core_t2.c 16.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
/*
 *	linux/arch/alpha/kernel/core_t2.c
 *
 * Written by Jay A Estabrook (jestabro@amt.tay1.dec.com).
 * December 1996.
 *
 * based on CIA code by David A Rusling (david.rusling@reo.mts.dec.com)
 *
 * Code common to all T2 core logic chips.
 */

#define __EXTERN_INLINE
#include <asm/io.h>
#include <asm/core_t2.h>
#undef __EXTERN_INLINE

#include <linux/types.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/init.h>

#include <asm/ptrace.h>
#include <asm/delay.h>

#include "proto.h"
#include "pci_impl.h"

/* For dumping initial DMA window settings. */
#define DEBUG_PRINT_INITIAL_SETTINGS 0

/* For dumping final DMA window settings. */
#define DEBUG_PRINT_FINAL_SETTINGS 0

/*
 * By default, we direct-map starting at 2GB, in order to allow the
 * maximum size direct-map window (2GB) to match the maximum amount of
 * memory (2GB) that can be present on SABLEs. But that limits the
 * floppy to DMA only via the scatter/gather window set up for 8MB
 * ISA DMA, since the maximum ISA DMA address is 2GB-1.
 *
 * For now, this seems a reasonable trade-off: even though most SABLEs
 * have less than 1GB of memory, floppy usage/performance will not
 * really be affected by forcing it to go via scatter/gather...
 */
#define T2_DIRECTMAP_2G 1

#if T2_DIRECTMAP_2G
# define T2_DIRECTMAP_START	0x80000000UL
# define T2_DIRECTMAP_LENGTH	0x80000000UL
#else
# define T2_DIRECTMAP_START	0x40000000UL
# define T2_DIRECTMAP_LENGTH	0x40000000UL
#endif

/* The ISA scatter/gather window settings. */
#define T2_ISA_SG_START		0x00800000UL
#define T2_ISA_SG_LENGTH	0x00800000UL

/*
 * NOTE: Herein lie back-to-back mb instructions.  They are magic. 
 * One plausible explanation is that the i/o controller does not properly
 * handle the system transaction.  Another involves timing.  Ho hum.
 */

/*
 * BIOS32-style PCI interface:
 */

#define DEBUG_CONFIG 0

#if DEBUG_CONFIG
# define DBG(args)	printk args
#else
# define DBG(args)
#endif

static volatile unsigned int t2_mcheck_any_expected;
static volatile unsigned int t2_mcheck_last_taken;

/* Place to save the DMA Window registers as set up by SRM
   for restoration during shutdown. */
static struct
{
	struct {
		unsigned long wbase;
		unsigned long wmask;
		unsigned long tbase;
	} window[2];
	unsigned long hae_1;
  	unsigned long hae_2;
	unsigned long hae_3;
	unsigned long hae_4;
	unsigned long hbase;
} t2_saved_config __attribute((common));

/*
 * Given a bus, device, and function number, compute resulting
 * configuration space address and setup the T2_HAXR2 register
 * accordingly.  It is therefore not safe to have concurrent
 * invocations to configuration space access routines, but there
 * really shouldn't be any need for this.
 *
 * Type 0:
 *
 *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 
 *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 * | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0|
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 *
 *	31:11	Device select bit.
 * 	10:8	Function number
 * 	 7:2	Register number
 *
 * Type 1:
 *
 *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 
 *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1|
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 *
 *	31:24	reserved
 *	23:16	bus number (8 bits = 128 possible buses)
 *	15:11	Device number (5 bits)
 *	10:8	function number
 *	 7:2	register number
 *  
 * Notes:
 *	The function number selects which function of a multi-function device 
 *	(e.g., SCSI and Ethernet).
 * 
 *	The register selects a DWORD (32 bit) register offset.  Hence it
 *	doesn't get shifted by 2 bits as we want to "drop" the bottom two
 *	bits.
 */

static int
mk_conf_addr(struct pci_bus *pbus, unsigned int device_fn, int where,
	     unsigned long *pci_addr, unsigned char *type1)
{
	unsigned long addr;
	u8 bus = pbus->number;

	DBG(("mk_conf_addr(bus=%d, dfn=0x%x, where=0x%x,"
	     " addr=0x%lx, type1=0x%x)\n",
	     bus, device_fn, where, pci_addr, type1));

	if (bus == 0) {
		int device = device_fn >> 3;

		/* Type 0 configuration cycle.  */

		if (device > 8) {
			DBG(("mk_conf_addr: device (%d)>20, returning -1\n",
			     device));
			return -1;
		}

		*type1 = 0;
		addr = (0x0800L << device) | ((device_fn & 7) << 8) | (where);
	} else {
		/* Type 1 configuration cycle.  */
		*type1 = 1;
		addr = (bus << 16) | (device_fn << 8) | (where);
	}
	*pci_addr = addr;
	DBG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr));
	return 0;
}

/*
 * NOTE: both conf_read() and conf_write() may set HAE_3 when needing
 *       to do type1 access. This is protected by the use of spinlock IRQ
 *       primitives in the wrapper functions pci_{read,write}_config_*()
 *       defined in drivers/pci/pci.c.
 */
static unsigned int
conf_read(unsigned long addr, unsigned char type1)
{
	unsigned int value, cpu, taken;
	unsigned long t2_cfg = 0;

	cpu = smp_processor_id();

	DBG(("conf_read(addr=0x%lx, type1=%d)\n", addr, type1));

	/* If Type1 access, must set T2 CFG.  */
	if (type1) {
		t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
		*(vulp)T2_HAE_3 = 0x40000000UL | t2_cfg;
		mb();
	}
	mb();
	draina();

	mcheck_expected(cpu) = 1;
	mcheck_taken(cpu) = 0;
	t2_mcheck_any_expected |= (1 << cpu);
	mb();

	/* Access configuration space. */
	value = *(vuip)addr;
	mb();
	mb();  /* magic */

	/* Wait for possible mcheck. Also, this lets other CPUs clear
	   their mchecks as well, as they can reliably tell when
	   another CPU is in the midst of handling a real mcheck via
	   the "taken" function. */
	udelay(100);

	if ((taken = mcheck_taken(cpu))) {
		mcheck_taken(cpu) = 0;
		t2_mcheck_last_taken |= (1 << cpu);
		value = 0xffffffffU;
		mb();
	}
	mcheck_expected(cpu) = 0;
	t2_mcheck_any_expected = 0;
	mb();

	/* If Type1 access, must reset T2 CFG so normal IO space ops work.  */
	if (type1) {
		*(vulp)T2_HAE_3 = t2_cfg;
		mb();
	}

	return value;
}

static void
conf_write(unsigned long addr, unsigned int value, unsigned char type1)
{
	unsigned int cpu, taken;
	unsigned long t2_cfg = 0;

	cpu = smp_processor_id();

	/* If Type1 access, must set T2 CFG.  */
	if (type1) {
		t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
		*(vulp)T2_HAE_3 = t2_cfg | 0x40000000UL;
		mb();
	}
	mb();
	draina();

	mcheck_expected(cpu) = 1;
	mcheck_taken(cpu) = 0;
	t2_mcheck_any_expected |= (1 << cpu);
	mb();

	/* Access configuration space.  */
	*(vuip)addr = value;
	mb();
	mb();  /* magic */

	/* Wait for possible mcheck. Also, this lets other CPUs clear
	   their mchecks as well, as they can reliably tell when
	   this CPU is in the midst of handling a real mcheck via
	   the "taken" function. */
	udelay(100);

	if ((taken = mcheck_taken(cpu))) {
		mcheck_taken(cpu) = 0;
		t2_mcheck_last_taken |= (1 << cpu);
		mb();
	}
	mcheck_expected(cpu) = 0;
	t2_mcheck_any_expected = 0;
	mb();

	/* If Type1 access, must reset T2 CFG so normal IO space ops work.  */
	if (type1) {
		*(vulp)T2_HAE_3 = t2_cfg;
		mb();
	}
}

static int
t2_read_config(struct pci_bus *bus, unsigned int devfn, int where,
	       int size, u32 *value)
{
	unsigned long addr, pci_addr;
	unsigned char type1;
	int shift;
	long mask;

	if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
		return PCIBIOS_DEVICE_NOT_FOUND;

	mask = (size - 1) * 8;
	shift = (where & 3) * 8;
	addr = (pci_addr << 5) + mask + T2_CONF;
	*value = conf_read(addr, type1) >> (shift);
	return PCIBIOS_SUCCESSFUL;
}

static int 
t2_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size,
		u32 value)
{
	unsigned long addr, pci_addr;
	unsigned char type1;
	long mask;

	if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
		return PCIBIOS_DEVICE_NOT_FOUND;

	mask = (size - 1) * 8;
	addr = (pci_addr << 5) + mask + T2_CONF;
	conf_write(addr, value << ((where & 3) * 8), type1);
	return PCIBIOS_SUCCESSFUL;
}

struct pci_ops t2_pci_ops = 
{
	.read =		t2_read_config,
	.write =	t2_write_config,
};

static void __init
t2_direct_map_window1(unsigned long base, unsigned long length)
{
	unsigned long temp;

	__direct_map_base = base;
	__direct_map_size = length;

	temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20);
	*(vulp)T2_WBASE1 = temp | 0x80000UL; /* OR in ENABLE bit */
	temp = (length - 1) & 0xfff00000UL;
	*(vulp)T2_WMASK1 = temp;
	*(vulp)T2_TBASE1 = 0;

#if DEBUG_PRINT_FINAL_SETTINGS
	printk("%s: setting WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n",
	       __FUNCTION__,
	       *(vulp)T2_WBASE1,
	       *(vulp)T2_WMASK1,
	       *(vulp)T2_TBASE1);
#endif
}

static void __init
t2_sg_map_window2(struct pci_controller *hose,
		  unsigned long base,
		  unsigned long length)
{
	unsigned long temp;

	/* Note we can only do 1 SG window, as the other is for direct, so
	   do an ISA SG area, especially for the floppy. */
	hose->sg_isa = iommu_arena_new(hose, base, length, 0);
	hose->sg_pci = NULL;

	temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20);
	*(vulp)T2_WBASE2 = temp | 0xc0000UL; /* OR in ENABLE/SG bits */
	temp = (length - 1) & 0xfff00000UL;
	*(vulp)T2_WMASK2 = temp;
	*(vulp)T2_TBASE2 = virt_to_phys(hose->sg_isa->ptes) >> 1;
	mb();

	t2_pci_tbi(hose, 0, -1); /* flush TLB all */

#if DEBUG_PRINT_FINAL_SETTINGS
	printk("%s: setting WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n",
	       __FUNCTION__,
	       *(vulp)T2_WBASE2,
	       *(vulp)T2_WMASK2,
	       *(vulp)T2_TBASE2);
#endif
}

static void __init
t2_save_configuration(void)
{
#if DEBUG_PRINT_INITIAL_SETTINGS
	printk("%s: HAE_1 was 0x%lx\n", __FUNCTION__, srm_hae); /* HW is 0 */
	printk("%s: HAE_2 was 0x%lx\n", __FUNCTION__, *(vulp)T2_HAE_2);
	printk("%s: HAE_3 was 0x%lx\n", __FUNCTION__, *(vulp)T2_HAE_3);
	printk("%s: HAE_4 was 0x%lx\n", __FUNCTION__, *(vulp)T2_HAE_4);
	printk("%s: HBASE was 0x%lx\n", __FUNCTION__, *(vulp)T2_HBASE);

	printk("%s: WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", __FUNCTION__, 
	       *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1);
	printk("%s: WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", __FUNCTION__, 
	       *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2);
#endif

	/*
	 * Save the DMA Window registers.
	 */
	t2_saved_config.window[0].wbase = *(vulp)T2_WBASE1;
	t2_saved_config.window[0].wmask = *(vulp)T2_WMASK1;
	t2_saved_config.window[0].tbase = *(vulp)T2_TBASE1;
	t2_saved_config.window[1].wbase = *(vulp)T2_WBASE2;
	t2_saved_config.window[1].wmask = *(vulp)T2_WMASK2;
	t2_saved_config.window[1].tbase = *(vulp)T2_TBASE2;

	t2_saved_config.hae_1 = srm_hae; /* HW is already set to 0 */
	t2_saved_config.hae_2 = *(vulp)T2_HAE_2;
	t2_saved_config.hae_3 = *(vulp)T2_HAE_3;
	t2_saved_config.hae_4 = *(vulp)T2_HAE_4;
	t2_saved_config.hbase = *(vulp)T2_HBASE;
}

void __init
t2_init_arch(void)
{
	struct pci_controller *hose;
	unsigned long temp;
	unsigned int i;

	for (i = 0; i < NR_CPUS; i++) {
		mcheck_expected(i) = 0;
		mcheck_taken(i) = 0;
	}
	t2_mcheck_any_expected = 0;
	t2_mcheck_last_taken = 0;

	/* Enable scatter/gather TLB use.  */
	temp = *(vulp)T2_IOCSR;
	if (!(temp & (0x1UL << 26))) {
		printk("t2_init_arch: enabling SG TLB, IOCSR was 0x%lx\n",
		       temp);
		*(vulp)T2_IOCSR = temp | (0x1UL << 26);
		mb();	
		*(vulp)T2_IOCSR; /* read it back to make sure */
	}

	t2_save_configuration();

	/*
	 * Create our single hose.
	 */
	pci_isa_hose = hose = alloc_pci_controller();
	hose->io_space = &ioport_resource;
	hose->mem_space = &iomem_resource;
	hose->index = 0;

	hose->sparse_mem_base = T2_SPARSE_MEM - IDENT_ADDR;
	hose->dense_mem_base = T2_DENSE_MEM - IDENT_ADDR;
	hose->sparse_io_base = T2_IO - IDENT_ADDR;
	hose->dense_io_base = 0;

	/*
	 * Set up the PCI->physical memory translation windows.
	 *
	 * Window 1 is direct mapped.
	 * Window 2 is scatter/gather (for ISA).
	 */

	t2_direct_map_window1(T2_DIRECTMAP_START, T2_DIRECTMAP_LENGTH);

	/* Always make an ISA DMA window. */
	t2_sg_map_window2(hose, T2_ISA_SG_START, T2_ISA_SG_LENGTH);

	*(vulp)T2_HBASE = 0x0; /* Disable HOLES. */

	/* Zero HAE.  */
	*(vulp)T2_HAE_1 = 0; mb(); /* Sparse MEM HAE */
	*(vulp)T2_HAE_2 = 0; mb(); /* Sparse I/O HAE */
	*(vulp)T2_HAE_3 = 0; mb(); /* Config Space HAE */

	/*
	 * We also now zero out HAE_4, the dense memory HAE, so that
	 * we need not account for its "offset" when accessing dense
	 * memory resources which we allocated in our normal way. This
	 * HAE would need to stay untouched were we to keep the SRM
	 * resource settings.
	 *
	 * Thus we can now run standard X servers on SABLE/LYNX. :-)
	 */
	*(vulp)T2_HAE_4 = 0; mb();
}

void
t2_kill_arch(int mode)
{
	/*
	 * Restore the DMA Window registers.
	 */
	*(vulp)T2_WBASE1 = t2_saved_config.window[0].wbase;
	*(vulp)T2_WMASK1 = t2_saved_config.window[0].wmask;
	*(vulp)T2_TBASE1 = t2_saved_config.window[0].tbase;
	*(vulp)T2_WBASE2 = t2_saved_config.window[1].wbase;
	*(vulp)T2_WMASK2 = t2_saved_config.window[1].wmask;
	*(vulp)T2_TBASE2 = t2_saved_config.window[1].tbase;
	mb();

	*(vulp)T2_HAE_1 = srm_hae;
	*(vulp)T2_HAE_2 = t2_saved_config.hae_2;
	*(vulp)T2_HAE_3 = t2_saved_config.hae_3;
	*(vulp)T2_HAE_4 = t2_saved_config.hae_4;
	*(vulp)T2_HBASE = t2_saved_config.hbase;
	mb();
	*(vulp)T2_HBASE; /* READ it back to ensure WRITE occurred. */
}

void
t2_pci_tbi(struct pci_controller *hose, dma_addr_t start, dma_addr_t end)
{
	unsigned long t2_iocsr;

	t2_iocsr = *(vulp)T2_IOCSR;

	/* set the TLB Clear bit */
	*(vulp)T2_IOCSR = t2_iocsr | (0x1UL << 28);
	mb();
	*(vulp)T2_IOCSR; /* read it back to make sure */

	/* clear the TLB Clear bit */
	*(vulp)T2_IOCSR = t2_iocsr & ~(0x1UL << 28);
	mb();
	*(vulp)T2_IOCSR; /* read it back to make sure */
}

#define SIC_SEIC (1UL << 33)    /* System Event Clear */

static void
t2_clear_errors(int cpu)
{
	struct sable_cpu_csr *cpu_regs;

	cpu_regs = (struct sable_cpu_csr *)T2_CPUn_BASE(cpu);
		
	cpu_regs->sic &= ~SIC_SEIC;

	/* Clear CPU errors.  */
	cpu_regs->bcce |= cpu_regs->bcce;
	cpu_regs->cbe  |= cpu_regs->cbe;
	cpu_regs->bcue |= cpu_regs->bcue;
	cpu_regs->dter |= cpu_regs->dter;

	*(vulp)T2_CERR1 |= *(vulp)T2_CERR1;
	*(vulp)T2_PERR1 |= *(vulp)T2_PERR1;

	mb();
	mb();  /* magic */
}

/*
 * SABLE seems to have a "broadcast" style machine check, in that all
 * CPUs receive it. And, the issuing CPU, in the case of PCI Config
 * space read/write faults, will also receive a second mcheck, upon
 * lowering IPL during completion processing in pci_read_config_byte()
 * et al.
 *
 * Hence all the taken/expected/any_expected/last_taken stuff...
 */
void
t2_machine_check(unsigned long vector, unsigned long la_ptr,
		 struct pt_regs * regs)
{
	int cpu = smp_processor_id();
#ifdef CONFIG_VERBOSE_MCHECK
	struct el_common *mchk_header = (struct el_common *)la_ptr;
#endif

	/* Clear the error before any reporting.  */
	mb();
	mb();  /* magic */
	draina();
	t2_clear_errors(cpu);

	/* This should not actually be done until the logout frame is
	   examined, but, since we don't do that, go on and do this... */
	wrmces(0x7);
	mb();

	/* Now, do testing for the anomalous conditions. */
	if (!mcheck_expected(cpu) && t2_mcheck_any_expected) {
		/*
		 * FUNKY: Received mcheck on a CPU and not
		 * expecting it, but another CPU is expecting one.
		 *
		 * Just dismiss it for now on this CPU...
		 */
#ifdef CONFIG_VERBOSE_MCHECK
		if (alpha_verbose_mcheck > 1) {
			printk("t2_machine_check(cpu%d): any_expected 0x%x -"
			       " (assumed) spurious -"
			       " code 0x%x\n", cpu, t2_mcheck_any_expected,
			       (unsigned int)mchk_header->code);
		}
#endif
		return;
	}

	if (!mcheck_expected(cpu) && !t2_mcheck_any_expected) {
		if (t2_mcheck_last_taken & (1 << cpu)) {
#ifdef CONFIG_VERBOSE_MCHECK
		    if (alpha_verbose_mcheck > 1) {
			printk("t2_machine_check(cpu%d): last_taken 0x%x - "
			       "unexpected mcheck - code 0x%x\n",
			       cpu, t2_mcheck_last_taken,
			       (unsigned int)mchk_header->code);
		    }
#endif
		    t2_mcheck_last_taken = 0;
		    mb();
		    return;
		} else {
			t2_mcheck_last_taken = 0;
			mb();
		}
	}

#ifdef CONFIG_VERBOSE_MCHECK
	if (alpha_verbose_mcheck > 1) {
		printk("%s t2_mcheck(cpu%d): last_taken 0x%x - "
		       "any_expected 0x%x - code 0x%x\n",
		       (mcheck_expected(cpu) ? "EX" : "UN"), cpu,
		       t2_mcheck_last_taken, t2_mcheck_any_expected,
		       (unsigned int)mchk_header->code);
	}
#endif

	process_mcheck_info(vector, la_ptr, regs, "T2", mcheck_expected(cpu));
}