't return a buffer.
 * Short-form addressing.
 */
/* ARGSUSED */
void
xfs_btree_reada_bufs(
850 851 852 853
	struct xfs_mount	*mp,		/* file system mount point */
	xfs_agnumber_t		agno,		/* allocation group number */
	xfs_agblock_t		agbno,		/* allocation group block number */
	xfs_extlen_t		count,		/* count of filesystem blocks */
854
	const struct xfs_buf_ops *ops)
L
Linus Torvalds 已提交
855 856 857 858 859 860
{
	xfs_daddr_t		d;

	ASSERT(agno != NULLAGNUMBER);
	ASSERT(agbno != NULLAGBLOCK);
	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
861
	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
L
Linus Torvalds 已提交
862 863
}

864 865 866 867 868 869 870
STATIC int
xfs_btree_readahead_lblock(
	struct xfs_btree_cur	*cur,
	int			lr,
	struct xfs_btree_block	*block)
{
	int			rval = 0;
C
Christoph Hellwig 已提交
871 872
	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
873

C
Christoph Hellwig 已提交
874
	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
875
		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
876
				     cur->bc_ops->buf_ops);
877 878 879
		rval++;
	}

C
Christoph Hellwig 已提交
880
	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
881
		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
882
				     cur->bc_ops->buf_ops);
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
		rval++;
	}

	return rval;
}

STATIC int
xfs_btree_readahead_sblock(
	struct xfs_btree_cur	*cur,
	int			lr,
	struct xfs_btree_block *block)
{
	int			rval = 0;
	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);


	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
902
				     left, 1, cur->bc_ops->buf_ops);
903 904 905 906 907
		rval++;
	}

	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
908
				     right, 1, cur->bc_ops->buf_ops);
909 910 911 912 913 914
		rval++;
	}

	return rval;
}

L
Linus Torvalds 已提交
915 916 917 918
/*
 * Read-ahead btree blocks, at the given level.
 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
 */
919
STATIC int
920 921
xfs_btree_readahead(
	struct xfs_btree_cur	*cur,		/* btree cursor */
L
Linus Torvalds 已提交
922 923 924
	int			lev,		/* level in btree */
	int			lr)		/* left/right bits */
{
925 926 927 928 929 930 931 932 933 934 935 936
	struct xfs_btree_block	*block;

	/*
	 * No readahead needed if we are at the root level and the
	 * btree root is stored in the inode.
	 */
	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
	    (lev == cur->bc_nlevels - 1))
		return 0;

	if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
		return 0;
L
Linus Torvalds 已提交
937 938

	cur->bc_ra[lev] |= lr;
939 940 941 942 943
	block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);

	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
		return xfs_btree_readahead_lblock(cur, lr, block);
	return xfs_btree_readahead_sblock(cur, lr, block);
L
Linus Torvalds 已提交
944 945
}

946 947 948 949 950 951
STATIC xfs_daddr_t
xfs_btree_ptr_to_daddr(
	struct xfs_btree_cur	*cur,
	union xfs_btree_ptr	*ptr)
{
	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
C
Christoph Hellwig 已提交
952
		ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980

		return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
	} else {
		ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
		ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));

		return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
					be32_to_cpu(ptr->s));
	}
}

/*
 * Readahead @count btree blocks at the given @ptr location.
 *
 * We don't need to care about long or short form btrees here as we have a
 * method of converting the ptr directly to a daddr available to us.
 */
STATIC void
xfs_btree_readahead_ptr(
	struct xfs_btree_cur	*cur,
	union xfs_btree_ptr	*ptr,
	xfs_extlen_t		count)
{
	xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
			  xfs_btree_ptr_to_daddr(cur, ptr),
			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
}

L
Linus Torvalds 已提交
981 982 983 984
/*
 * Set the buffer for level "lev" in the cursor to bp, releasing
 * any previous buffer.
 */
985
STATIC void
L
Linus Torvalds 已提交
986 987 988 989 990
xfs_btree_setbuf(
	xfs_btree_cur_t		*cur,	/* btree cursor */
	int			lev,	/* level in btree */
	xfs_buf_t		*bp)	/* new buffer to set */
{
991
	struct xfs_btree_block	*b;	/* btree block */
L
Linus Torvalds 已提交
992

993 994
	if (cur->bc_bufs[lev])
		xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
L
Linus Torvalds 已提交
995 996
	cur->bc_bufs[lev] = bp;
	cur->bc_ra[lev] = 0;
997

L
Linus Torvalds 已提交
998
	b = XFS_BUF_TO_BLOCK(bp);
999
	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
C
Christoph Hellwig 已提交
1000
		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
L
Linus Torvalds 已提交
1001
			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
C
Christoph Hellwig 已提交
1002
		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
L
Linus Torvalds 已提交
1003 1004
			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
	} else {
1005
		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
L
Linus Torvalds 已提交
1006
			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1007
		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
L
Linus Torvalds 已提交
1008 1009 1010
			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
	}
}
1011 1012 1013 1014 1015 1016 1017

STATIC int
xfs_btree_ptr_is_null(
	struct xfs_btree_cur	*cur,
	union xfs_btree_ptr	*ptr)
{
	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
C
Christoph Hellwig 已提交
1018
		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1019
	else
1020
		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1021 1022
}

1023 1024 1025 1026 1027 1028
STATIC void
xfs_btree_set_ptr_null(
	struct xfs_btree_cur	*cur,
	union xfs_btree_ptr	*ptr)
{
	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
C
Christoph Hellwig 已提交
1029
		ptr->l = cpu_to_be64(NULLFSBLOCK);
1030 1031 1032 1033
	else
		ptr->s = cpu_to_be32(NULLAGBLOCK);
}

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
/*
 * Get/set/init sibling pointers
 */
STATIC void
xfs_btree_get_sibling(
	struct xfs_btree_cur	*cur,
	struct xfs_btree_block	*block,
	union xfs_btree_ptr	*ptr,
	int			lr)
{
	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);

	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
		if (lr == XFS_BB_RIGHTSIB)
			ptr->l = block->bb_u.l.bb_rightsib;
		else
			ptr->l = block->bb_u.l.bb_leftsib;
	} else {
		if (lr == XFS_BB_RIGHTSIB)
			ptr->s = block->bb_u.s.bb_rightsib;
		else
			ptr->s = block->bb_u.s.bb_leftsib;
	}
}

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
STATIC void
xfs_btree_set_sibling(
	struct xfs_btree_cur	*cur,
	struct xfs_btree_block	*block,
	union xfs_btree_ptr	*ptr,
	int			lr)
{
	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);

	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
		if (lr == XFS_BB_RIGHTSIB)
			block->bb_u.l.bb_rightsib = ptr->l;
		else
			block->bb_u.l.bb_leftsib = ptr->l;
	} else {
		if (lr == XFS_BB_RIGHTSIB)
			block->bb_u.s.bb_rightsib = ptr->s;
		else
			block->bb_u.s.bb_leftsib = ptr->s;
	}
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
void
xfs_btree_init_block_int(
	struct xfs_mount	*mp,
	struct xfs_btree_block	*buf,
	xfs_daddr_t		blkno,
	__u32			magic,
	__u16			level,
	__u16			numrecs,
	__u64			owner,
	unsigned int		flags)
{
	buf->bb_magic = cpu_to_be32(magic);
	buf->bb_level = cpu_to_be16(level);
	buf->bb_numrecs = cpu_to_be16(numrecs);

	if (flags & XFS_BTREE_LONG_PTRS) {
C
Christoph Hellwig 已提交
1097 1098
		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1099 1100 1101
		if (flags & XFS_BTREE_CRC_BLOCKS) {
			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1102
			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1103
			buf->bb_u.l.bb_pad = 0;
1104
			buf->bb_u.l.bb_lsn = 0;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
		}
	} else {
		/* owner is a 32 bit value on short blocks */
		__u32 __owner = (__u32)owner;

		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
		if (flags & XFS_BTREE_CRC_BLOCKS) {
			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1115
			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1116
			buf->bb_u.s.bb_lsn = 0;
1117 1118 1119 1120
		}
	}
}

1121
void
1122
xfs_btree_init_block(
1123 1124 1125 1126 1127
	struct xfs_mount *mp,
	struct xfs_buf	*bp,
	__u32		magic,
	__u16		level,
	__u16		numrecs,
1128
	__u64		owner,
1129
	unsigned int	flags)
1130
{
1131 1132
	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
				 magic, level, numrecs, owner, flags);
1133 1134
}

1135 1136 1137
STATIC void
xfs_btree_init_block_cur(
	struct xfs_btree_cur	*cur,
1138
	struct xfs_buf		*bp,
1139
	int			level,
1140
	int			numrecs)
1141
{
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	__u64 owner;

	/*
	 * we can pull the owner from the cursor right now as the different
	 * owners align directly with the pointer size of the btree. This may
	 * change in future, but is safe for current users of the generic btree
	 * code.
	 */
	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
		owner = cur->bc_private.b.ip->i_ino;
	else
		owner = cur->bc_private.a.agno;

	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
				 xfs_btree_magic(cur), level, numrecs,
				 owner, cur->bc_flags);
1158 1159
}

1160 1161
/*
 * Return true if ptr is the last record in the btree and
1162
 * we need to track updates to this record.  The decision
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
 * will be further refined in the update_lastrec method.
 */
STATIC int
xfs_btree_is_lastrec(
	struct xfs_btree_cur	*cur,
	struct xfs_btree_block	*block,
	int			level)
{
	union xfs_btree_ptr	ptr;

	if (level > 0)
		return 0;
	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
		return 0;

	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
	if (!xfs_btree_ptr_is_null(cur, &ptr))
		return 0;
	return 1;
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
STATIC void
xfs_btree_buf_to_ptr(
	struct xfs_btree_cur	*cur,
	struct xfs_buf		*bp,
	union xfs_btree_ptr	*ptr)
{
	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
					XFS_BUF_ADDR(bp)));
	else {
1194
		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1195 1196 1197 1198
					XFS_BUF_ADDR(bp)));
	}
}

1199 1200 1201 1202 1203 1204 1205 1206
STATIC void
xfs_btree_set_refs(
	struct xfs_btree_cur	*cur,
	struct xfs_buf		*bp)
{
	switch (cur->bc_btnum) {
	case XFS_BTNUM_BNO:
	case XFS_BTNUM_CNT:
1207
		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1208 1209
		break;
	case XFS_BTNUM_INO:
1210
	case XFS_BTNUM_FINO:
1211
		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1212 1213
		break;
	case XFS_BTNUM_BMAP:
1214
		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1215
		break;
1216 1217 1218
	case XFS_BTNUM_RMAP:
		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
		break;
1219 1220 1221 1222 1223
	default:
		ASSERT(0);
	}
}

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
STATIC int
xfs_btree_get_buf_block(
	struct xfs_btree_cur	*cur,
	union xfs_btree_ptr	*ptr,
	int			flags,
	struct xfs_btree_block	**block,
	struct xfs_buf		**bpp)
{
	struct xfs_mount	*mp = cur->bc_mp;
	xfs_daddr_t		d;

	/* need to sort out how callers deal with failures first */
1236
	ASSERT(!(flags & XBF_TRYLOCK));
1237 1238 1239 1240 1241

	d = xfs_btree_ptr_to_daddr(cur, ptr);
	*bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
				 mp->m_bsize, flags);

1242
	if (!*bpp)
D
Dave Chinner 已提交
1243
		return -ENOMEM;
1244

1245
	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1246 1247 1248 1249
	*block = XFS_BUF_TO_BLOCK(*bpp);
	return 0;
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
/*
 * Read in the buffer at the given ptr and return the buffer and
 * the block pointer within the buffer.
 */
STATIC int
xfs_btree_read_buf_block(
	struct xfs_btree_cur	*cur,
	union xfs_btree_ptr	*ptr,
	int			flags,
	struct xfs_btree_block	**block,
	struct xfs_buf		**bpp)
{
	struct xfs_mount	*mp = cur->bc_mp;
	xfs_daddr_t		d;
	int			error;

	/* need to sort out how callers deal with failures first */
1267
	ASSERT(!(flags & XBF_TRYLOCK));
1268 1269 1270

	d = xfs_btree_ptr_to_daddr(cur, ptr);
	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1271
				   mp->m_bsize, flags, bpp,
1272
				   cur->bc_ops->buf_ops);
1273 1274 1275 1276 1277
	if (error)
		return error;

	xfs_btree_set_refs(cur, *bpp);
	*block = XFS_BUF_TO_BLOCK(*bpp);
1278
	return 0;
1279 1280
}

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
/*
 * Copy keys from one btree block to another.
 */
STATIC void
xfs_btree_copy_keys(
	struct xfs_btree_cur	*cur,
	union xfs_btree_key	*dst_key,
	union xfs_btree_key	*src_key,
	int			numkeys)
{
	ASSERT(numkeys >= 0);
	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
}

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
/*
 * Copy records from one btree block to another.
 */
STATIC void
xfs_btree_copy_recs(
	struct xfs_btree_cur	*cur,
	union xfs_btree_rec	*dst_rec,
	union xfs_btree_rec	*src_rec,
	int			numrecs)
{
	ASSERT(numrecs >= 0);
	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
}

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
/*
 * Copy block pointers from one btree block to another.
 */
STATIC void
xfs_btree_copy_ptrs(
	struct xfs_btree_cur	*cur,
	union xfs_btree_ptr	*dst_ptr,
	union xfs_btree_ptr	*src_ptr,
	int			numptrs)
{
	ASSERT(numptrs >= 0);
	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
}

/*
 * Shift keys one index left/right inside a single btree block.
 */
STATIC void
xfs_btree_shift_keys(
	struct xfs_btree_cur	*cur,
	union xfs_btree_key	*key,
	int			dir,
	int			numkeys)
{
	char			*dst_key;

	ASSERT(numkeys >= 0);
	ASSERT(dir == 1 || dir == -1);

	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
}

/*
 * Shift records one index left/right inside a single btree block.
 */
STATIC void
xfs_btree_shift_recs(
	struct xfs_btree_cur	*cur,
	union xfs_btree_rec	*rec,
	int			dir,
	int			numrecs)
{
	char			*dst_rec;

	ASSERT(numrecs >= 0);
	ASSERT(dir == 1 || dir == -1);

	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
}

/*
 * Shift block pointers one index left/right inside a single btree block.
 */
STATIC void
xfs_btree_shift_ptrs(
	struct xfs_btree_cur	*cur,
	union xfs_btree_ptr	*ptr,
	int			dir,
	int			numptrs)
{
	char			*dst_ptr;

	ASSERT(numptrs >= 0);
	ASSERT(dir == 1 || dir == -1);

	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
/*
 * Log key values from the btree block.
 */
STATIC void
xfs_btree_log_keys(
	struct xfs_btree_cur	*cur,
	struct xfs_buf		*bp,
	int			first,
	int			last)
{
	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);

	if (bp) {
1394
		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
		xfs_trans_log_buf(cur->bc_tp, bp,
				  xfs_btree_key_offset(cur, first),
				  xfs_btree_key_offset(cur, last + 1) - 1);
	} else {
		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
				xfs_ilog_fbroot(cur->bc_private.b.whichfork));
	}

	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
}

1406 1407 1408
/*
 * Log record values from the btree block.
 */
1409
void
1410 1411 1412 1413 1414 1415 1416 1417 1418
xfs_btree_log_recs(
	struct xfs_btree_cur	*cur,
	struct xfs_buf		*bp,
	int			first,
	int			last)
{
	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);

1419
	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1420 1421 1422 1423 1424 1425 1426
	xfs_trans_log_buf(cur->bc_tp, bp,
			  xfs_btree_rec_offset(cur, first),
			  xfs_btree_rec_offset(cur, last + 1) - 1);

	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/*
 * Log block pointer fields from a btree block (nonleaf).
 */
STATIC void
xfs_btree_log_ptrs(
	struct xfs_btree_cur	*cur,	/* btree cursor */
	struct xfs_buf		*bp,	/* buffer containing btree block */
	int			first,	/* index of first pointer to log */
	int			last)	/* index of last pointer to log */
{
	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);

	if (bp) {
		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
		int			level = xfs_btree_get_level(block);

1444
		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
		xfs_trans_log_buf(cur->bc_tp, bp,
				xfs_btree_ptr_offset(cur, first, level),
				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
	} else {
		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
	}

	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
}

/*
 * Log fields from a btree block header.
 */
1459
void
1460 1461 1462 1463 1464 1465 1466 1467
xfs_btree_log_block(
	struct xfs_btree_cur	*cur,	/* btree cursor */
	struct xfs_buf		*bp,	/* buffer containing btree block */
	int			fields)	/* mask of fields: XFS_BB_... */
{
	int			first;	/* first byte offset logged */
	int			last;	/* last byte offset logged */
	static const short	soffsets[] = {	/* table of offsets (short) */
1468 1469 1470 1471 1472
		offsetof(struct xfs_btree_block, bb_magic),
		offsetof(struct xfs_btree_block, bb_level),
		offsetof(struct xfs_btree_block, bb_numrecs),
		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1473 1474 1475 1476 1477 1478
		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
		XFS_BTREE_SBLOCK_CRC_LEN
1479 1480
	};
	static const short	loffsets[] = {	/* table of offsets (long) */
1481 1482 1483 1484 1485
		offsetof(struct xfs_btree_block, bb_magic),
		offsetof(struct xfs_btree_block, bb_level),
		offsetof(struct xfs_btree_block, bb_numrecs),
		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1486 1487 1488 1489 1490 1491 1492
		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
		XFS_BTREE_LBLOCK_CRC_LEN
1493 1494 1495 1496 1497 1498
	};

	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
	XFS_BTREE_TRACE_ARGBI(cur, bp, fields);

	if (bp) {
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
		int nbits;

		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
			/*
			 * We don't log the CRC when updating a btree
			 * block but instead recreate it during log
			 * recovery.  As the log buffers have checksums
			 * of their own this is safe and avoids logging a crc
			 * update in a lot of places.
			 */
			if (fields == XFS_BB_ALL_BITS)
				fields = XFS_BB_ALL_BITS_CRC;
			nbits = XFS_BB_NUM_BITS_CRC;
		} else {
			nbits = XFS_BB_NUM_BITS;
		}
1515 1516 1517
		xfs_btree_offsets(fields,
				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
					loffsets : soffsets,
1518
				  nbits, &first, &last);
1519
		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1520 1521 1522 1523 1524 1525 1526 1527 1528
		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
	} else {
		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
	}

	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
}

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
/*
 * Increment cursor by one record at the level.
 * For nonzero levels the leaf-ward information is untouched.
 */
int						/* error */
xfs_btree_increment(
	struct xfs_btree_cur	*cur,
	int			level,
	int			*stat)		/* success/failure */
{
	struct xfs_btree_block	*block;
	union xfs_btree_ptr	ptr;
	struct xfs_buf		*bp;
	int			error;		/* error return value */
	int			lev;

	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
	XFS_BTREE_TRACE_ARGI(cur, level);

	ASSERT(level < cur->bc_nlevels);

	/* Read-ahead to the right at this level. */
	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);

	/* Get a pointer to the btree block. */
	block = xfs_btree_get_block(cur, level, &bp);

#ifdef DEBUG
	error = xfs_btree_check_block(cur, block, level, bp);
	if (error)
		goto error0;
#endif

	/* We're done if we remain in the block after the increment. */
	if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
		goto out1;

	/* Fail if we just went off the right edge of the tree. */
	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
	if (xfs_btree_ptr_is_null(cur, &ptr))
		goto out0;

	XFS_BTREE_STATS_INC(cur, increment);

	/*
	 * March up the tree incrementing pointers.
	 * Stop when we don't go off the right edge of a block.
	 */
	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
		block = xfs_btree_get_block(cur, lev, &bp);

#ifdef DEBUG
		error = xfs_btree_check_block(cur, block, lev, bp);
		if (error)
			goto error0;
#endif

		if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
			break;

		/* Read-ahead the right block for the next loop. */
		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
	}

	/*
	 * If we went off the root then we are either seriously
	 * confused or have the tree root in an inode.
	 */
	if (lev == cur->bc_nlevels) {
		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
			goto out0;
		ASSERT(0);
D
Dave Chinner 已提交
1601
		error = -EFSCORRUPTED;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
		goto error0;
	}
	ASSERT(lev < cur->bc_nlevels);

	/*
	 * Now walk back down the tree, fixing up the cursor's buffer
	 * pointers and key numbers.
	 */
	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
		union xfs_btree_ptr	*ptrp;

		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1614 1615
		--lev;
		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
		if (error)
			goto error0;

		xfs_btree_setbuf(cur, lev, bp);
		cur->bc_ptrs[lev] = 1;
	}
out1:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	*stat = 1;
	return 0;

out0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	*stat = 0;
	return 0;

error0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
	return error;
}
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699

/*
 * Decrement cursor by one record at the level.
 * For nonzero levels the leaf-ward information is untouched.
 */
int						/* error */
xfs_btree_decrement(
	struct xfs_btree_cur	*cur,
	int			level,
	int			*stat)		/* success/failure */
{
	struct xfs_btree_block	*block;
	xfs_buf_t		*bp;
	int			error;		/* error return value */
	int			lev;
	union xfs_btree_ptr	ptr;

	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
	XFS_BTREE_TRACE_ARGI(cur, level);

	ASSERT(level < cur->bc_nlevels);

	/* Read-ahead to the left at this level. */
	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);

	/* We're done if we remain in the block after the decrement. */
	if (--cur->bc_ptrs[level] > 0)
		goto out1;

	/* Get a pointer to the btree block. */
	block = xfs_btree_get_block(cur, level, &bp);

#ifdef DEBUG
	error = xfs_btree_check_block(cur, block, level, bp);
	if (error)
		goto error0;
#endif

	/* Fail if we just went off the left edge of the tree. */
	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
	if (xfs_btree_ptr_is_null(cur, &ptr))
		goto out0;

	XFS_BTREE_STATS_INC(cur, decrement);

	/*
	 * March up the tree decrementing pointers.
	 * Stop when we don't go off the left edge of a block.
	 */
	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
		if (--cur->bc_ptrs[lev] > 0)
			break;
		/* Read-ahead the left block for the next loop. */
		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
	}

	/*
	 * If we went off the root then we are seriously confused.
	 * or the root of the tree is in an inode.
	 */
	if (lev == cur->bc_nlevels) {
		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
			goto out0;
		ASSERT(0);
D
Dave Chinner 已提交
1700
		error = -EFSCORRUPTED;
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
		goto error0;
	}
	ASSERT(lev < cur->bc_nlevels);

	/*
	 * Now walk back down the tree, fixing up the cursor's buffer
	 * pointers and key numbers.
	 */
	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
		union xfs_btree_ptr	*ptrp;

		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1713 1714
		--lev;
		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
		if (error)
			goto error0;
		xfs_btree_setbuf(cur, lev, bp);
		cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
	}
out1:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	*stat = 1;
	return 0;

out0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	*stat = 0;
	return 0;

error0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
	return error;
}

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
STATIC int
xfs_btree_lookup_get_block(
	struct xfs_btree_cur	*cur,	/* btree cursor */
	int			level,	/* level in the btree */
	union xfs_btree_ptr	*pp,	/* ptr to btree block */
	struct xfs_btree_block	**blkp) /* return btree block */
{
	struct xfs_buf		*bp;	/* buffer pointer for btree block */
	int			error = 0;

	/* special case the root block if in an inode */
	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
	    (level == cur->bc_nlevels - 1)) {
		*blkp = xfs_btree_get_iroot(cur);
		return 0;
	}

	/*
	 * If the old buffer at this level for the disk address we are
	 * looking for re-use it.
	 *
	 * Otherwise throw it away and get a new one.
	 */
	bp = cur->bc_bufs[level];
	if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
		*blkp = XFS_BUF_TO_BLOCK(bp);
		return 0;
	}

1764
	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	if (error)
		return error;

	xfs_btree_setbuf(cur, level, bp);
	return 0;
}

/*
 * Get current search key.  For level 0 we don't actually have a key
 * structure so we make one up from the record.  For all other levels
 * we just return the right key.
 */
STATIC union xfs_btree_key *
xfs_lookup_get_search_key(
	struct xfs_btree_cur	*cur,
	int			level,
	int			keyno,
	struct xfs_btree_block	*block,
	union xfs_btree_key	*kp)
{
	if (level == 0) {
		cur->bc_ops->init_key_from_rec(kp,
				xfs_btree_rec_addr(cur, keyno, block));
		return kp;
	}

	return xfs_btree_key_addr(cur, keyno, block);
}

/*
 * Lookup the record.  The cursor is made to point to it, based on dir.
1796
 * stat is set to 0 if can't find any such record, 1 for success.
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
 */
int					/* error */
xfs_btree_lookup(
	struct xfs_btree_cur	*cur,	/* btree cursor */
	xfs_lookup_t		dir,	/* <=, ==, or >= */
	int			*stat)	/* success/failure */
{
	struct xfs_btree_block	*block;	/* current btree block */
	__int64_t		diff;	/* difference for the current key */
	int			error;	/* error return value */
	int			keyno;	/* current key number */
	int			level;	/* level in the btree */
	union xfs_btree_ptr	*pp;	/* ptr to btree block */
	union xfs_btree_ptr	ptr;	/* ptr to btree block */

	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
	XFS_BTREE_TRACE_ARGI(cur, dir);

	XFS_BTREE_STATS_INC(cur, lookup);

	block = NULL;
	keyno = 0;

	/* initialise start pointer from cursor */
	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
	pp = &ptr;

	/*
	 * Iterate over each level in the btree, starting at the root.
	 * For each level above the leaves, find the key we need, based
	 * on the lookup record, then follow the corresponding block
	 * pointer down to the next level.
	 */
	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
		/* Get the block we need to do the lookup on. */
		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
		if (error)
			goto error0;

		if (diff == 0) {
			/*
			 * If we already had a key match at a higher level, we
			 * know we need to use the first entry in this block.
			 */
			keyno = 1;
		} else {
			/* Otherwise search this block. Do a binary search. */

			int	high;	/* high entry number */
			int	low;	/* low entry number */

			/* Set low and high entry numbers, 1-based. */
			low = 1;
			high = xfs_btree_get_numrecs(block);
			if (!high) {
				/* Block is empty, must be an empty leaf. */
				ASSERT(level == 0 && cur->bc_nlevels == 1);

				cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
				XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
				*stat = 0;
				return 0;
			}

			/* Binary search the block. */
			while (low <= high) {
				union xfs_btree_key	key;
				union xfs_btree_key	*kp;

				XFS_BTREE_STATS_INC(cur, compare);

				/* keyno is average of low and high. */
				keyno = (low + high) >> 1;

				/* Get current search key */
				kp = xfs_lookup_get_search_key(cur, level,
						keyno, block, &key);

				/*
				 * Compute difference to get next direction:
				 *  - less than, move right
				 *  - greater than, move left
				 *  - equal, we're done
				 */
				diff = cur->bc_ops->key_diff(cur, kp);
				if (diff < 0)
					low = keyno + 1;
				else if (diff > 0)
					high = keyno - 1;
				else
					break;
			}
		}

		/*
		 * If there are more levels, set up for the next level
		 * by getting the block number and filling in the cursor.
		 */
		if (level > 0) {
			/*
			 * If we moved left, need the previous key number,
			 * unless there isn't one.
			 */
			if (diff > 0 && --keyno < 1)
				keyno = 1;
			pp = xfs_btree_ptr_addr(cur, keyno, block);

#ifdef DEBUG
			error = xfs_btree_check_ptr(cur, pp, 0, level);
			if (error)
				goto error0;
#endif
			cur->bc_ptrs[level] = keyno;
		}
	}

	/* Done with the search. See if we need to adjust the results. */
	if (dir != XFS_LOOKUP_LE && diff < 0) {
		keyno++;
		/*
		 * If ge search and we went off the end of the block, but it's
		 * not the last block, we're in the wrong block.
		 */
		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
		if (dir == XFS_LOOKUP_GE &&
		    keyno > xfs_btree_get_numrecs(block) &&
		    !xfs_btree_ptr_is_null(cur, &ptr)) {
			int	i;

			cur->bc_ptrs[0] = keyno;
			error = xfs_btree_increment(cur, 0, &i);
			if (error)
				goto error0;
1930
			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
			XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
			*stat = 1;
			return 0;
		}
	} else if (dir == XFS_LOOKUP_LE && diff > 0)
		keyno--;
	cur->bc_ptrs[0] = keyno;

	/* Return if we succeeded or not. */
	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
		*stat = 0;
	else if (dir != XFS_LOOKUP_EQ || diff == 0)
		*stat = 1;
	else
		*stat = 0;
	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	return 0;

error0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
	return error;
}
1953

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
/* Find the high key storage area from a regular key. */
STATIC union xfs_btree_key *
xfs_btree_high_key_from_key(
	struct xfs_btree_cur	*cur,
	union xfs_btree_key	*key)
{
	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
	return (union xfs_btree_key *)((char *)key +
			(cur->bc_ops->key_len / 2));
}

1965 1966 1967
/* Determine the low (and high if overlapped) keys of a leaf block */
STATIC void
xfs_btree_get_leaf_keys(
1968 1969 1970 1971 1972 1973
	struct xfs_btree_cur	*cur,
	struct xfs_btree_block	*block,
	union xfs_btree_key	*key)
{
	union xfs_btree_key	max_hkey;
	union xfs_btree_key	hkey;
1974
	union xfs_btree_rec	*rec;
1975
	union xfs_btree_key	*high;
1976
	int			n;
1977 1978 1979 1980

	rec = xfs_btree_rec_addr(cur, 1, block);
	cur->bc_ops->init_key_from_rec(key, rec);

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {

		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
			rec = xfs_btree_rec_addr(cur, n, block);
			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
					> 0)
				max_hkey = hkey;
		}
1991

1992 1993 1994
		high = xfs_btree_high_key_from_key(cur, key);
		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
	}
1995 1996
}

1997 1998 1999
/* Determine the low (and high if overlapped) keys of a node block */
STATIC void
xfs_btree_get_node_keys(
2000 2001 2002 2003 2004 2005 2006
	struct xfs_btree_cur	*cur,
	struct xfs_btree_block	*block,
	union xfs_btree_key	*key)
{
	union xfs_btree_key	*hkey;
	union xfs_btree_key	*max_hkey;
	union xfs_btree_key	*high;
2007
	int			n;
2008

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
		memcpy(key, xfs_btree_key_addr(cur, 1, block),
				cur->bc_ops->key_len / 2);

		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
			hkey = xfs_btree_high_key_addr(cur, n, block);
			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
				max_hkey = hkey;
		}
2019

2020 2021 2022 2023 2024
		high = xfs_btree_high_key_from_key(cur, key);
		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
	} else {
		memcpy(key, xfs_btree_key_addr(cur, 1, block),
				cur->bc_ops->key_len);
2025 2026 2027
	}
}

2028 2029 2030 2031 2032 2033 2034 2035
/* Derive the keys for any btree block. */
STATIC void
xfs_btree_get_keys(
	struct xfs_btree_cur	*cur,
	struct xfs_btree_block	*block,
	union xfs_btree_key	*key)
{
	if (be16_to_cpu(block->bb_level) == 0)
2036
		xfs_btree_get_leaf_keys(cur, block, key);
2037
	else
2038
		xfs_btree_get_node_keys(cur, block, key);
2039 2040
}

2041
/*
2042 2043
 * Decide if we need to update the parent keys of a btree block.  For
 * a standard btree this is only necessary if we're updating the first
2044 2045 2046
 * record/key.  For an overlapping btree, we must always update the
 * keys because the highest key can be in any of the records or keys
 * in the block.
2047
 */
2048 2049 2050 2051 2052
static inline bool
xfs_btree_needs_key_update(
	struct xfs_btree_cur	*cur,
	int			ptr)
{
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
}

/*
 * Update the low and high parent keys of the given level, progressing
 * towards the root.  If force_all is false, stop if the keys for a given
 * level do not need updating.
 */
STATIC int
__xfs_btree_updkeys(
	struct xfs_btree_cur	*cur,
	int			level,
	struct xfs_btree_block	*block,
	struct xfs_buf		*bp0,
	bool			force_all)
{
	union xfs_btree_bigkey	key;	/* keys from current level */
	union xfs_btree_key	*lkey;	/* keys from the next level up */
	union xfs_btree_key	*hkey;
	union xfs_btree_key	*nlkey;	/* keys from the next level up */
	union xfs_btree_key	*nhkey;
	struct xfs_buf		*bp;
	int			ptr;

	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);

	/* Exit if there aren't any parent levels to update. */
	if (level + 1 >= cur->bc_nlevels)
		return 0;

	trace_xfs_btree_updkeys(cur, level, bp0);

	lkey = (union xfs_btree_key *)&key;
	hkey = xfs_btree_high_key_from_key(cur, lkey);
	xfs_btree_get_keys(cur, block, lkey);
	for (level++; level < cur->bc_nlevels; level++) {
#ifdef DEBUG
		int		error;
#endif
		block = xfs_btree_get_block(cur, level, &bp);
		trace_xfs_btree_updkeys(cur, level, bp);
#ifdef DEBUG
		error = xfs_btree_check_block(cur, block, level, bp);
		if (error) {
			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
			return error;
		}
#endif
		ptr = cur->bc_ptrs[level];
		nlkey = xfs_btree_key_addr(cur, ptr, block);
		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
		if (!force_all &&
		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
			break;
		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
		xfs_btree_log_keys(cur, bp, ptr, ptr);
		if (level + 1 >= cur->bc_nlevels)
			break;
2112
		xfs_btree_get_node_keys(cur, block, lkey);
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	}

	return 0;
}

/* Update all the keys from some level in cursor back to the root. */
STATIC int
xfs_btree_updkeys_force(
	struct xfs_btree_cur	*cur,
	int			level)
{
	struct xfs_buf		*bp;
	struct xfs_btree_block	*block;

	block = xfs_btree_get_block(cur, level, &bp);
	return __xfs_btree_updkeys(cur, level, block, bp, true);
2129 2130 2131 2132 2133
}

/*
 * Update the parent keys of the given level, progressing towards the root.
 */
2134
STATIC int
2135
xfs_btree_update_keys(
2136 2137 2138 2139 2140 2141
	struct xfs_btree_cur	*cur,
	int			level)
{
	struct xfs_btree_block	*block;
	struct xfs_buf		*bp;
	union xfs_btree_key	*kp;
2142
	union xfs_btree_key	key;
2143 2144
	int			ptr;

2145 2146 2147 2148 2149
	ASSERT(level >= 0);

	block = xfs_btree_get_block(cur, level, &bp);
	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
		return __xfs_btree_updkeys(cur, level, block, bp, false);
2150

2151 2152 2153 2154 2155 2156 2157 2158 2159
	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
	XFS_BTREE_TRACE_ARGIK(cur, level, keyp);

	/*
	 * Go up the tree from this level toward the root.
	 * At each level, update the key value to the value input.
	 * Stop when we reach a level where the cursor isn't pointing
	 * at the first entry in the block.
	 */
2160 2161
	xfs_btree_get_keys(cur, block, &key);
	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
#ifdef DEBUG
		int		error;
#endif
		block = xfs_btree_get_block(cur, level, &bp);
#ifdef DEBUG
		error = xfs_btree_check_block(cur, block, level, bp);
		if (error) {
			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
			return error;
		}
#endif
		ptr = cur->bc_ptrs[level];
		kp = xfs_btree_key_addr(cur, ptr, block);
2175
		xfs_btree_copy_keys(cur, kp, &key, 1);
2176 2177 2178 2179 2180 2181
		xfs_btree_log_keys(cur, bp, ptr, ptr);
	}

	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	return 0;
}
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226

/*
 * Update the record referred to by cur to the value in the
 * given record. This either works (return 0) or gets an
 * EFSCORRUPTED error.
 */
int
xfs_btree_update(
	struct xfs_btree_cur	*cur,
	union xfs_btree_rec	*rec)
{
	struct xfs_btree_block	*block;
	struct xfs_buf		*bp;
	int			error;
	int			ptr;
	union xfs_btree_rec	*rp;

	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
	XFS_BTREE_TRACE_ARGR(cur, rec);

	/* Pick up the current block. */
	block = xfs_btree_get_block(cur, 0, &bp);

#ifdef DEBUG
	error = xfs_btree_check_block(cur, block, 0, bp);
	if (error)
		goto error0;
#endif
	/* Get the address of the rec to be updated. */
	ptr = cur->bc_ptrs[0];
	rp = xfs_btree_rec_addr(cur, ptr, block);

	/* Fill in the new contents and log them. */
	xfs_btree_copy_recs(cur, rp, rec, 1);
	xfs_btree_log_recs(cur, bp, ptr, ptr);

	/*
	 * If we are tracking the last record in the tree and
	 * we are at the far right edge of the tree, update it.
	 */
	if (xfs_btree_is_lastrec(cur, block, 0)) {
		cur->bc_ops->update_lastrec(cur, block, rec,
					    ptr, LASTREC_UPDATE);
	}

2227
	/* Pass new key value up to our parent. */
2228
	if (xfs_btree_needs_key_update(cur, ptr)) {
2229
		error = xfs_btree_update_keys(cur, 0);
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
		if (error)
			goto error0;
	}

	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	return 0;

error0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
	return error;
}

2242 2243 2244 2245
/*
 * Move 1 record left from cur/level if possible.
 * Update cur to reflect the new path.
 */
2246
STATIC int					/* error */
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
xfs_btree_lshift(
	struct xfs_btree_cur	*cur,
	int			level,
	int			*stat)		/* success/failure */
{
	struct xfs_buf		*lbp;		/* left buffer pointer */
	struct xfs_btree_block	*left;		/* left btree block */
	int			lrecs;		/* left record count */
	struct xfs_buf		*rbp;		/* right buffer pointer */
	struct xfs_btree_block	*right;		/* right btree block */
2257
	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2258 2259 2260 2261 2262 2263
	int			rrecs;		/* right record count */
	union xfs_btree_ptr	lptr;		/* left btree pointer */
	union xfs_btree_key	*rkp = NULL;	/* right btree key */
	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
	int			error;		/* error return value */
2264
	int			i;
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294

	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
	XFS_BTREE_TRACE_ARGI(cur, level);

	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
	    level == cur->bc_nlevels - 1)
		goto out0;

	/* Set up variables for this block as "right". */
	right = xfs_btree_get_block(cur, level, &rbp);

#ifdef DEBUG
	error = xfs_btree_check_block(cur, right, level, rbp);
	if (error)
		goto error0;
#endif

	/* If we've got no left sibling then we can't shift an entry left. */
	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
	if (xfs_btree_ptr_is_null(cur, &lptr))
		goto out0;

	/*
	 * If the cursor entry is the one that would be moved, don't
	 * do it... it's too complicated.
	 */
	if (cur->bc_ptrs[level] <= 1)
		goto out0;

	/* Set up the left neighbor as "left". */
2295
	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
	if (error)
		goto error0;

	/* If it's full, it can't take another entry. */
	lrecs = xfs_btree_get_numrecs(left);
	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
		goto out0;

	rrecs = xfs_btree_get_numrecs(right);

	/*
	 * We add one entry to the left side and remove one for the right side.
M
Malcolm Parsons 已提交
2308
	 * Account for it here, the changes will be updated on disk and logged
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	 * later.
	 */
	lrecs++;
	rrecs--;

	XFS_BTREE_STATS_INC(cur, lshift);
	XFS_BTREE_STATS_ADD(cur, moves, 1);

	/*
	 * If non-leaf, copy a key and a ptr to the left block.
	 * Log the changes to the left block.
	 */
	if (level > 0) {
		/* It's a non-leaf.  Move keys and pointers. */
		union xfs_btree_key	*lkp;	/* left btree key */
		union xfs_btree_ptr	*lpp;	/* left address pointer */

		lkp = xfs_btree_key_addr(cur, lrecs, left);
		rkp = xfs_btree_key_addr(cur, 1, right);

		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
		rpp = xfs_btree_ptr_addr(cur, 1, right);
#ifdef DEBUG
		error = xfs_btree_check_ptr(cur, rpp, 0, level);
		if (error)
			goto error0;
#endif
		xfs_btree_copy_keys(cur, lkp, rkp, 1);
		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);

		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);

2342 2343
		ASSERT(cur->bc_ops->keys_inorder(cur,
			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	} else {
		/* It's a leaf.  Move records.  */
		union xfs_btree_rec	*lrp;	/* left record pointer */

		lrp = xfs_btree_rec_addr(cur, lrecs, left);
		rrp = xfs_btree_rec_addr(cur, 1, right);

		xfs_btree_copy_recs(cur, lrp, rrp, 1);
		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);

2354 2355
		ASSERT(cur->bc_ops->recs_inorder(cur,
			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
	}

	xfs_btree_set_numrecs(left, lrecs);
	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);

	xfs_btree_set_numrecs(right, rrecs);
	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);

	/*
	 * Slide the contents of right down one entry.
	 */
	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
	if (level > 0) {
		/* It's a nonleaf. operate on keys and ptrs */
#ifdef DEBUG
		int			i;		/* loop index */

		for (i = 0; i < rrecs; i++) {
			error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
			if (error)
				goto error0;
		}
#endif
		xfs_btree_shift_keys(cur,
				xfs_btree_key_addr(cur, 2, right),
				-1, rrecs);
		xfs_btree_shift_ptrs(cur,
				xfs_btree_ptr_addr(cur, 2, right),
				-1, rrecs);

		xfs_btree_log_keys(cur, rbp, 1, rrecs);
		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
	} else {
		/* It's a leaf. operate on records */
		xfs_btree_shift_recs(cur,
			xfs_btree_rec_addr(cur, 2, right),
			-1, rrecs);
		xfs_btree_log_recs(cur, rbp, 1, rrecs);
	}

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	/*
	 * Using a temporary cursor, update the parent key values of the
	 * block on the left.
	 */
	error = xfs_btree_dup_cursor(cur, &tcur);
	if (error)
		goto error0;
	i = xfs_btree_firstrec(tcur, level);
	XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);

	error = xfs_btree_decrement(tcur, level, &i);
	if (error)
		goto error1;

2410
	/* Update the parent keys of the right block. */
2411
	error = xfs_btree_update_keys(cur, level);
2412
	if (error)
2413 2414 2415 2416
		goto error1;

	/* Update the parent high keys of the left block, if needed. */
	if (tcur->bc_flags & XFS_BTREE_OVERLAPPING) {
2417
		error = xfs_btree_update_keys(tcur, level);
2418 2419 2420 2421 2422
		if (error)
			goto error1;
	}

	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438

	/* Slide the cursor value left one. */
	cur->bc_ptrs[level]--;

	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	*stat = 1;
	return 0;

out0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	*stat = 0;
	return 0;

error0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
	return error;
2439 2440 2441 2442 2443

error1:
	XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
	return error;
2444 2445
}

2446 2447 2448 2449
/*
 * Move 1 record right from cur/level if possible.
 * Update cur to reflect the new path.
 */
2450
STATIC int					/* error */
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
xfs_btree_rshift(
	struct xfs_btree_cur	*cur,
	int			level,
	int			*stat)		/* success/failure */
{
	struct xfs_buf		*lbp;		/* left buffer pointer */
	struct xfs_btree_block	*left;		/* left btree block */
	struct xfs_buf		*rbp;		/* right buffer pointer */
	struct xfs_btree_block	*right;		/* right btree block */
	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
	union xfs_btree_ptr	rptr;		/* right block pointer */
	union xfs_btree_key	*rkp;		/* right btree key */
	int			rrecs;		/* right record count */
	int			lrecs;		/* left record count */
	int			error;		/* error return value */
	int			i;		/* loop counter */

	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
	XFS_BTREE_TRACE_ARGI(cur, level);

	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
	    (level == cur->bc_nlevels - 1))
		goto out0;

	/* Set up variables for this block as "left". */
	left = xfs_btree_get_block(cur, level, &lbp);

#ifdef DEBUG
	error = xfs_btree_check_block(cur, left, level, lbp);
	if (error)
		goto error0;
#endif

	/* If we've got no right sibling then we can't shift an entry right. */
	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
	if (xfs_btree_ptr_is_null(cur, &rptr))
		goto out0;

	/*
	 * If the cursor entry is the one that would be moved, don't
	 * do it... it's too complicated.
	 */
	lrecs = xfs_btree_get_numrecs(left);
	if (cur->bc_ptrs[level] >= lrecs)
		goto out0;

	/* Set up the right neighbor as "right". */
2498
	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	if (error)
		goto error0;

	/* If it's full, it can't take another entry. */
	rrecs = xfs_btree_get_numrecs(right);
	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
		goto out0;

	XFS_BTREE_STATS_INC(cur, rshift);
	XFS_BTREE_STATS_ADD(cur, moves, rrecs);

	/*
	 * Make a hole at the start of the right neighbor block, then
	 * copy the last left block entry to the hole.
	 */
	if (level > 0) {
		/* It's a nonleaf. make a hole in the keys and ptrs */
		union xfs_btree_key	*lkp;
		union xfs_btree_ptr	*lpp;
		union xfs_btree_ptr	*rpp;

		lkp = xfs_btree_key_addr(cur, lrecs, left);
		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
		rkp = xfs_btree_key_addr(cur, 1, right);
		rpp = xfs_btree_ptr_addr(cur, 1, right);

#ifdef DEBUG
		for (i = rrecs - 1; i >= 0; i--) {
			error = xfs_btree_check_ptr(cur, rpp, i, level);
			if (error)
				goto error0;
		}
#endif

		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);

#ifdef DEBUG
		error = xfs_btree_check_ptr(cur, lpp, 0, level);
		if (error)
			goto error0;
#endif

		/* Now put the new data in, and log it. */
		xfs_btree_copy_keys(cur, rkp, lkp, 1);
		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);

		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);

2549 2550
		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
			xfs_btree_key_addr(cur, 2, right)));
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
	} else {
		/* It's a leaf. make a hole in the records */
		union xfs_btree_rec	*lrp;
		union xfs_btree_rec	*rrp;

		lrp = xfs_btree_rec_addr(cur, lrecs, left);
		rrp = xfs_btree_rec_addr(cur, 1, right);

		xfs_btree_shift_recs(cur, rrp, 1, rrecs);

		/* Now put the new data in, and log it. */
		xfs_btree_copy_recs(cur, rrp, lrp, 1);
		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
	}

	/*
	 * Decrement and log left's numrecs, bump and log right's numrecs.
	 */
	xfs_btree_set_numrecs(left, --lrecs);
	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);

	xfs_btree_set_numrecs(right, ++rrecs);
	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);

	/*
	 * Using a temporary cursor, update the parent key values of the
	 * block on the right.
	 */
	error = xfs_btree_dup_cursor(cur, &tcur);
	if (error)
		goto error0;
	i = xfs_btree_lastrec(tcur, level);
2583
	XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
2584 2585 2586 2587 2588

	error = xfs_btree_increment(tcur, level, &i);
	if (error)
		goto error1;

2589 2590
	/* Update the parent high keys of the left block, if needed. */
	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2591
		error = xfs_btree_update_keys(cur, level);
2592 2593 2594 2595
		if (error)
			goto error1;
	}

2596
	/* Update the parent keys of the right block. */
2597
	error = xfs_btree_update_keys(tcur, level);
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
	if (error)
		goto error1;

	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);

	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	*stat = 1;
	return 0;

out0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	*stat = 0;
	return 0;

error0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
	return error;

error1:
	XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
	return error;
}
2621 2622 2623 2624 2625 2626

/*
 * Split cur/level block in half.
 * Return new block number and the key to its first
 * record (to be inserted into parent).
 */
2627
STATIC int					/* error */
2628
__xfs_btree_split(
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
	struct xfs_btree_cur	*cur,
	int			level,
	union xfs_btree_ptr	*ptrp,
	union xfs_btree_key	*key,
	struct xfs_btree_cur	**curp,
	int			*stat)		/* success/failure */
{
	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
	struct xfs_buf		*lbp;		/* left buffer pointer */
	struct xfs_btree_block	*left;		/* left btree block */
	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
	struct xfs_buf		*rbp;		/* right buffer pointer */
	struct xfs_btree_block	*right;		/* right btree block */
	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
	struct xfs_btree_block	*rrblock;	/* right-right btree block */
	int			lrecs;
	int			rrecs;
	int			src_index;
	int			error;		/* error return value */
#ifdef DEBUG
	int			i;
#endif

	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
	XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);

	XFS_BTREE_STATS_INC(cur, split);

	/* Set up left block (current one). */
	left = xfs_btree_get_block(cur, level, &lbp);

#ifdef DEBUG
	error = xfs_btree_check_block(cur, left, level, lbp);
	if (error)
		goto error0;
#endif

	xfs_btree_buf_to_ptr(cur, lbp, &lptr);

	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2670
	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
	if (error)
		goto error0;
	if (*stat == 0)
		goto out0;
	XFS_BTREE_STATS_INC(cur, alloc);

	/* Set up the new block as "right". */
	error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
	if (error)
		goto error0;

	/* Fill in the btree header for the new right block. */
2683
	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697

	/*
	 * Split the entries between the old and the new block evenly.
	 * Make sure that if there's an odd number of entries now, that
	 * each new block will have the same number of entries.
	 */
	lrecs = xfs_btree_get_numrecs(left);
	rrecs = lrecs / 2;
	if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
		rrecs++;
	src_index = (lrecs - rrecs + 1);

	XFS_BTREE_STATS_ADD(cur, moves, rrecs);

2698 2699 2700 2701 2702
	/* Adjust numrecs for the later get_*_keys() calls. */
	lrecs -= rrecs;
	xfs_btree_set_numrecs(left, lrecs);
	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
	/*
	 * Copy btree block entries from the left block over to the
	 * new block, the right. Update the right block and log the
	 * changes.
	 */
	if (level > 0) {
		/* It's a non-leaf.  Move keys and pointers. */
		union xfs_btree_key	*lkp;	/* left btree key */
		union xfs_btree_ptr	*lpp;	/* left address pointer */
		union xfs_btree_key	*rkp;	/* right btree key */
		union xfs_btree_ptr	*rpp;	/* right address pointer */

		lkp = xfs_btree_key_addr(cur, src_index, left);
		lpp = xfs_btree_ptr_addr(cur, src_index, left);
		rkp = xfs_btree_key_addr(cur, 1, right);
		rpp = xfs_btree_ptr_addr(cur, 1, right);

#ifdef DEBUG
		for (i = src_index; i < rrecs; i++) {
			error = xfs_btree_check_ptr(cur, lpp, i, level);
			if (error)
				goto error0;
		}
#endif

2728
		/* Copy the keys & pointers to the new block. */
2729 2730 2731 2732 2733 2734
		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);

		xfs_btree_log_keys(cur, rbp, 1, rrecs);
		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);

2735
		/* Stash the keys of the new block for later insertion. */
2736
		xfs_btree_get_node_keys(cur, right, key);
2737 2738 2739 2740 2741 2742 2743 2744
	} else {
		/* It's a leaf.  Move records.  */
		union xfs_btree_rec	*lrp;	/* left record pointer */
		union xfs_btree_rec	*rrp;	/* right record pointer */

		lrp = xfs_btree_rec_addr(cur, src_index, left);
		rrp = xfs_btree_rec_addr(cur, 1, right);

2745
		/* Copy records to the new block. */
2746 2747 2748
		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
		xfs_btree_log_recs(cur, rbp, 1, rrecs);

2749
		/* Stash the keys of the new block for later insertion. */
2750
		xfs_btree_get_leaf_keys(cur, right, key);
2751 2752 2753 2754
	}

	/*
	 * Find the left block number by looking in the buffer.
2755
	 * Adjust sibling pointers.
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
	 */
	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);

	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);

	/*
	 * If there's a block to the new block's right, make that block
	 * point back to right instead of to left.
	 */
	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2770
		error = xfs_btree_read_buf_block(cur, &rrptr,
2771 2772 2773 2774 2775 2776
							0, &rrblock, &rrbp);
		if (error)
			goto error0;
		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
	}
2777 2778 2779

	/* Update the parent high keys of the left block, if needed. */
	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2780
		error = xfs_btree_update_keys(cur, level);
2781 2782 2783 2784
		if (error)
			goto error0;
	}

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
	/*
	 * If the cursor is really in the right block, move it there.
	 * If it's just pointing past the last entry in left, then we'll
	 * insert there, so don't change anything in that case.
	 */
	if (cur->bc_ptrs[level] > lrecs + 1) {
		xfs_btree_setbuf(cur, level, rbp);
		cur->bc_ptrs[level] -= lrecs;
	}
	/*
	 * If there are more levels, we'll need another cursor which refers
	 * the right block, no matter where this cursor was.
	 */
	if (level + 1 < cur->bc_nlevels) {
		error = xfs_btree_dup_cursor(cur, curp);
		if (error)
			goto error0;
		(*curp)->bc_ptrs[level + 1]++;
	}
	*ptrp = rptr;
	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	*stat = 1;
	return 0;
out0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	*stat = 0;
	return 0;

error0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
	return error;
}
2817

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
struct xfs_btree_split_args {
	struct xfs_btree_cur	*cur;
	int			level;
	union xfs_btree_ptr	*ptrp;
	union xfs_btree_key	*key;
	struct xfs_btree_cur	**curp;
	int			*stat;		/* success/failure */
	int			result;
	bool			kswapd;	/* allocation in kswapd context */
	struct completion	*done;
	struct work_struct	work;
};

/*
 * Stack switching interfaces for allocation
 */
static void
xfs_btree_split_worker(
	struct work_struct	*work)
{
	struct xfs_btree_split_args	*args = container_of(work,
						struct xfs_btree_split_args, work);
	unsigned long		pflags;
	unsigned long		new_pflags = PF_FSTRANS;

	/*
	 * we are in a transaction context here, but may also be doing work
	 * in kswapd context, and hence we may need to inherit that state
	 * temporarily to ensure that we don't block waiting for memory reclaim
	 * in any way.
	 */
	if (args->kswapd)
		new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;

	current_set_flags_nested(&pflags, new_pflags);

	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
					 args->key, args->curp, args->stat);
	complete(args->done);

	current_restore_flags_nested(&pflags, new_pflags);
}

/*
 * BMBT split requests often come in with little stack to work on. Push
 * them off to a worker thread so there is lots of stack to use. For the other
 * btree types, just call directly to avoid the context switch overhead here.
 */
STATIC int					/* error */
xfs_btree_split(
	struct xfs_btree_cur	*cur,
	int			level,
	union xfs_btree_ptr	*ptrp,
	union xfs_btree_key	*key,
	struct xfs_btree_cur	**curp,
	int			*stat)		/* success/failure */
{
	struct xfs_btree_split_args	args;
	DECLARE_COMPLETION_ONSTACK(done);

	if (cur->bc_btnum != XFS_BTNUM_BMAP)
		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);

	args.cur = cur;
	args.level = level;
	args.ptrp = ptrp;
	args.key = key;
	args.curp = curp;
	args.stat = stat;
	args.done = &done;
	args.kswapd = current_is_kswapd();
	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
	queue_work(xfs_alloc_wq, &args.work);
	wait_for_completion(&done);
	destroy_work_on_stack(&args.work);
	return args.result;
}


2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
/*
 * Copy the old inode root contents into a real block and make the
 * broot point to it.
 */
int						/* error */
xfs_btree_new_iroot(
	struct xfs_btree_cur	*cur,		/* btree cursor */
	int			*logflags,	/* logging flags for inode */
	int			*stat)		/* return status - 0 fail */
{
	struct xfs_buf		*cbp;		/* buffer for cblock */
	struct xfs_btree_block	*block;		/* btree block */
	struct xfs_btree_block	*cblock;	/* child btree block */
	union xfs_btree_key	*ckp;		/* child key pointer */
	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
	union xfs_btree_key	*kp;		/* pointer to btree key */
	union xfs_btree_ptr	*pp;		/* pointer to block addr */
	union xfs_btree_ptr	nptr;		/* new block addr */
	int			level;		/* btree level */
	int			error;		/* error return code */
#ifdef DEBUG
	int			i;		/* loop counter */
#endif

	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
	XFS_BTREE_STATS_INC(cur, newroot);

	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);

	level = cur->bc_nlevels - 1;

	block = xfs_btree_get_iroot(cur);
	pp = xfs_btree_ptr_addr(cur, 1, block);

	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2932
	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	if (error)
		goto error0;
	if (*stat == 0) {
		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
		return 0;
	}
	XFS_BTREE_STATS_INC(cur, alloc);

	/* Copy the root into a real block. */
	error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
	if (error)
		goto error0;

2946 2947 2948 2949
	/*
	 * we can't just memcpy() the root in for CRC enabled btree blocks.
	 * In that case have to also ensure the blkno remains correct
	 */
2950
	memcpy(cblock, block, xfs_btree_block_len(cur));
2951 2952 2953 2954 2955 2956
	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
			cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
		else
			cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
	}
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998

	be16_add_cpu(&block->bb_level, 1);
	xfs_btree_set_numrecs(block, 1);
	cur->bc_nlevels++;
	cur->bc_ptrs[level + 1] = 1;

	kp = xfs_btree_key_addr(cur, 1, block);
	ckp = xfs_btree_key_addr(cur, 1, cblock);
	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));

	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
#ifdef DEBUG
	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
		error = xfs_btree_check_ptr(cur, pp, i, level);
		if (error)
			goto error0;
	}
#endif
	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));

#ifdef DEBUG
	error = xfs_btree_check_ptr(cur, &nptr, 0, level);
	if (error)
		goto error0;
#endif
	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);

	xfs_iroot_realloc(cur->bc_private.b.ip,
			  1 - xfs_btree_get_numrecs(cblock),
			  cur->bc_private.b.whichfork);

	xfs_btree_setbuf(cur, level, cbp);

	/*
	 * Do all this logging at the end so that
	 * the root is at the right level.
	 */
	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));

	*logflags |=
2999
		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3000 3001 3002 3003 3004 3005 3006 3007
	*stat = 1;
	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	return 0;
error0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
	return error;
}

3008 3009 3010
/*
 * Allocate a new root block, fill it in.
 */
3011
STATIC int				/* error */
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
xfs_btree_new_root(
	struct xfs_btree_cur	*cur,	/* btree cursor */
	int			*stat)	/* success/failure */
{
	struct xfs_btree_block	*block;	/* one half of the old root block */
	struct xfs_buf		*bp;	/* buffer containing block */
	int			error;	/* error return value */
	struct xfs_buf		*lbp;	/* left buffer pointer */
	struct xfs_btree_block	*left;	/* left btree block */
	struct xfs_buf		*nbp;	/* new (root) buffer */
	struct xfs_btree_block	*new;	/* new (root) btree block */
	int			nptr;	/* new value for key index, 1 or 2 */
	struct xfs_buf		*rbp;	/* right buffer pointer */
	struct xfs_btree_block	*right;	/* right btree block */
	union xfs_btree_ptr	rptr;
	union xfs_btree_ptr	lptr;

	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
	XFS_BTREE_STATS_INC(cur, newroot);

	/* initialise our start point from the cursor */
	cur->bc_ops->init_ptr_from_cur(cur, &rptr);

	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3036
	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
	if (error)
		goto error0;
	if (*stat == 0)
		goto out0;
	XFS_BTREE_STATS_INC(cur, alloc);

	/* Set up the new block. */
	error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
	if (error)
		goto error0;

	/* Set the root in the holding structure  increasing the level by 1. */
	cur->bc_ops->set_root(cur, &lptr, 1);

	/*
	 * At the previous root level there are now two blocks: the old root,
	 * and the new block generated when it was split.  We don't know which
	 * one the cursor is pointing at, so we set up variables "left" and
	 * "right" for each case.
	 */
	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);

#ifdef DEBUG
	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
	if (error)
		goto error0;
#endif

	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
		/* Our block is left, pick up the right block. */
		lbp = bp;
		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
		left = block;
3071
		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
		if (error)
			goto error0;
		bp = rbp;
		nptr = 1;
	} else {
		/* Our block is right, pick up the left block. */
		rbp = bp;
		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
		right = block;
		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3082
		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3083 3084 3085 3086 3087
		if (error)
			goto error0;
		bp = lbp;
		nptr = 2;
	}
3088

3089
	/* Fill in the new block's btree header and log it. */
3090
	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3091 3092 3093 3094 3095 3096
	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
			!xfs_btree_ptr_is_null(cur, &rptr));

	/* Fill in the key data in the new root. */
	if (xfs_btree_get_level(left) > 0) {
3097 3098 3099 3100
		/*
		 * Get the keys for the left block's keys and put them directly
		 * in the parent block.  Do the same for the right block.
		 */
3101
		xfs_btree_get_node_keys(cur, left,
3102
				xfs_btree_key_addr(cur, 1, new));
3103
		xfs_btree_get_node_keys(cur, right,
3104
				xfs_btree_key_addr(cur, 2, new));
3105
	} else {
3106 3107 3108 3109 3110
		/*
		 * Get the keys for the left block's records and put them
		 * directly in the parent block.  Do the same for the right
		 * block.
		 */
3111
		xfs_btree_get_leaf_keys(cur, left,
3112
			xfs_btree_key_addr(cur, 1, new));
3113
		xfs_btree_get_leaf_keys(cur, right,
3114
			xfs_btree_key_addr(cur, 2, new));
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
	}
	xfs_btree_log_keys(cur, nbp, 1, 2);

	/* Fill in the pointer data in the new root. */
	xfs_btree_copy_ptrs(cur,
		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
	xfs_btree_copy_ptrs(cur,
		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
	xfs_btree_log_ptrs(cur, nbp, 1, 2);

	/* Fix up the cursor. */
	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
	cur->bc_ptrs[cur->bc_nlevels] = nptr;
	cur->bc_nlevels++;
	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	*stat = 1;
	return 0;
error0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
	return error;
out0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	*stat = 0;
	return 0;
}
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149

STATIC int
xfs_btree_make_block_unfull(
	struct xfs_btree_cur	*cur,	/* btree cursor */
	int			level,	/* btree level */
	int			numrecs,/* # of recs in block */
	int			*oindex,/* old tree index */
	int			*index,	/* new tree index */
	union xfs_btree_ptr	*nptr,	/* new btree ptr */
	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3150
	union xfs_btree_key	*key,	/* key of new block */
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
	int			*stat)
{
	int			error = 0;

	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
	    level == cur->bc_nlevels - 1) {
	    	struct xfs_inode *ip = cur->bc_private.b.ip;

		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
			/* A root block that can be made bigger. */
			xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3162
			*stat = 1;
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
		} else {
			/* A root block that needs replacing */
			int	logflags = 0;

			error = xfs_btree_new_iroot(cur, &logflags, stat);
			if (error || *stat == 0)
				return error;

			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
		}

		return 0;
	}

	/* First, try shifting an entry to the right neighbor. */
	error = xfs_btree_rshift(cur, level, stat);
	if (error || *stat)
		return error;

	/* Next, try shifting an entry to the left neighbor. */
	error = xfs_btree_lshift(cur, level, stat);
	if (error)
		return error;

	if (*stat) {
		*oindex = *index = cur->bc_ptrs[level];
		return 0;
	}

	/*
	 * Next, try splitting the current block in half.
	 *
	 * If this works we have to re-set our variables because we
	 * could be in a different block now.
	 */
3198
	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	if (error || *stat == 0)
		return error;


	*index = cur->bc_ptrs[level];
	return 0;
}

/*
 * Insert one record/level.  Return information to the caller
 * allowing the next level up to proceed if necessary.
 */
STATIC int
xfs_btree_insrec(
	struct xfs_btree_cur	*cur,	/* btree cursor */
	int			level,	/* level to insert record at */
	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3216 3217
	union xfs_btree_rec	*rec,	/* record to insert */
	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3218 3219 3220 3221 3222 3223 3224
	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
	int			*stat)	/* success/failure */
{
	struct xfs_btree_block	*block;	/* btree block */
	struct xfs_buf		*bp;	/* buffer for block */
	union xfs_btree_ptr	nptr;	/* new block ptr */
	struct xfs_btree_cur	*ncur;	/* new btree cursor */
3225 3226
	union xfs_btree_bigkey	nkey;	/* new block key */
	union xfs_btree_key	*lkey;
3227 3228 3229 3230 3231 3232 3233
	int			optr;	/* old key/record index */
	int			ptr;	/* key/record index */
	int			numrecs;/* number of records */
	int			error;	/* error return value */
#ifdef DEBUG
	int			i;
#endif
3234
	xfs_daddr_t		old_bn;
3235 3236

	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3237
	XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
3238 3239

	ncur = NULL;
3240
	lkey = (union xfs_btree_key *)&nkey;
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268

	/*
	 * If we have an external root pointer, and we've made it to the
	 * root level, allocate a new root block and we're done.
	 */
	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
	    (level >= cur->bc_nlevels)) {
		error = xfs_btree_new_root(cur, stat);
		xfs_btree_set_ptr_null(cur, ptrp);

		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
		return error;
	}

	/* If we're off the left edge, return failure. */
	ptr = cur->bc_ptrs[level];
	if (ptr == 0) {
		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
		*stat = 0;
		return 0;
	}

	optr = ptr;

	XFS_BTREE_STATS_INC(cur, insrec);

	/* Get pointers to the btree buffer and block. */
	block = xfs_btree_get_block(cur, level, &bp);
3269
	old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
	numrecs = xfs_btree_get_numrecs(block);

#ifdef DEBUG
	error = xfs_btree_check_block(cur, block, level, bp);
	if (error)
		goto error0;

	/* Check that the new entry is being inserted in the right place. */
	if (ptr <= numrecs) {
		if (level == 0) {
3280
			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3281
				xfs_btree_rec_addr(cur, ptr, block)));
3282
		} else {
3283
			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3284
				xfs_btree_key_addr(cur, ptr, block)));
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
		}
	}
#endif

	/*
	 * If the block is full, we can't insert the new entry until we
	 * make the block un-full.
	 */
	xfs_btree_set_ptr_null(cur, &nptr);
	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3296
					&optr, &ptr, &nptr, &ncur, lkey, stat);
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
		if (error || *stat == 0)
			goto error0;
	}

	/*
	 * The current block may have changed if the block was
	 * previously full and we have just made space in it.
	 */
	block = xfs_btree_get_block(cur, level, &bp);
	numrecs = xfs_btree_get_numrecs(block);

#ifdef DEBUG
	error = xfs_btree_check_block(cur, block, level, bp);
	if (error)
		return error;
#endif

	/*
	 * At this point we know there's room for our new entry in the block
	 * we're pointing at.
	 */
	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);

	if (level > 0) {
		/* It's a nonleaf. make a hole in the keys and ptrs */
		union xfs_btree_key	*kp;
		union xfs_btree_ptr	*pp;

		kp = xfs_btree_key_addr(cur, ptr, block);
		pp = xfs_btree_ptr_addr(cur, ptr, block);

#ifdef DEBUG
		for (i = numrecs - ptr; i >= 0; i--) {
			error = xfs_btree_check_ptr(cur, pp, i, level);
			if (error)
				return error;
		}
#endif

		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);

#ifdef DEBUG
		error = xfs_btree_check_ptr(cur, ptrp, 0, level);
		if (error)
			goto error0;
#endif

		/* Now put the new data in, bump numrecs and log it. */
3346
		xfs_btree_copy_keys(cur, kp, key, 1);
3347 3348 3349 3350 3351 3352 3353
		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
		numrecs++;
		xfs_btree_set_numrecs(block, numrecs);
		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
		xfs_btree_log_keys(cur, bp, ptr, numrecs);
#ifdef DEBUG
		if (ptr < numrecs) {
3354 3355
			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
				xfs_btree_key_addr(cur, ptr + 1, block)));
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
		}
#endif
	} else {
		/* It's a leaf. make a hole in the records */
		union xfs_btree_rec             *rp;

		rp = xfs_btree_rec_addr(cur, ptr, block);

		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);

		/* Now put the new data in, bump numrecs and log it. */
3367
		xfs_btree_copy_recs(cur, rp, rec, 1);
3368 3369 3370 3371
		xfs_btree_set_numrecs(block, ++numrecs);
		xfs_btree_log_recs(cur, bp, ptr, numrecs);
#ifdef DEBUG
		if (ptr < numrecs) {
3372 3373
			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
				xfs_btree_rec_addr(cur, ptr + 1, block)));
3374 3375 3376 3377 3378 3379 3380
		}
#endif
	}

	/* Log the new number of records in the btree header. */
	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
	/*
	 * If we just inserted into a new tree block, we have to
	 * recalculate nkey here because nkey is out of date.
	 *
	 * Otherwise we're just updating an existing block (having shoved
	 * some records into the new tree block), so use the regular key
	 * update mechanism.
	 */
	if (bp && bp->b_bn != old_bn) {
		xfs_btree_get_keys(cur, block, lkey);
	} else if (xfs_btree_needs_key_update(cur, optr)) {
3392
		error = xfs_btree_update_keys(cur, level);
3393 3394 3395 3396 3397 3398 3399 3400 3401
		if (error)
			goto error0;
	}

	/*
	 * If we are tracking the last record in the tree and
	 * we are at the far right edge of the tree, update it.
	 */
	if (xfs_btree_is_lastrec(cur, block, level)) {
3402
		cur->bc_ops->update_lastrec(cur, block, rec,
3403 3404 3405 3406 3407 3408 3409 3410 3411
					    ptr, LASTREC_INSREC);
	}

	/*
	 * Return the new block number, if any.
	 * If there is one, give back a record value and a cursor too.
	 */
	*ptrp = nptr;
	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3412
		xfs_btree_copy_keys(cur, key, lkey, 1);
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
		*curp = ncur;
	}

	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	*stat = 1;
	return 0;

error0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
	return error;
}

/*
 * Insert the record at the point referenced by cur.
 *
 * A multi-level split of the tree on insert will invalidate the original
 * cursor.  All callers of this function should assume that the cursor is
 * no longer valid and revalidate it.
 */
int
xfs_btree_insert(
	struct xfs_btree_cur	*cur,
	int			*stat)
{
	int			error;	/* error return value */
	int			i;	/* result value, 0 for failure */
	int			level;	/* current level number in btree */
	union xfs_btree_ptr	nptr;	/* new block number (split result) */
	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3443 3444
	union xfs_btree_bigkey	bkey;	/* key of block to insert */
	union xfs_btree_key	*key;
3445 3446 3447 3448 3449
	union xfs_btree_rec	rec;	/* record to insert */

	level = 0;
	ncur = NULL;
	pcur = cur;
3450
	key = (union xfs_btree_key *)&bkey;
3451 3452

	xfs_btree_set_ptr_null(cur, &nptr);
3453 3454

	/* Make a key out of the record data to be inserted, and save it. */
3455
	cur->bc_ops->init_rec_from_cur(cur, &rec);
3456
	cur->bc_ops->init_key_from_rec(key, &rec);
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467

	/*
	 * Loop going up the tree, starting at the leaf level.
	 * Stop when we don't get a split block, that must mean that
	 * the insert is finished with this level.
	 */
	do {
		/*
		 * Insert nrec/nptr into this level of the tree.
		 * Note if we fail, nptr will be null.
		 */
3468
		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3469
				&ncur, &i);
3470 3471 3472 3473 3474 3475
		if (error) {
			if (pcur != cur)
				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
			goto error0;
		}

3476
		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
		level++;

		/*
		 * See if the cursor we just used is trash.
		 * Can't trash the caller's cursor, but otherwise we should
		 * if ncur is a new cursor or we're about to be done.
		 */
		if (pcur != cur &&
		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
			/* Save the state from the cursor before we trash it */
			if (cur->bc_ops->update_cursor)
				cur->bc_ops->update_cursor(pcur, cur);
			cur->bc_nlevels = pcur->bc_nlevels;
			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
		}
		/* If we got a new cursor, switch to it. */
		if (ncur) {
			pcur = ncur;
			ncur = NULL;
		}
	} while (!xfs_btree_ptr_is_null(cur, &nptr));

	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	*stat = i;
	return 0;
error0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
	return error;
}
3506 3507 3508 3509 3510 3511 3512 3513 3514

/*
 * Try to merge a non-leaf block back into the inode root.
 *
 * Note: the killroot names comes from the fact that we're effectively
 * killing the old root block.  But because we can't just delete the
 * inode we have to copy the single block it was pointing to into the
 * inode.
 */
3515
STATIC int
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
xfs_btree_kill_iroot(
	struct xfs_btree_cur	*cur)
{
	int			whichfork = cur->bc_private.b.whichfork;
	struct xfs_inode	*ip = cur->bc_private.b.ip;
	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
	struct xfs_btree_block	*block;
	struct xfs_btree_block	*cblock;
	union xfs_btree_key	*kp;
	union xfs_btree_key	*ckp;
	union xfs_btree_ptr	*pp;
	union xfs_btree_ptr	*cpp;
	struct xfs_buf		*cbp;
	int			level;
	int			index;
	int			numrecs;
3532
	int			error;
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
#ifdef DEBUG
	union xfs_btree_ptr	ptr;
	int			i;
#endif

	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);

	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
	ASSERT(cur->bc_nlevels > 1);

	/*
	 * Don't deal with the root block needs to be a leaf case.
	 * We're just going to turn the thing back into extents anyway.
	 */
	level = cur->bc_nlevels - 1;
	if (level == 1)
		goto out0;

	/*
	 * Give up if the root has multiple children.
	 */
	block = xfs_btree_get_iroot(cur);
	if (xfs_btree_get_numrecs(block) != 1)
		goto out0;

	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
	numrecs = xfs_btree_get_numrecs(cblock);

	/*
	 * Only do this if the next level will fit.
	 * Then the data must be copied up to the inode,
	 * instead of freeing the root you free the next level.
	 */
	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
		goto out0;

	XFS_BTREE_STATS_INC(cur, killroot);

#ifdef DEBUG
	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
#endif

	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
	if (index) {
		xfs_iroot_realloc(cur->bc_private.b.ip, index,
				  cur->bc_private.b.whichfork);
3582
		block = ifp->if_broot;
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
	}

	be16_add_cpu(&block->bb_numrecs, index);
	ASSERT(block->bb_numrecs == cblock->bb_numrecs);

	kp = xfs_btree_key_addr(cur, 1, block);
	ckp = xfs_btree_key_addr(cur, 1, cblock);
	xfs_btree_copy_keys(cur, kp, ckp, numrecs);

	pp = xfs_btree_ptr_addr(cur, 1, block);
	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
#ifdef DEBUG
	for (i = 0; i < numrecs; i++) {
		error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
		if (error) {
			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
			return error;
		}
	}
#endif
	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);

3605
	error = xfs_btree_free_block(cur, cbp);
3606 3607 3608 3609
	if (error) {
		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
		return error;
	}
3610 3611 3612 3613

	cur->bc_bufs[level - 1] = NULL;
	be16_add_cpu(&block->bb_level, -1);
	xfs_trans_log_inode(cur->bc_tp, ip,
3614
		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3615 3616 3617 3618 3619
	cur->bc_nlevels--;
out0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	return 0;
}
3620

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
/*
 * Kill the current root node, and replace it with it's only child node.
 */
STATIC int
xfs_btree_kill_root(
	struct xfs_btree_cur	*cur,
	struct xfs_buf		*bp,
	int			level,
	union xfs_btree_ptr	*newroot)
{
	int			error;

	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
	XFS_BTREE_STATS_INC(cur, killroot);

	/*
	 * Update the root pointer, decreasing the level by 1 and then
	 * free the old root.
	 */
	cur->bc_ops->set_root(cur, newroot, -1);

3642
	error = xfs_btree_free_block(cur, bp);
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
	if (error) {
		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
		return error;
	}

	cur->bc_bufs[level] = NULL;
	cur->bc_ra[level] = 0;
	cur->bc_nlevels--;

	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	return 0;
}

3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
STATIC int
xfs_btree_dec_cursor(
	struct xfs_btree_cur	*cur,
	int			level,
	int			*stat)
{
	int			error;
	int			i;

	if (level > 0) {
		error = xfs_btree_decrement(cur, level, &i);
		if (error)
			return error;
	}

	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	*stat = 1;
	return 0;
}

/*
 * Single level of the btree record deletion routine.
 * Delete record pointed to by cur/level.
 * Remove the record from its block then rebalance the tree.
 * Return 0 for error, 1 for done, 2 to go on to the next level.
 */
STATIC int					/* error */
xfs_btree_delrec(
	struct xfs_btree_cur	*cur,		/* btree cursor */
	int			level,		/* level removing record from */
	int			*stat)		/* fail/done/go-on */
{
	struct xfs_btree_block	*block;		/* btree block */
	union xfs_btree_ptr	cptr;		/* current block ptr */
	struct xfs_buf		*bp;		/* buffer for block */
	int			error;		/* error return value */
	int			i;		/* loop counter */
	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
	struct xfs_buf		*lbp;		/* left buffer pointer */
	struct xfs_btree_block	*left;		/* left btree block */
	int			lrecs = 0;	/* left record count */
	int			ptr;		/* key/record index */
	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
	struct xfs_buf		*rbp;		/* right buffer pointer */
	struct xfs_btree_block	*right;		/* right btree block */
	struct xfs_btree_block	*rrblock;	/* right-right btree block */
	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
	int			rrecs = 0;	/* right record count */
	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
	int			numrecs;	/* temporary numrec count */

	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
	XFS_BTREE_TRACE_ARGI(cur, level);

	tcur = NULL;

	/* Get the index of the entry being deleted, check for nothing there. */
	ptr = cur->bc_ptrs[level];
	if (ptr == 0) {
		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
		*stat = 0;
		return 0;
	}

	/* Get the buffer & block containing the record or key/ptr. */
	block = xfs_btree_get_block(cur, level, &bp);
	numrecs = xfs_btree_get_numrecs(block);

#ifdef DEBUG
	error = xfs_btree_check_block(cur, block, level, bp);
	if (error)
		goto error0;
#endif

	/* Fail if we're off the end of the block. */
	if (ptr > numrecs) {
		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
		*stat = 0;
		return 0;
	}

	XFS_BTREE_STATS_INC(cur, delrec);
	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);

	/* Excise the entries being deleted. */
	if (level > 0) {
		/* It's a nonleaf. operate on keys and ptrs */
		union xfs_btree_key	*lkp;
		union xfs_btree_ptr	*lpp;

		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);

#ifdef DEBUG
		for (i = 0; i < numrecs - ptr; i++) {
			error = xfs_btree_check_ptr(cur, lpp, i, level);
			if (error)
				goto error0;
		}
#endif

		if (ptr < numrecs) {
			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
		}
	} else {
		/* It's a leaf. operate on records */
		if (ptr < numrecs) {
			xfs_btree_shift_recs(cur,
				xfs_btree_rec_addr(cur, ptr + 1, block),
				-1, numrecs - ptr);
			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
		}
	}

	/*
	 * Decrement and log the number of entries in the block.
	 */
	xfs_btree_set_numrecs(block, --numrecs);
	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);

	/*
	 * If we are tracking the last record in the tree and
	 * we are at the far right edge of the tree, update it.
	 */
	if (xfs_btree_is_lastrec(cur, block, level)) {
		cur->bc_ops->update_lastrec(cur, block, NULL,
					    ptr, LASTREC_DELREC);
	}

	/*
	 * We're at the root level.  First, shrink the root block in-memory.
	 * Try to get rid of the next level down.  If we can't then there's
	 * nothing left to do.
	 */
	if (level == cur->bc_nlevels - 1) {
		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
			xfs_iroot_realloc(cur->bc_private.b.ip, -1,
					  cur->bc_private.b.whichfork);

			error = xfs_btree_kill_iroot(cur);
			if (error)
				goto error0;

			error = xfs_btree_dec_cursor(cur, level, stat);
			if (error)
				goto error0;
			*stat = 1;
			return 0;
		}

		/*
		 * If this is the root level, and there's only one entry left,
		 * and it's NOT the leaf level, then we can get rid of this
		 * level.
		 */
		if (numrecs == 1 && level > 0) {
			union xfs_btree_ptr	*pp;
			/*
			 * pp is still set to the first pointer in the block.
			 * Make it the new root of the btree.
			 */
			pp = xfs_btree_ptr_addr(cur, 1, block);
3821
			error = xfs_btree_kill_root(cur, bp, level, pp);
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
			if (error)
				goto error0;
		} else if (level > 0) {
			error = xfs_btree_dec_cursor(cur, level, stat);
			if (error)
				goto error0;
		}
		*stat = 1;
		return 0;
	}

	/*
	 * If we deleted the leftmost entry in the block, update the
	 * key values above us in the tree.
	 */
3837
	if (xfs_btree_needs_key_update(cur, ptr)) {
3838
		error = xfs_btree_update_keys(cur, level);
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
		if (error)
			goto error0;
	}

	/*
	 * If the number of records remaining in the block is at least
	 * the minimum, we're done.
	 */
	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
		error = xfs_btree_dec_cursor(cur, level, stat);
		if (error)
			goto error0;
		return 0;
	}

	/*
	 * Otherwise, we have to move some records around to keep the
	 * tree balanced.  Look at the left and right sibling blocks to
	 * see if we can re-balance by moving only one record.
	 */
	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);

	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
		/*
		 * One child of root, need to get a chance to copy its contents
		 * into the root and delete it. Can't go up to next level,
		 * there's nothing to delete there.
		 */
		if (xfs_btree_ptr_is_null(cur, &rptr) &&
		    xfs_btree_ptr_is_null(cur, &lptr) &&
		    level == cur->bc_nlevels - 2) {
			error = xfs_btree_kill_iroot(cur);
			if (!error)
				error = xfs_btree_dec_cursor(cur, level, stat);
			if (error)
				goto error0;
			return 0;
		}
	}

	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
	       !xfs_btree_ptr_is_null(cur, &lptr));

	/*
	 * Duplicate the cursor so our btree manipulations here won't
	 * disrupt the next level up.
	 */
	error = xfs_btree_dup_cursor(cur, &tcur);
	if (error)
		goto error0;

	/*
	 * If there's a right sibling, see if it's ok to shift an entry
	 * out of it.
	 */
	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
		/*
		 * Move the temp cursor to the last entry in the next block.
		 * Actually any entry but the first would suffice.
		 */
		i = xfs_btree_lastrec(tcur, level);
3901
		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3902 3903 3904 3905

		error = xfs_btree_increment(tcur, level, &i);
		if (error)
			goto error0;
3906
		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3907 3908

		i = xfs_btree_lastrec(tcur, level);
3909
		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952

		/* Grab a pointer to the block. */
		right = xfs_btree_get_block(tcur, level, &rbp);
#ifdef DEBUG
		error = xfs_btree_check_block(tcur, right, level, rbp);
		if (error)
			goto error0;
#endif
		/* Grab the current block number, for future use. */
		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);

		/*
		 * If right block is full enough so that removing one entry
		 * won't make it too empty, and left-shifting an entry out
		 * of right to us works, we're done.
		 */
		if (xfs_btree_get_numrecs(right) - 1 >=
		    cur->bc_ops->get_minrecs(tcur, level)) {
			error = xfs_btree_lshift(tcur, level, &i);
			if (error)
				goto error0;
			if (i) {
				ASSERT(xfs_btree_get_numrecs(block) >=
				       cur->bc_ops->get_minrecs(tcur, level));

				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
				tcur = NULL;

				error = xfs_btree_dec_cursor(cur, level, stat);
				if (error)
					goto error0;
				return 0;
			}
		}

		/*
		 * Otherwise, grab the number of records in right for
		 * future reference, and fix up the temp cursor to point
		 * to our block again (last record).
		 */
		rrecs = xfs_btree_get_numrecs(right);
		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
			i = xfs_btree_firstrec(tcur, level);
3953
			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3954 3955 3956 3957

			error = xfs_btree_decrement(tcur, level, &i);
			if (error)
				goto error0;
3958
			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
		}
	}

	/*
	 * If there's a left sibling, see if it's ok to shift an entry
	 * out of it.
	 */
	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
		/*
		 * Move the temp cursor to the first entry in the
		 * previous block.
		 */
		i = xfs_btree_firstrec(tcur, level);
3972
		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3973 3974 3975 3976 3977

		error = xfs_btree_decrement(tcur, level, &i);
		if (error)
			goto error0;
		i = xfs_btree_firstrec(tcur, level);
3978
		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036

		/* Grab a pointer to the block. */
		left = xfs_btree_get_block(tcur, level, &lbp);
#ifdef DEBUG
		error = xfs_btree_check_block(cur, left, level, lbp);
		if (error)
			goto error0;
#endif
		/* Grab the current block number, for future use. */
		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);

		/*
		 * If left block is full enough so that removing one entry
		 * won't make it too empty, and right-shifting an entry out
		 * of left to us works, we're done.
		 */
		if (xfs_btree_get_numrecs(left) - 1 >=
		    cur->bc_ops->get_minrecs(tcur, level)) {
			error = xfs_btree_rshift(tcur, level, &i);
			if (error)
				goto error0;
			if (i) {
				ASSERT(xfs_btree_get_numrecs(block) >=
				       cur->bc_ops->get_minrecs(tcur, level));
				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
				tcur = NULL;
				if (level == 0)
					cur->bc_ptrs[0]++;
				XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
				*stat = 1;
				return 0;
			}
		}

		/*
		 * Otherwise, grab the number of records in right for
		 * future reference.
		 */
		lrecs = xfs_btree_get_numrecs(left);
	}

	/* Delete the temp cursor, we're done with it. */
	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
	tcur = NULL;

	/* If here, we need to do a join to keep the tree balanced. */
	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));

	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
	    lrecs + xfs_btree_get_numrecs(block) <=
			cur->bc_ops->get_maxrecs(cur, level)) {
		/*
		 * Set "right" to be the starting block,
		 * "left" to be the left neighbor.
		 */
		rptr = cptr;
		right = block;
		rbp = bp;
4037
		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
		if (error)
			goto error0;

	/*
	 * If that won't work, see if we can join with the right neighbor block.
	 */
	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
		   rrecs + xfs_btree_get_numrecs(block) <=
			cur->bc_ops->get_maxrecs(cur, level)) {
		/*
		 * Set "left" to be the starting block,
		 * "right" to be the right neighbor.
		 */
		lptr = cptr;
		left = block;
		lbp = bp;
4054
		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
		if (error)
			goto error0;

	/*
	 * Otherwise, we can't fix the imbalance.
	 * Just return.  This is probably a logic error, but it's not fatal.
	 */
	} else {
		error = xfs_btree_dec_cursor(cur, level, stat);
		if (error)
			goto error0;
		return 0;
	}

	rrecs = xfs_btree_get_numrecs(right);
	lrecs = xfs_btree_get_numrecs(left);

	/*
	 * We're now going to join "left" and "right" by moving all the stuff
	 * in "right" to "left" and deleting "right".
	 */
	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
	if (level > 0) {
		/* It's a non-leaf.  Move keys and pointers. */
		union xfs_btree_key	*lkp;	/* left btree key */
		union xfs_btree_ptr	*lpp;	/* left address pointer */
		union xfs_btree_key	*rkp;	/* right btree key */
		union xfs_btree_ptr	*rpp;	/* right address pointer */

		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
		rkp = xfs_btree_key_addr(cur, 1, right);
		rpp = xfs_btree_ptr_addr(cur, 1, right);
#ifdef DEBUG
		for (i = 1; i < rrecs; i++) {
			error = xfs_btree_check_ptr(cur, rpp, i, level);
			if (error)
				goto error0;
		}
#endif
		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);

		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
	} else {
		/* It's a leaf.  Move records.  */
		union xfs_btree_rec	*lrp;	/* left record pointer */
		union xfs_btree_rec	*rrp;	/* right record pointer */

		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
		rrp = xfs_btree_rec_addr(cur, 1, right);

		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
	}

	XFS_BTREE_STATS_INC(cur, join);

	/*
M
Malcolm Parsons 已提交
4115
	 * Fix up the number of records and right block pointer in the
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
	 * surviving block, and log it.
	 */
	xfs_btree_set_numrecs(left, lrecs + rrecs);
	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);

	/* If there is a right sibling, point it to the remaining block. */
	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4126
		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4127 4128 4129 4130 4131 4132 4133
		if (error)
			goto error0;
		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
	}

	/* Free the deleted block. */
4134
	error = xfs_btree_free_block(cur, rbp);
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
	if (error)
		goto error0;

	/*
	 * If we joined with the left neighbor, set the buffer in the
	 * cursor to the left block, and fix up the index.
	 */
	if (bp != lbp) {
		cur->bc_bufs[level] = lbp;
		cur->bc_ptrs[level] += lrecs;
		cur->bc_ra[level] = 0;
	}
	/*
	 * If we joined with the right neighbor and there's a level above
	 * us, increment the cursor at that level.
	 */
	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
		   (level + 1 < cur->bc_nlevels)) {
		error = xfs_btree_increment(cur, level + 1, &i);
		if (error)
			goto error0;
	}

	/*
	 * Readjust the ptr at this level if it's not a leaf, since it's
	 * still pointing at the deletion point, which makes the cursor
	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
	 * We can't use decrement because it would change the next level up.
	 */
	if (level > 0)
		cur->bc_ptrs[level]--;

4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
	/*
	 * We combined blocks, so we have to update the parent keys if the
	 * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
	 * points to the old block so that the caller knows which record to
	 * delete.  Therefore, the caller must be savvy enough to call updkeys
	 * for us if we return stat == 2.  The other exit points from this
	 * function don't require deletions further up the tree, so they can
	 * call updkeys directly.
	 */

4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	/* Return value means the next level up has something to do. */
	*stat = 2;
	return 0;

error0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
	if (tcur)
		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
	return error;
}

/*
 * Delete the record pointed to by cur.
 * The cursor refers to the place where the record was (could be inserted)
 * when the operation returns.
 */
int					/* error */
xfs_btree_delete(
	struct xfs_btree_cur	*cur,
	int			*stat)	/* success/failure */
{
	int			error;	/* error return value */
	int			level;
	int			i;
4202
	bool			joined = false;
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215

	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);

	/*
	 * Go up the tree, starting at leaf level.
	 *
	 * If 2 is returned then a join was done; go to the next level.
	 * Otherwise we are done.
	 */
	for (level = 0, i = 2; i == 2; level++) {
		error = xfs_btree_delrec(cur, level, &i);
		if (error)
			goto error0;
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
		if (i == 2)
			joined = true;
	}

	/*
	 * If we combined blocks as part of deleting the record, delrec won't
	 * have updated the parent high keys so we have to do that here.
	 */
	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
		error = xfs_btree_updkeys_force(cur, 0);
		if (error)
			goto error0;
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
	}

	if (i == 0) {
		for (level = 1; level < cur->bc_nlevels; level++) {
			if (cur->bc_ptrs[level] == 0) {
				error = xfs_btree_decrement(cur, level, &i);
				if (error)
					goto error0;
				break;
			}
		}
	}

	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
	*stat = i;
	return 0;
error0:
	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
	return error;
}
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288

/*
 * Get the data from the pointed-to record.
 */
int					/* error */
xfs_btree_get_rec(
	struct xfs_btree_cur	*cur,	/* btree cursor */
	union xfs_btree_rec	**recp,	/* output: btree record */
	int			*stat)	/* output: success/failure */
{
	struct xfs_btree_block	*block;	/* btree block */
	struct xfs_buf		*bp;	/* buffer pointer */
	int			ptr;	/* record number */
#ifdef DEBUG
	int			error;	/* error return value */
#endif

	ptr = cur->bc_ptrs[0];
	block = xfs_btree_get_block(cur, 0, &bp);

#ifdef DEBUG
	error = xfs_btree_check_block(cur, block, 0, bp);
	if (error)
		return error;
#endif

	/*
	 * Off the right end or left end, return failure.
	 */
	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
		*stat = 0;
		return 0;
	}

	/*
	 * Point to the record and extract its data.
	 */
	*recp = xfs_btree_rec_addr(cur, ptr, block);
	*stat = 1;
	return 0;
}
4289

4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
/* Visit a block in a btree. */
STATIC int
xfs_btree_visit_block(
	struct xfs_btree_cur		*cur,
	int				level,
	xfs_btree_visit_blocks_fn	fn,
	void				*data)
{
	struct xfs_btree_block		*block;
	struct xfs_buf			*bp;
	union xfs_btree_ptr		rptr;
	int				error;

	/* do right sibling readahead */
	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
	block = xfs_btree_get_block(cur, level, &bp);

	/* process the block */
	error = fn(cur, level, data);
	if (error)
		return error;

	/* now read rh sibling block for next iteration */
	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
	if (xfs_btree_ptr_is_null(cur, &rptr))
		return -ENOENT;

	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
}


/* Visit every block in a btree. */
int
xfs_btree_visit_blocks(
	struct xfs_btree_cur		*cur,
	xfs_btree_visit_blocks_fn	fn,
	void				*data)
{
	union xfs_btree_ptr		lptr;
	int				level;
	struct xfs_btree_block		*block = NULL;
	int				error = 0;

	cur->bc_ops->init_ptr_from_cur(cur, &lptr);

	/* for each level */
	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
		/* grab the left hand block */
		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
		if (error)
			return error;

		/* readahead the left most block for the next level down */
		if (level > 0) {
			union xfs_btree_ptr     *ptr;

			ptr = xfs_btree_ptr_addr(cur, 1, block);
			xfs_btree_readahead_ptr(cur, ptr, 1);

			/* save for the next iteration of the loop */
			lptr = *ptr;
		}

		/* for each buffer in the level */
		do {
			error = xfs_btree_visit_block(cur, level, fn, data);
		} while (!error);

		if (error != -ENOENT)
			return error;
	}

	return 0;
}

4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
/*
 * Change the owner of a btree.
 *
 * The mechanism we use here is ordered buffer logging. Because we don't know
 * how many buffers were are going to need to modify, we don't really want to
 * have to make transaction reservations for the worst case of every buffer in a
 * full size btree as that may be more space that we can fit in the log....
 *
 * We do the btree walk in the most optimal manner possible - we have sibling
 * pointers so we can just walk all the blocks on each level from left to right
 * in a single pass, and then move to the next level and do the same. We can
 * also do readahead on the sibling pointers to get IO moving more quickly,
 * though for slow disks this is unlikely to make much difference to performance
 * as the amount of CPU work we have to do before moving to the next block is
 * relatively small.
 *
 * For each btree block that we load, modify the owner appropriately, set the
 * buffer as an ordered buffer and log it appropriately. We need to ensure that
 * we mark the region we change dirty so that if the buffer is relogged in
 * a subsequent transaction the changes we make here as an ordered buffer are
4385 4386 4387
 * correctly relogged in that transaction.  If we are in recovery context, then
 * just queue the modified buffer as delayed write buffer so the transaction
 * recovery completion writes the changes to disk.
4388
 */
4389 4390 4391 4392 4393
struct xfs_btree_block_change_owner_info {
	__uint64_t		new_owner;
	struct list_head	*buffer_list;
};

4394 4395 4396 4397
static int
xfs_btree_block_change_owner(
	struct xfs_btree_cur	*cur,
	int			level,
4398
	void			*data)
4399
{
4400
	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4401 4402 4403 4404 4405 4406
	struct xfs_btree_block	*block;
	struct xfs_buf		*bp;

	/* modify the owner */
	block = xfs_btree_get_block(cur, level, &bp);
	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4407
		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4408
	else
4409
		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4410 4411

	/*
4412 4413 4414 4415 4416
	 * If the block is a root block hosted in an inode, we might not have a
	 * buffer pointer here and we shouldn't attempt to log the change as the
	 * information is already held in the inode and discarded when the root
	 * block is formatted into the on-disk inode fork. We still change it,
	 * though, so everything is consistent in memory.
4417 4418
	 */
	if (bp) {
4419 4420 4421 4422
		if (cur->bc_tp) {
			xfs_trans_ordered_buf(cur->bc_tp, bp);
			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
		} else {
4423
			xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4424
		}
4425 4426 4427 4428 4429
	} else {
		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
		ASSERT(level == cur->bc_nlevels - 1);
	}

4430
	return 0;
4431 4432 4433 4434 4435
}

int
xfs_btree_change_owner(
	struct xfs_btree_cur	*cur,
4436 4437
	__uint64_t		new_owner,
	struct list_head	*buffer_list)
4438
{
4439
	struct xfs_btree_block_change_owner_info	bbcoi;
4440

4441 4442
	bbcoi.new_owner = new_owner;
	bbcoi.buffer_list = buffer_list;
4443

4444 4445
	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
			&bbcoi);
4446
}
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504

/**
 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
 *				      btree block
 *
 * @bp: buffer containing the btree block
 * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
 * @pag_max_level: pointer to the per-ag max level field
 */
bool
xfs_btree_sblock_v5hdr_verify(
	struct xfs_buf		*bp)
{
	struct xfs_mount	*mp = bp->b_target->bt_mount;
	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
	struct xfs_perag	*pag = bp->b_pag;

	if (!xfs_sb_version_hascrc(&mp->m_sb))
		return false;
	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
		return false;
	if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
		return false;
	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
		return false;
	return true;
}

/**
 * xfs_btree_sblock_verify() -- verify a short-format btree block
 *
 * @bp: buffer containing the btree block
 * @max_recs: maximum records allowed in this btree node
 */
bool
xfs_btree_sblock_verify(
	struct xfs_buf		*bp,
	unsigned int		max_recs)
{
	struct xfs_mount	*mp = bp->b_target->bt_mount;
	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);

	/* numrecs verification */
	if (be16_to_cpu(block->bb_numrecs) > max_recs)
		return false;

	/* sibling pointer verification */
	if (!block->bb_u.s.bb_leftsib ||
	    (be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks &&
	     block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK)))
		return false;
	if (!block->bb_u.s.bb_rightsib ||
	    (be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks &&
	     block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK)))
		return false;

	return true;
}
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523

/*
 * Calculate the number of btree levels needed to store a given number of
 * records in a short-format btree.
 */
uint
xfs_btree_compute_maxlevels(
	struct xfs_mount	*mp,
	uint			*limits,
	unsigned long		len)
{
	uint			level;
	unsigned long		maxblocks;

	maxblocks = (len + limits[0] - 1) / limits[0];
	for (level = 1; maxblocks > 1; level++)
		maxblocks = (maxblocks + limits[1] - 1) / limits[1];
	return level;
}
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787

/*
 * Query a regular btree for all records overlapping a given interval.
 * Start with a LE lookup of the key of low_rec and return all records
 * until we find a record with a key greater than the key of high_rec.
 */
STATIC int
xfs_btree_simple_query_range(
	struct xfs_btree_cur		*cur,
	union xfs_btree_key		*low_key,
	union xfs_btree_key		*high_key,
	xfs_btree_query_range_fn	fn,
	void				*priv)
{
	union xfs_btree_rec		*recp;
	union xfs_btree_key		rec_key;
	__int64_t			diff;
	int				stat;
	bool				firstrec = true;
	int				error;

	ASSERT(cur->bc_ops->init_high_key_from_rec);
	ASSERT(cur->bc_ops->diff_two_keys);

	/*
	 * Find the leftmost record.  The btree cursor must be set
	 * to the low record used to generate low_key.
	 */
	stat = 0;
	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
	if (error)
		goto out;

	while (stat) {
		/* Find the record. */
		error = xfs_btree_get_rec(cur, &recp, &stat);
		if (error || !stat)
			break;
		cur->bc_ops->init_high_key_from_rec(&rec_key, recp);

		/* Skip if high_key(rec) < low_key. */
		if (firstrec) {
			firstrec = false;
			diff = cur->bc_ops->diff_two_keys(cur, low_key,
					&rec_key);
			if (diff > 0)
				goto advloop;
		}

		/* Stop if high_key < low_key(rec). */
		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
		if (diff > 0)
			break;

		/* Callback */
		error = fn(cur, recp, priv);
		if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
			break;

advloop:
		/* Move on to the next record. */
		error = xfs_btree_increment(cur, 0, &stat);
		if (error)
			break;
	}

out:
	return error;
}

/*
 * Query an overlapped interval btree for all records overlapping a given
 * interval.  This function roughly follows the algorithm given in
 * "Interval Trees" of _Introduction to Algorithms_, which is section
 * 14.3 in the 2nd and 3rd editions.
 *
 * First, generate keys for the low and high records passed in.
 *
 * For any leaf node, generate the high and low keys for the record.
 * If the record keys overlap with the query low/high keys, pass the
 * record to the function iterator.
 *
 * For any internal node, compare the low and high keys of each
 * pointer against the query low/high keys.  If there's an overlap,
 * follow the pointer.
 *
 * As an optimization, we stop scanning a block when we find a low key
 * that is greater than the query's high key.
 */
STATIC int
xfs_btree_overlapped_query_range(
	struct xfs_btree_cur		*cur,
	union xfs_btree_key		*low_key,
	union xfs_btree_key		*high_key,
	xfs_btree_query_range_fn	fn,
	void				*priv)
{
	union xfs_btree_ptr		ptr;
	union xfs_btree_ptr		*pp;
	union xfs_btree_key		rec_key;
	union xfs_btree_key		rec_hkey;
	union xfs_btree_key		*lkp;
	union xfs_btree_key		*hkp;
	union xfs_btree_rec		*recp;
	struct xfs_btree_block		*block;
	__int64_t			ldiff;
	__int64_t			hdiff;
	int				level;
	struct xfs_buf			*bp;
	int				i;
	int				error;

	/* Load the root of the btree. */
	level = cur->bc_nlevels - 1;
	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
	if (error)
		return error;
	xfs_btree_get_block(cur, level, &bp);
	trace_xfs_btree_overlapped_query_range(cur, level, bp);
#ifdef DEBUG
	error = xfs_btree_check_block(cur, block, level, bp);
	if (error)
		goto out;
#endif
	cur->bc_ptrs[level] = 1;

	while (level < cur->bc_nlevels) {
		block = xfs_btree_get_block(cur, level, &bp);

		/* End of node, pop back towards the root. */
		if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
pop_up:
			if (level < cur->bc_nlevels - 1)
				cur->bc_ptrs[level + 1]++;
			level++;
			continue;
		}

		if (level == 0) {
			/* Handle a leaf node. */
			recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);

			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
					low_key);

			cur->bc_ops->init_key_from_rec(&rec_key, recp);
			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
					&rec_key);

			/*
			 * If (record's high key >= query's low key) and
			 *    (query's high key >= record's low key), then
			 * this record overlaps the query range; callback.
			 */
			if (ldiff >= 0 && hdiff >= 0) {
				error = fn(cur, recp, priv);
				if (error < 0 ||
				    error == XFS_BTREE_QUERY_RANGE_ABORT)
					break;
			} else if (hdiff < 0) {
				/* Record is larger than high key; pop. */
				goto pop_up;
			}
			cur->bc_ptrs[level]++;
			continue;
		}

		/* Handle an internal node. */
		lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
		hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
		pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);

		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);

		/*
		 * If (pointer's high key >= query's low key) and
		 *    (query's high key >= pointer's low key), then
		 * this record overlaps the query range; follow pointer.
		 */
		if (ldiff >= 0 && hdiff >= 0) {
			level--;
			error = xfs_btree_lookup_get_block(cur, level, pp,
					&block);
			if (error)
				goto out;
			xfs_btree_get_block(cur, level, &bp);
			trace_xfs_btree_overlapped_query_range(cur, level, bp);
#ifdef DEBUG
			error = xfs_btree_check_block(cur, block, level, bp);
			if (error)
				goto out;
#endif
			cur->bc_ptrs[level] = 1;
			continue;
		} else if (hdiff < 0) {
			/* The low key is larger than the upper range; pop. */
			goto pop_up;
		}
		cur->bc_ptrs[level]++;
	}

out:
	/*
	 * If we don't end this function with the cursor pointing at a record
	 * block, a subsequent non-error cursor deletion will not release
	 * node-level buffers, causing a buffer leak.  This is quite possible
	 * with a zero-results range query, so release the buffers if we
	 * failed to return any results.
	 */
	if (cur->bc_bufs[0] == NULL) {
		for (i = 0; i < cur->bc_nlevels; i++) {
			if (cur->bc_bufs[i]) {
				xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
				cur->bc_bufs[i] = NULL;
				cur->bc_ptrs[i] = 0;
				cur->bc_ra[i] = 0;
			}
		}
	}

	return error;
}

/*
 * Query a btree for all records overlapping a given interval of keys.  The
 * supplied function will be called with each record found; return one of the
 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
 * code.  This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
 * negative error code.
 */
int
xfs_btree_query_range(
	struct xfs_btree_cur		*cur,
	union xfs_btree_irec		*low_rec,
	union xfs_btree_irec		*high_rec,
	xfs_btree_query_range_fn	fn,
	void				*priv)
{
	union xfs_btree_rec		rec;
	union xfs_btree_key		low_key;
	union xfs_btree_key		high_key;

	/* Find the keys of both ends of the interval. */
	cur->bc_rec = *high_rec;
	cur->bc_ops->init_rec_from_cur(cur, &rec);
	cur->bc_ops->init_key_from_rec(&high_key, &rec);

	cur->bc_rec = *low_rec;
	cur->bc_ops->init_rec_from_cur(cur, &rec);
	cur->bc_ops->init_key_from_rec(&low_key, &rec);

	/* Enforce low key < high key. */
	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
		return -EINVAL;

	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
		return xfs_btree_simple_query_range(cur, &low_key,
				&high_key, fn, priv);
	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
			fn, priv);
}