blk-mq-sched.c 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * blk-mq scheduling framework
 *
 * Copyright (C) 2016 Jens Axboe
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>

#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
14
#include "blk-mq-debugfs.h"
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"

void blk_mq_sched_free_hctx_data(struct request_queue *q,
				 void (*exit)(struct blk_mq_hw_ctx *))
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (exit && hctx->sched_data)
			exit(hctx);
		kfree(hctx->sched_data);
		hctx->sched_data = NULL;
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);

34
void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
35
{
36 37
	struct request_queue *q = rq->q;
	struct io_context *ioc = rq_ioc(bio);
38 39 40 41 42 43 44 45 46 47 48
	struct io_cq *icq;

	spin_lock_irq(q->queue_lock);
	icq = ioc_lookup_icq(ioc, q);
	spin_unlock_irq(q->queue_lock);

	if (!icq) {
		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
		if (!icq)
			return;
	}
49
	get_io_context(icq->ioc);
50
	rq->elv.icq = icq;
51 52
}

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/*
 * Mark a hardware queue as needing a restart. For shared queues, maintain
 * a count of how many hardware queues are marked for restart.
 */
static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
{
	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
		return;

	if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
		struct request_queue *q = hctx->queue;

		if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
			atomic_inc(&q->shared_hctx_restart);
	} else
		set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
}

71
void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
72 73
{
	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
74
		return;
75

76
	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
77 78 79

	if (blk_mq_hctx_has_pending(hctx)) {
		blk_mq_run_hw_queue(hctx, true);
80
		return;
81 82 83
	}
}

84 85 86 87 88 89
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 */
static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
90 91 92 93 94 95
{
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
	LIST_HEAD(rq_list);

	do {
96 97
		struct request *rq;
		blk_status_t ret;
98

99 100
		if (e->type->ops.mq.has_work &&
				!e->type->ops.mq.has_work(hctx))
101
			break;
102 103 104

		ret = blk_mq_get_dispatch_budget(hctx);
		if (ret == BLK_STS_RESOURCE)
105
			break;
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

		rq = e->type->ops.mq.dispatch_request(hctx);
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
			break;
		} else if (ret != BLK_STS_OK) {
			blk_mq_end_request(rq, ret);
			continue;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
121
		list_add(&rq->queuelist, &rq_list);
122
	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
123 124
}

125 126 127 128 129 130 131 132 133 134 135
static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
					  struct blk_mq_ctx *ctx)
{
	unsigned idx = ctx->index_hw;

	if (++idx == hctx->nr_ctx)
		idx = 0;

	return hctx->ctxs[idx];
}

136 137 138 139 140 141
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 */
static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
142 143 144 145 146 147 148 149 150 151 152 153 154 155
{
	struct request_queue *q = hctx->queue;
	LIST_HEAD(rq_list);
	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);

	do {
		struct request *rq;
		blk_status_t ret;

		if (!sbitmap_any_bit_set(&hctx->ctx_map))
			break;

		ret = blk_mq_get_dispatch_budget(hctx);
		if (ret == BLK_STS_RESOURCE)
156
			break;
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
			break;
		} else if (ret != BLK_STS_OK) {
			blk_mq_end_request(rq, ret);
			continue;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
		list_add(&rq->queuelist, &rq_list);

		/* round robin for fair dispatch */
		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);

	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));

	WRITE_ONCE(hctx->dispatch_from, ctx);
}

182
/* return true if hw queue need to be run again */
183
void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
184
{
185 186
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
187
	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
188 189
	LIST_HEAD(rq_list);

190 191
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
192
		return;
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

	hctx->run++;

	/*
	 * If we have previous entries on our dispatch list, grab them first for
	 * more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Only ask the scheduler for requests, if we didn't have residual
	 * requests from the dispatch list. This is to avoid the case where
	 * we only ever dispatch a fraction of the requests available because
	 * of low device queue depth. Once we pull requests out of the IO
	 * scheduler, we can no longer merge or sort them. So it's best to
	 * leave them there for as long as we can. Mark the hw queue as
	 * needing a restart in that case.
215 216 217 218
	 *
	 * We want to dispatch from the scheduler if there was nothing
	 * on the dispatch list or we were able to dispatch from the
	 * dispatch list.
219
	 */
220
	if (!list_empty(&rq_list)) {
221
		blk_mq_sched_mark_restart_hctx(hctx);
222 223
		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
			if (has_sched_dispatch)
224
				blk_mq_do_dispatch_sched(hctx);
225
			else
226
				blk_mq_do_dispatch_ctx(hctx);
227
		}
228
	} else if (has_sched_dispatch) {
229
		blk_mq_do_dispatch_sched(hctx);
230 231 232 233 234 235 236 237 238
	} else if (q->mq_ops->get_budget) {
		/*
		 * If we need to get budget before queuing request, we
		 * dequeue request one by one from sw queue for avoiding
		 * to mess up I/O merge when dispatch runs out of resource.
		 *
		 * TODO: get more budgets, and dequeue more requests in
		 * one time.
		 */
239
		blk_mq_do_dispatch_ctx(hctx);
240
	} else {
241
		blk_mq_flush_busy_ctxs(hctx, &rq_list);
242
		blk_mq_dispatch_rq_list(q, &rq_list, false);
243
	}
244 245
}

246 247
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
			    struct request **merged_request)
248 249 250
{
	struct request *rq;

251 252
	switch (elv_merge(q, &rq, bio)) {
	case ELEVATOR_BACK_MERGE:
253 254
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
255 256 257 258 259 260 261
		if (!bio_attempt_back_merge(q, rq, bio))
			return false;
		*merged_request = attempt_back_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
		return true;
	case ELEVATOR_FRONT_MERGE:
262 263
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
264 265 266 267 268 269 270 271
		if (!bio_attempt_front_merge(q, rq, bio))
			return false;
		*merged_request = attempt_front_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
		return true;
	default:
		return false;
272 273 274 275
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);

276 277 278 279 280 281 282 283 284 285 286
/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

287 288
	lockdep_assert_held(&ctx->lock);

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		bool merged = false;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
			break;
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
			break;
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
			break;
		default:
			continue;
		}

		if (merged)
			ctx->rq_merged++;
		return merged;
	}

	return false;
}

322 323 324
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
{
	struct elevator_queue *e = q->elevator;
325 326 327
	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	bool ret = false;
328

329
	if (e && e->type->ops.mq.bio_merge) {
330 331 332 333
		blk_mq_put_ctx(ctx);
		return e->type->ops.mq.bio_merge(hctx, bio);
	}

334 335 336 337 338 339 340 341 342
	if (hctx->flags & BLK_MQ_F_SHOULD_MERGE) {
		/* default per sw-queue merge */
		spin_lock(&ctx->lock);
		ret = blk_mq_attempt_merge(q, ctx, bio);
		spin_unlock(&ctx->lock);
	}

	blk_mq_put_ctx(ctx);
	return ret;
343 344 345 346 347 348 349 350 351 352 353 354 355 356
}

bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);

void blk_mq_sched_request_inserted(struct request *rq)
{
	trace_block_rq_insert(rq->q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);

357 358
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
{
	if (rq->tag == -1) {
		rq->rq_flags |= RQF_SORTED;
		return false;
	}

	/*
	 * If we already have a real request tag, send directly to
	 * the dispatch list.
	 */
	spin_lock(&hctx->lock);
	list_add(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);
	return true;
}

375 376 377 378 379 380 381 382 383 384 385 386
/*
 * Add flush/fua to the queue. If we fail getting a driver tag, then
 * punt to the requeue list. Requeue will re-invoke us from a context
 * that's safe to block from.
 */
static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
				      struct request *rq, bool can_block)
{
	if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(hctx, true);
	} else
387
		blk_mq_add_to_requeue_list(rq, false, true);
388 389 390 391 392 393 394 395 396 397
}

void blk_mq_sched_insert_request(struct request *rq, bool at_head,
				 bool run_queue, bool async, bool can_block)
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

398
	if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
399 400 401 402
		blk_mq_sched_insert_flush(hctx, rq, can_block);
		return;
	}

403 404 405
	if (e && blk_mq_sched_bypass_insert(hctx, rq))
		goto run;

406 407 408 409 410 411 412 413 414 415 416
	if (e && e->type->ops.mq.insert_requests) {
		LIST_HEAD(list);

		list_add(&rq->queuelist, &list);
		e->type->ops.mq.insert_requests(hctx, &list, at_head);
	} else {
		spin_lock(&ctx->lock);
		__blk_mq_insert_request(hctx, rq, at_head);
		spin_unlock(&ctx->lock);
	}

417
run:
418 419 420 421 422 423 424 425 426 427 428
	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

void blk_mq_sched_insert_requests(struct request_queue *q,
				  struct blk_mq_ctx *ctx,
				  struct list_head *list, bool run_queue_async)
{
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	struct elevator_queue *e = hctx->queue->elevator;

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
	if (e) {
		struct request *rq, *next;

		/*
		 * We bypass requests that already have a driver tag assigned,
		 * which should only be flushes. Flushes are only ever inserted
		 * as single requests, so we shouldn't ever hit the
		 * WARN_ON_ONCE() below (but let's handle it just in case).
		 */
		list_for_each_entry_safe(rq, next, list, queuelist) {
			if (WARN_ON_ONCE(rq->tag != -1)) {
				list_del_init(&rq->queuelist);
				blk_mq_sched_bypass_insert(hctx, rq);
			}
		}
	}

446 447 448 449 450 451 452 453
	if (e && e->type->ops.mq.insert_requests)
		e->type->ops.mq.insert_requests(hctx, list, false);
	else
		blk_mq_insert_requests(hctx, ctx, list);

	blk_mq_run_hw_queue(hctx, run_queue_async);
}

454 455 456 457 458 459 460 461 462 463 464
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	if (hctx->sched_tags) {
		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
		blk_mq_free_rq_map(hctx->sched_tags);
		hctx->sched_tags = NULL;
	}
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static int blk_mq_sched_alloc_tags(struct request_queue *q,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	struct blk_mq_tag_set *set = q->tag_set;
	int ret;

	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
					       set->reserved_tags);
	if (!hctx->sched_tags)
		return -ENOMEM;

	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
	if (ret)
		blk_mq_sched_free_tags(set, hctx, hctx_idx);

	return ret;
}

484
static void blk_mq_sched_tags_teardown(struct request_queue *q)
485 486 487
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
488 489 490 491 492 493
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_sched_free_tags(set, hctx, i);
}

494 495 496 497
int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
			   unsigned int hctx_idx)
{
	struct elevator_queue *e = q->elevator;
498
	int ret;
499 500 501 502

	if (!e)
		return 0;

503 504 505 506 507 508 509 510 511 512 513 514
	ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
	if (ret)
		return ret;

	if (e->type->ops.mq.init_hctx) {
		ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
		if (ret) {
			blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
			return ret;
		}
	}

515 516
	blk_mq_debugfs_register_sched_hctx(q, hctx);

517
	return 0;
518 519 520 521 522 523 524 525 526 527
}

void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
			    unsigned int hctx_idx)
{
	struct elevator_queue *e = q->elevator;

	if (!e)
		return;

528 529
	blk_mq_debugfs_unregister_sched_hctx(hctx);

530 531 532 533 534
	if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
		e->type->ops.mq.exit_hctx(hctx, hctx_idx);
		hctx->sched_data = NULL;
	}

535 536 537
	blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
}

538 539 540
int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
	struct blk_mq_hw_ctx *hctx;
541
	struct elevator_queue *eq;
542 543 544 545 546 547 548
	unsigned int i;
	int ret;

	if (!e) {
		q->elevator = NULL;
		return 0;
	}
549 550

	/*
551 552 553
	 * Default to double of smaller one between hw queue_depth and 128,
	 * since we don't split into sync/async like the old code did.
	 * Additionally, this is a per-hw queue depth.
554
	 */
555 556
	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
				   BLKDEV_MAX_RQ);
557 558

	queue_for_each_hw_ctx(q, hctx, i) {
559
		ret = blk_mq_sched_alloc_tags(q, hctx, i);
560
		if (ret)
561
			goto err;
562 563
	}

564 565 566
	ret = e->ops.mq.init_sched(q, e);
	if (ret)
		goto err;
567

568 569 570 571
	blk_mq_debugfs_register_sched(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (e->ops.mq.init_hctx) {
572 573 574 575 576 577 578 579
			ret = e->ops.mq.init_hctx(hctx, i);
			if (ret) {
				eq = q->elevator;
				blk_mq_exit_sched(q, eq);
				kobject_put(&eq->kobj);
				return ret;
			}
		}
580
		blk_mq_debugfs_register_sched_hctx(q, hctx);
581 582
	}

583 584
	return 0;

585
err:
586 587
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
588
	return ret;
589
}
590

591 592
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
593 594 595
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

596 597 598 599 600
	queue_for_each_hw_ctx(q, hctx, i) {
		blk_mq_debugfs_unregister_sched_hctx(hctx);
		if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
			e->type->ops.mq.exit_hctx(hctx, i);
			hctx->sched_data = NULL;
601 602
		}
	}
603
	blk_mq_debugfs_unregister_sched(q);
604 605 606 607 608 609
	if (e->type->ops.mq.exit_sched)
		e->type->ops.mq.exit_sched(e);
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
}

610 611 612 613 614 615 616 617 618 619
int blk_mq_sched_init(struct request_queue *q)
{
	int ret;

	mutex_lock(&q->sysfs_lock);
	ret = elevator_init(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return ret;
}