hci_intel.c 31.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 *
 *  Bluetooth HCI UART driver for Intel devices
 *
 *  Copyright (C) 2015  Intel Corporation
 *
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
27
#include <linux/firmware.h>
28
#include <linux/module.h>
29
#include <linux/wait.h>
30 31 32 33
#include <linux/tty.h>
#include <linux/platform_device.h>
#include <linux/gpio/consumer.h>
#include <linux/acpi.h>
34
#include <linux/interrupt.h>
35
#include <linux/pm_runtime.h>
36 37 38 39 40

#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>

#include "hci_uart.h"
41 42 43 44 45 46 47
#include "btintel.h"

#define STATE_BOOTLOADER	0
#define STATE_DOWNLOADING	1
#define STATE_FIRMWARE_LOADED	2
#define STATE_FIRMWARE_FAILED	3
#define STATE_BOOTING		4
48 49
#define STATE_LPM_ENABLED	5
#define STATE_TX_ACTIVE		6
50 51
#define STATE_SUSPENDED		7
#define STATE_LPM_TRANSACTION	8
52

53
#define HCI_LPM_WAKE_PKT 0xf0
54 55 56 57 58
#define HCI_LPM_PKT 0xf1
#define HCI_LPM_MAX_SIZE 10
#define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE

#define LPM_OP_TX_NOTIFY 0x00
59 60
#define LPM_OP_SUSPEND_ACK 0x02
#define LPM_OP_RESUME_ACK 0x03
61

62 63
#define LPM_SUSPEND_DELAY_MS 1000

64 65 66 67 68
struct hci_lpm_pkt {
	__u8 opcode;
	__u8 dlen;
	__u8 data[0];
} __packed;
69

70 71 72 73
struct intel_device {
	struct list_head list;
	struct platform_device *pdev;
	struct gpio_desc *reset;
74 75
	struct hci_uart *hu;
	struct mutex hu_lock;
76
	int irq;
77 78 79
};

static LIST_HEAD(intel_device_list);
80
static DEFINE_MUTEX(intel_device_list_lock);
81

82 83 84
struct intel_data {
	struct sk_buff *rx_skb;
	struct sk_buff_head txq;
85 86
	struct work_struct busy_work;
	struct hci_uart *hu;
87 88 89
	unsigned long flags;
};

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
static u8 intel_convert_speed(unsigned int speed)
{
	switch (speed) {
	case 9600:
		return 0x00;
	case 19200:
		return 0x01;
	case 38400:
		return 0x02;
	case 57600:
		return 0x03;
	case 115200:
		return 0x04;
	case 230400:
		return 0x05;
	case 460800:
		return 0x06;
	case 921600:
		return 0x07;
	case 1843200:
		return 0x08;
	case 3250000:
		return 0x09;
	case 2000000:
		return 0x0a;
	case 3000000:
		return 0x0b;
	default:
		return 0xff;
	}
}

122 123 124 125 126 127 128 129 130 131
static int intel_wait_booting(struct hci_uart *hu)
{
	struct intel_data *intel = hu->priv;
	int err;

	err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
				  TASK_INTERRUPTIBLE,
				  msecs_to_jiffies(1000));

	if (err == 1) {
132
		bt_dev_err(hu->hdev, "Device boot interrupted");
133 134 135 136
		return -EINTR;
	}

	if (err) {
137
		bt_dev_err(hu->hdev, "Device boot timeout");
138 139 140 141 142 143
		return -ETIMEDOUT;
	}

	return err;
}

144
#ifdef CONFIG_PM
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
static int intel_wait_lpm_transaction(struct hci_uart *hu)
{
	struct intel_data *intel = hu->priv;
	int err;

	err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
				  TASK_INTERRUPTIBLE,
				  msecs_to_jiffies(1000));

	if (err == 1) {
		bt_dev_err(hu->hdev, "LPM transaction interrupted");
		return -EINTR;
	}

	if (err) {
		bt_dev_err(hu->hdev, "LPM transaction timeout");
		return -ETIMEDOUT;
	}

	return err;
}

static int intel_lpm_suspend(struct hci_uart *hu)
{
	static const u8 suspend[] = { 0x01, 0x01, 0x01 };
	struct intel_data *intel = hu->priv;
	struct sk_buff *skb;

	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
	    test_bit(STATE_SUSPENDED, &intel->flags))
		return 0;

	if (test_bit(STATE_TX_ACTIVE, &intel->flags))
		return -EAGAIN;

	bt_dev_dbg(hu->hdev, "Suspending");

	skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
	if (!skb) {
		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
		return -ENOMEM;
	}

	memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
	bt_cb(skb)->pkt_type = HCI_LPM_PKT;

	set_bit(STATE_LPM_TRANSACTION, &intel->flags);

	skb_queue_tail(&intel->txq, skb);
	hci_uart_tx_wakeup(hu);

	intel_wait_lpm_transaction(hu);
	/* Even in case of failure, continue and test the suspended flag */

	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);

	if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
		bt_dev_err(hu->hdev, "Device suspend error");
		return -EINVAL;
	}

	bt_dev_dbg(hu->hdev, "Suspended");

	hci_uart_set_flow_control(hu, true);

	return 0;
}

static int intel_lpm_resume(struct hci_uart *hu)
{
	struct intel_data *intel = hu->priv;
	struct sk_buff *skb;

	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
	    !test_bit(STATE_SUSPENDED, &intel->flags))
		return 0;

	bt_dev_dbg(hu->hdev, "Resuming");

	hci_uart_set_flow_control(hu, false);

	skb = bt_skb_alloc(0, GFP_KERNEL);
	if (!skb) {
		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
		return -ENOMEM;
	}

	bt_cb(skb)->pkt_type = HCI_LPM_WAKE_PKT;

	set_bit(STATE_LPM_TRANSACTION, &intel->flags);

	skb_queue_tail(&intel->txq, skb);
	hci_uart_tx_wakeup(hu);

	intel_wait_lpm_transaction(hu);
	/* Even in case of failure, continue and test the suspended flag */

	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);

	if (test_bit(STATE_SUSPENDED, &intel->flags)) {
		bt_dev_err(hu->hdev, "Device resume error");
		return -EINVAL;
	}

	bt_dev_dbg(hu->hdev, "Resumed");

	return 0;
}
253
#endif /* CONFIG_PM */
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

static int intel_lpm_host_wake(struct hci_uart *hu)
{
	static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
	struct intel_data *intel = hu->priv;
	struct sk_buff *skb;

	hci_uart_set_flow_control(hu, false);

	clear_bit(STATE_SUSPENDED, &intel->flags);

	skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
	if (!skb) {
		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
		return -ENOMEM;
	}

	memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
	       sizeof(lpm_resume_ack));
	bt_cb(skb)->pkt_type = HCI_LPM_PKT;

	skb_queue_tail(&intel->txq, skb);
	hci_uart_tx_wakeup(hu);

	bt_dev_dbg(hu->hdev, "Resumed by controller");

	return 0;
}

283 284 285 286 287 288
static irqreturn_t intel_irq(int irq, void *dev_id)
{
	struct intel_device *idev = dev_id;

	dev_info(&idev->pdev->dev, "hci_intel irq\n");

289 290 291 292 293
	mutex_lock(&idev->hu_lock);
	if (idev->hu)
		intel_lpm_host_wake(idev->hu);
	mutex_unlock(&idev->hu_lock);

294 295 296 297 298
	/* Host/Controller are now LPM resumed, trigger a new delayed suspend */
	pm_runtime_get(&idev->pdev->dev);
	pm_runtime_mark_last_busy(&idev->pdev->dev);
	pm_runtime_put_autosuspend(&idev->pdev->dev);

299 300 301
	return IRQ_HANDLED;
}

302 303 304 305 306
static int intel_set_power(struct hci_uart *hu, bool powered)
{
	struct list_head *p;
	int err = -ENODEV;

307
	mutex_lock(&intel_device_list_lock);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

	list_for_each(p, &intel_device_list) {
		struct intel_device *idev = list_entry(p, struct intel_device,
						       list);

		/* tty device and pdev device should share the same parent
		 * which is the UART port.
		 */
		if (hu->tty->dev->parent != idev->pdev->dev.parent)
			continue;

		if (!idev->reset) {
			err = -ENOTSUPP;
			break;
		}

		BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
			hu, dev_name(&idev->pdev->dev), powered);

		gpiod_set_value(idev->reset, powered);
328

329 330 331 332 333 334 335 336 337
		/* Provide to idev a hu reference which is used to run LPM
		 * transactions (lpm suspend/resume) from PM callbacks.
		 * hu needs to be protected against concurrent removing during
		 * these PM ops.
		 */
		mutex_lock(&idev->hu_lock);
		idev->hu = powered ? hu : NULL;
		mutex_unlock(&idev->hu_lock);

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
		if (idev->irq < 0)
			break;

		if (powered && device_can_wakeup(&idev->pdev->dev)) {
			err = devm_request_threaded_irq(&idev->pdev->dev,
							idev->irq, NULL,
							intel_irq,
							IRQF_ONESHOT,
							"bt-host-wake", idev);
			if (err) {
				BT_ERR("hu %p, unable to allocate irq-%d",
				       hu, idev->irq);
				break;
			}

			device_wakeup_enable(&idev->pdev->dev);
354 355 356 357 358 359

			pm_runtime_set_active(&idev->pdev->dev);
			pm_runtime_use_autosuspend(&idev->pdev->dev);
			pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
							 LPM_SUSPEND_DELAY_MS);
			pm_runtime_enable(&idev->pdev->dev);
360 361 362
		} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
			devm_free_irq(&idev->pdev->dev, idev->irq, idev);
			device_wakeup_disable(&idev->pdev->dev);
363 364

			pm_runtime_disable(&idev->pdev->dev);
365
		}
366 367
	}

368
	mutex_unlock(&intel_device_list_lock);
369 370 371 372

	return err;
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
static void intel_busy_work(struct work_struct *work)
{
	struct list_head *p;
	struct intel_data *intel = container_of(work, struct intel_data,
						busy_work);

	/* Link is busy, delay the suspend */
	mutex_lock(&intel_device_list_lock);
	list_for_each(p, &intel_device_list) {
		struct intel_device *idev = list_entry(p, struct intel_device,
						       list);

		if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
			pm_runtime_get(&idev->pdev->dev);
			pm_runtime_mark_last_busy(&idev->pdev->dev);
			pm_runtime_put_autosuspend(&idev->pdev->dev);
			break;
		}
	}
	mutex_unlock(&intel_device_list_lock);
}

395 396 397 398 399 400 401 402 403 404 405
static int intel_open(struct hci_uart *hu)
{
	struct intel_data *intel;

	BT_DBG("hu %p", hu);

	intel = kzalloc(sizeof(*intel), GFP_KERNEL);
	if (!intel)
		return -ENOMEM;

	skb_queue_head_init(&intel->txq);
406 407 408
	INIT_WORK(&intel->busy_work, intel_busy_work);

	intel->hu = hu;
409 410

	hu->priv = intel;
411 412 413 414

	if (!intel_set_power(hu, true))
		set_bit(STATE_BOOTING, &intel->flags);

415 416 417 418 419 420 421 422 423
	return 0;
}

static int intel_close(struct hci_uart *hu)
{
	struct intel_data *intel = hu->priv;

	BT_DBG("hu %p", hu);

424 425
	cancel_work_sync(&intel->busy_work);

426 427
	intel_set_power(hu, false);

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	skb_queue_purge(&intel->txq);
	kfree_skb(intel->rx_skb);
	kfree(intel);

	hu->priv = NULL;
	return 0;
}

static int intel_flush(struct hci_uart *hu)
{
	struct intel_data *intel = hu->priv;

	BT_DBG("hu %p", hu);

	skb_queue_purge(&intel->txq);

	return 0;
}

static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
{
	struct sk_buff *skb;
	struct hci_event_hdr *hdr;
	struct hci_ev_cmd_complete *evt;

	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
	if (!skb)
		return -ENOMEM;

	hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
	hdr->evt = HCI_EV_CMD_COMPLETE;
	hdr->plen = sizeof(*evt) + 1;

	evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
	evt->ncmd = 0x01;
	evt->opcode = cpu_to_le16(opcode);

	*skb_put(skb, 1) = 0x00;

	bt_cb(skb)->pkt_type = HCI_EVENT_PKT;

	return hci_recv_frame(hdev, skb);
}

472 473 474 475 476 477
static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
{
	struct intel_data *intel = hu->priv;
	struct hci_dev *hdev = hu->hdev;
	u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
	struct sk_buff *skb;
478 479 480 481 482 483 484 485 486 487 488 489
	int err;

	/* This can be the first command sent to the chip, check
	 * that the controller is ready.
	 */
	err = intel_wait_booting(hu);

	clear_bit(STATE_BOOTING, &intel->flags);

	/* In case of timeout, try to continue anyway */
	if (err && err != ETIMEDOUT)
		return err;
490

491
	bt_dev_info(hdev, "Change controller speed to %d", speed);
492 493 494

	speed_cmd[3] = intel_convert_speed(speed);
	if (speed_cmd[3] == 0xff) {
495
		bt_dev_err(hdev, "Unsupported speed");
496 497 498 499 500 501 502 503
		return -EINVAL;
	}

	/* Device will not accept speed change if Intel version has not been
	 * previously requested.
	 */
	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
504 505
		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
			   PTR_ERR(skb));
506 507 508 509 510 511
		return PTR_ERR(skb);
	}
	kfree_skb(skb);

	skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
	if (!skb) {
512
		bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
		return -ENOMEM;
	}

	memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
	bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;

	hci_uart_set_flow_control(hu, true);

	skb_queue_tail(&intel->txq, skb);
	hci_uart_tx_wakeup(hu);

	/* wait 100ms to change baudrate on controller side */
	msleep(100);

	hci_uart_set_baudrate(hu, speed);
	hci_uart_set_flow_control(hu, false);

	return 0;
}

533 534 535 536
static int intel_setup(struct hci_uart *hu)
{
	static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
					  0x00, 0x08, 0x04, 0x00 };
537
	static const u8 lpm_param[] = { 0x03, 0x07, 0x01, 0x0b };
538
	struct intel_data *intel = hu->priv;
539
	struct intel_device *idev = NULL;
540 541 542 543
	struct hci_dev *hdev = hu->hdev;
	struct sk_buff *skb;
	struct intel_version *ver;
	struct intel_boot_params *params;
544
	struct list_head *p;
545 546 547 548 549 550
	const struct firmware *fw;
	const u8 *fw_ptr;
	char fwname[64];
	u32 frag_len;
	ktime_t calltime, delta, rettime;
	unsigned long long duration;
551 552
	unsigned int init_speed, oper_speed;
	int speed_change = 0;
553 554
	int err;

555
	bt_dev_dbg(hdev, "start intel_setup");
556

557 558
	hu->hdev->set_bdaddr = btintel_set_bdaddr;

559 560
	calltime = ktime_get();

561 562 563 564 565 566 567 568 569 570 571 572 573
	if (hu->init_speed)
		init_speed = hu->init_speed;
	else
		init_speed = hu->proto->init_speed;

	if (hu->oper_speed)
		oper_speed = hu->oper_speed;
	else
		oper_speed = hu->proto->oper_speed;

	if (oper_speed && init_speed && oper_speed != init_speed)
		speed_change = 1;

574 575 576 577 578 579 580 581 582
	/* Check that the controller is ready */
	err = intel_wait_booting(hu);

	clear_bit(STATE_BOOTING, &intel->flags);

	/* In case of timeout, try to continue anyway */
	if (err && err != ETIMEDOUT)
		return err;

583 584 585 586 587 588 589 590
	set_bit(STATE_BOOTLOADER, &intel->flags);

	/* Read the Intel version information to determine if the device
	 * is in bootloader mode or if it already has operational firmware
	 * loaded.
	 */
	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
591 592
		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
			   PTR_ERR(skb));
593 594 595 596
		return PTR_ERR(skb);
	}

	if (skb->len != sizeof(*ver)) {
597
		bt_dev_err(hdev, "Intel version event size mismatch");
598 599 600 601 602 603
		kfree_skb(skb);
		return -EILSEQ;
	}

	ver = (struct intel_version *)skb->data;
	if (ver->status) {
604 605
		bt_dev_err(hdev, "Intel version command failure (%02x)",
			   ver->status);
606 607 608 609 610 611 612 613 614
		err = -bt_to_errno(ver->status);
		kfree_skb(skb);
		return err;
	}

	/* The hardware platform number has a fixed value of 0x37 and
	 * for now only accept this single value.
	 */
	if (ver->hw_platform != 0x37) {
615 616
		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
			   ver->hw_platform);
617 618 619 620 621 622 623 624 625 626
		kfree_skb(skb);
		return -EINVAL;
	}

	/* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is
	 * supported by this firmware loading method. This check has been
	 * put in place to ensure correct forward compatibility options
	 * when newer hardware variants come along.
	 */
	if (ver->hw_variant != 0x0b) {
627 628
		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
			   ver->hw_variant);
629 630 631 632
		kfree_skb(skb);
		return -EINVAL;
	}

633
	btintel_version_info(hdev, ver);
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658

	/* The firmware variant determines if the device is in bootloader
	 * mode or is running operational firmware. The value 0x06 identifies
	 * the bootloader and the value 0x23 identifies the operational
	 * firmware.
	 *
	 * When the operational firmware is already present, then only
	 * the check for valid Bluetooth device address is needed. This
	 * determines if the device will be added as configured or
	 * unconfigured controller.
	 *
	 * It is not possible to use the Secure Boot Parameters in this
	 * case since that command is only available in bootloader mode.
	 */
	if (ver->fw_variant == 0x23) {
		kfree_skb(skb);
		clear_bit(STATE_BOOTLOADER, &intel->flags);
		btintel_check_bdaddr(hdev);
		return 0;
	}

	/* If the device is not in bootloader mode, then the only possible
	 * choice is to return an error and abort the device initialization.
	 */
	if (ver->fw_variant != 0x06) {
659 660
		bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
			   ver->fw_variant);
661 662 663 664 665 666 667 668 669 670 671
		kfree_skb(skb);
		return -ENODEV;
	}

	kfree_skb(skb);

	/* Read the secure boot parameters to identify the operating
	 * details of the bootloader.
	 */
	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
672 673
		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
			   PTR_ERR(skb));
674 675 676 677
		return PTR_ERR(skb);
	}

	if (skb->len != sizeof(*params)) {
678
		bt_dev_err(hdev, "Intel boot parameters size mismatch");
679 680 681 682 683 684
		kfree_skb(skb);
		return -EILSEQ;
	}

	params = (struct intel_boot_params *)skb->data;
	if (params->status) {
685 686
		bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
			   params->status);
687 688 689 690 691
		err = -bt_to_errno(params->status);
		kfree_skb(skb);
		return err;
	}

692 693
	bt_dev_info(hdev, "Device revision is %u",
		    le16_to_cpu(params->dev_revid));
694

695 696
	bt_dev_info(hdev, "Secure boot is %s",
		    params->secure_boot ? "enabled" : "disabled");
697

698
	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
699 700 701 702 703 704 705 706
		params->min_fw_build_nn, params->min_fw_build_cw,
		2000 + params->min_fw_build_yy);

	/* It is required that every single firmware fragment is acknowledged
	 * with a command complete event. If the boot parameters indicate
	 * that this bootloader does not send them, then abort the setup.
	 */
	if (params->limited_cce != 0x00) {
707 708
		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
			   params->limited_cce);
709 710 711 712 713 714 715 716
		kfree_skb(skb);
		return -EINVAL;
	}

	/* If the OTP has no valid Bluetooth device address, then there will
	 * also be no valid address for the operational firmware.
	 */
	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
717
		bt_dev_info(hdev, "No device address configured");
718 719 720 721 722 723 724 725 726 727 728 729 730 731
		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
	}

	/* With this Intel bootloader only the hardware variant and device
	 * revision information are used to select the right firmware.
	 *
	 * Currently this bootloader support is limited to hardware variant
	 * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
	 */
	snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi",
		 le16_to_cpu(params->dev_revid));

	err = request_firmware(&fw, fwname, &hdev->dev);
	if (err < 0) {
732 733
		bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
			   err);
734 735 736 737
		kfree_skb(skb);
		return err;
	}

738
	bt_dev_info(hdev, "Found device firmware: %s", fwname);
739

740 741 742 743
	/* Save the DDC file name for later */
	snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc",
		 le16_to_cpu(params->dev_revid));

744 745 746
	kfree_skb(skb);

	if (fw->size < 644) {
747 748
		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
			   fw->size);
749 750 751 752 753 754 755 756 757
		err = -EBADF;
		goto done;
	}

	set_bit(STATE_DOWNLOADING, &intel->flags);

	/* Start the firmware download transaction with the Init fragment
	 * represented by the 128 bytes of CSS header.
	 */
758
	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
759
	if (err < 0) {
760
		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
761 762 763 764 765 766
		goto done;
	}

	/* Send the 256 bytes of public key information from the firmware
	 * as the PKey fragment.
	 */
767
	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
768
	if (err < 0) {
769 770
		bt_dev_err(hdev, "Failed to send firmware public key (%d)",
			   err);
771 772 773 774 775 776
		goto done;
	}

	/* Send the 256 bytes of signature information from the firmware
	 * as the Sign fragment.
	 */
777
	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
778
	if (err < 0) {
779 780
		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
			   err);
781 782 783 784 785 786 787 788 789 790 791
		goto done;
	}

	fw_ptr = fw->data + 644;
	frag_len = 0;

	while (fw_ptr - fw->data < fw->size) {
		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);

		frag_len += sizeof(*cmd) + cmd->plen;

792 793
		bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
			   fw->size);
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808

		/* The parameter length of the secure send command requires
		 * a 4 byte alignment. It happens so that the firmware file
		 * contains proper Intel_NOP commands to align the fragments
		 * as needed.
		 *
		 * Send set of commands with 4 byte alignment from the
		 * firmware data buffer as a single Data fragement.
		 */
		if (frag_len % 4)
			continue;

		/* Send each command from the firmware data buffer as
		 * a single Data fragment.
		 */
809
		err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
810
		if (err < 0) {
811 812
			bt_dev_err(hdev, "Failed to send firmware data (%d)",
				   err);
813 814 815 816 817 818 819 820 821
			goto done;
		}

		fw_ptr += frag_len;
		frag_len = 0;
	}

	set_bit(STATE_FIRMWARE_LOADED, &intel->flags);

822
	bt_dev_info(hdev, "Waiting for firmware download to complete");
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838

	/* Before switching the device into operational mode and with that
	 * booting the loaded firmware, wait for the bootloader notification
	 * that all fragments have been successfully received.
	 *
	 * When the event processing receives the notification, then the
	 * STATE_DOWNLOADING flag will be cleared.
	 *
	 * The firmware loading should not take longer than 5 seconds
	 * and thus just timeout if that happens and fail the setup
	 * of this device.
	 */
	err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
				  TASK_INTERRUPTIBLE,
				  msecs_to_jiffies(5000));
	if (err == 1) {
839
		bt_dev_err(hdev, "Firmware loading interrupted");
840 841 842 843 844
		err = -EINTR;
		goto done;
	}

	if (err) {
845
		bt_dev_err(hdev, "Firmware loading timeout");
846 847 848 849 850
		err = -ETIMEDOUT;
		goto done;
	}

	if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
851
		bt_dev_err(hdev, "Firmware loading failed");
852 853 854 855 856 857 858 859
		err = -ENOEXEC;
		goto done;
	}

	rettime = ktime_get();
	delta = ktime_sub(rettime, calltime);
	duration = (unsigned long long) ktime_to_ns(delta) >> 10;

860
	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
861 862 863 864 865 866 867

done:
	release_firmware(fw);

	if (err < 0)
		return err;

868 869 870 871 872 873 874
	/* We need to restore the default speed before Intel reset */
	if (speed_change) {
		err = intel_set_baudrate(hu, init_speed);
		if (err)
			return err;
	}

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	calltime = ktime_get();

	set_bit(STATE_BOOTING, &intel->flags);

	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
			     HCI_INIT_TIMEOUT);
	if (IS_ERR(skb))
		return PTR_ERR(skb);

	kfree_skb(skb);

	/* The bootloader will not indicate when the device is ready. This
	 * is done by the operational firmware sending bootup notification.
	 *
	 * Booting into operational firmware should not take longer than
	 * 1 second. However if that happens, then just fail the setup
	 * since something went wrong.
	 */
893
	bt_dev_info(hdev, "Waiting for device to boot");
894

895 896 897
	err = intel_wait_booting(hu);
	if (err)
		return err;
898

899
	clear_bit(STATE_BOOTING, &intel->flags);
900 901 902 903 904

	rettime = ktime_get();
	delta = ktime_sub(rettime, calltime);
	duration = (unsigned long long) ktime_to_ns(delta) >> 10;

905
	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
906

907
	/* Enable LPM if matching pdev with wakeup enabled */
908
	mutex_lock(&intel_device_list_lock);
909 910 911 912 913 914 915 916 917
	list_for_each(p, &intel_device_list) {
		struct intel_device *dev = list_entry(p, struct intel_device,
						      list);
		if (hu->tty->dev->parent == dev->pdev->dev.parent) {
			if (device_may_wakeup(&dev->pdev->dev))
				idev = dev;
			break;
		}
	}
918
	mutex_unlock(&intel_device_list_lock);
919 920 921 922

	if (!idev)
		goto no_lpm;

923
	bt_dev_info(hdev, "Enabling LPM");
924 925 926 927

	skb = __hci_cmd_sync(hdev, 0xfc8b, sizeof(lpm_param), lpm_param,
			     HCI_CMD_TIMEOUT);
	if (IS_ERR(skb)) {
928
		bt_dev_err(hdev, "Failed to enable LPM");
929 930 931 932 933 934 935
		goto no_lpm;
	}
	kfree_skb(skb);

	set_bit(STATE_LPM_ENABLED, &intel->flags);

no_lpm:
936 937 938
	/* Ignore errors, device can work without DDC parameters */
	btintel_load_ddc_config(hdev, fwname);

939 940 941 942 943 944 945 946 947 948 949
	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
	if (IS_ERR(skb))
		return PTR_ERR(skb);
	kfree_skb(skb);

	if (speed_change) {
		err = intel_set_baudrate(hu, oper_speed);
		if (err)
			return err;
	}

950
	bt_dev_info(hdev, "Setup complete");
951

952 953 954 955 956 957 958 959 960 961 962
	clear_bit(STATE_BOOTLOADER, &intel->flags);

	return 0;
}

static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
{
	struct hci_uart *hu = hci_get_drvdata(hdev);
	struct intel_data *intel = hu->priv;
	struct hci_event_hdr *hdr;

963 964
	if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
	    !test_bit(STATE_BOOTING, &intel->flags))
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
		goto recv;

	hdr = (void *)skb->data;

	/* When the firmware loading completes the device sends
	 * out a vendor specific event indicating the result of
	 * the firmware loading.
	 */
	if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
	    skb->data[2] == 0x06) {
		if (skb->data[3] != 0x00)
			set_bit(STATE_FIRMWARE_FAILED, &intel->flags);

		if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
		    test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
			smp_mb__after_atomic();
			wake_up_bit(&intel->flags, STATE_DOWNLOADING);
		}

	/* When switching to the operational firmware the device
	 * sends a vendor specific event indicating that the bootup
	 * completed.
	 */
	} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
		   skb->data[2] == 0x02) {
		if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
			smp_mb__after_atomic();
			wake_up_bit(&intel->flags, STATE_BOOTING);
		}
	}
recv:
	return hci_recv_frame(hdev, skb);
}

999 1000 1001 1002 1003
static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
{
	struct hci_uart *hu = hci_get_drvdata(hdev);
	struct intel_data *intel = hu->priv;

1004
	bt_dev_dbg(hdev, "TX idle notification (%d)", value);
1005

1006
	if (value) {
1007
		set_bit(STATE_TX_ACTIVE, &intel->flags);
1008 1009
		schedule_work(&intel->busy_work);
	} else {
1010
		clear_bit(STATE_TX_ACTIVE, &intel->flags);
1011
	}
1012 1013 1014 1015 1016
}

static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
{
	struct hci_lpm_pkt *lpm = (void *)skb->data;
1017 1018
	struct hci_uart *hu = hci_get_drvdata(hdev);
	struct intel_data *intel = hu->priv;
1019 1020 1021

	switch (lpm->opcode) {
	case LPM_OP_TX_NOTIFY:
1022 1023 1024 1025 1026
		if (lpm->dlen < 1) {
			bt_dev_err(hu->hdev, "Invalid LPM notification packet");
			break;
		}
		intel_recv_lpm_notify(hdev, lpm->data[0]);
1027
		break;
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	case LPM_OP_SUSPEND_ACK:
		set_bit(STATE_SUSPENDED, &intel->flags);
		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
			smp_mb__after_atomic();
			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
		}
		break;
	case LPM_OP_RESUME_ACK:
		clear_bit(STATE_SUSPENDED, &intel->flags);
		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
			smp_mb__after_atomic();
			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
		}
		break;
1042
	default:
1043
		bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
		break;
	}

	kfree_skb(skb);

	return 0;
}

#define INTEL_RECV_LPM \
	.type = HCI_LPM_PKT, \
	.hlen = HCI_LPM_HDR_SIZE, \
	.loff = 1, \
	.lsize = 1, \
	.maxlen = HCI_LPM_MAX_SIZE

1059
static const struct h4_recv_pkt intel_recv_pkts[] = {
1060 1061 1062 1063
	{ H4_RECV_ACL,    .recv = hci_recv_frame   },
	{ H4_RECV_SCO,    .recv = hci_recv_frame   },
	{ H4_RECV_EVENT,  .recv = intel_recv_event },
	{ INTEL_RECV_LPM, .recv = intel_recv_lpm   },
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
};

static int intel_recv(struct hci_uart *hu, const void *data, int count)
{
	struct intel_data *intel = hu->priv;

	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
		return -EUNATCH;

	intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
				    intel_recv_pkts,
				    ARRAY_SIZE(intel_recv_pkts));
	if (IS_ERR(intel->rx_skb)) {
		int err = PTR_ERR(intel->rx_skb);
1078
		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		intel->rx_skb = NULL;
		return err;
	}

	return count;
}

static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
{
	struct intel_data *intel = hu->priv;
1089
	struct list_head *p;
1090 1091 1092

	BT_DBG("hu %p skb %p", hu, skb);

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	/* Be sure our controller is resumed and potential LPM transaction
	 * completed before enqueuing any packet.
	 */
	mutex_lock(&intel_device_list_lock);
	list_for_each(p, &intel_device_list) {
		struct intel_device *idev = list_entry(p, struct intel_device,
						       list);

		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
			pm_runtime_get_sync(&idev->pdev->dev);
			pm_runtime_mark_last_busy(&idev->pdev->dev);
			pm_runtime_put_autosuspend(&idev->pdev->dev);
			break;
		}
	}
	mutex_unlock(&intel_device_list_lock);

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	skb_queue_tail(&intel->txq, skb);

	return 0;
}

static struct sk_buff *intel_dequeue(struct hci_uart *hu)
{
	struct intel_data *intel = hu->priv;
	struct sk_buff *skb;

	skb = skb_dequeue(&intel->txq);
	if (!skb)
		return skb;

	if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
	    (bt_cb(skb)->pkt_type == HCI_COMMAND_PKT)) {
		struct hci_command_hdr *cmd = (void *)skb->data;
		__u16 opcode = le16_to_cpu(cmd->opcode);

		/* When the 0xfc01 command is issued to boot into
		 * the operational firmware, it will actually not
		 * send a command complete event. To keep the flow
		 * control working inject that event here.
		 */
		if (opcode == 0xfc01)
			inject_cmd_complete(hu->hdev, opcode);
	}

	/* Prepend skb with frame type */
	memcpy(skb_push(skb, 1), &bt_cb(skb)->pkt_type, 1);

	return skb;
}

static const struct hci_uart_proto intel_proto = {
	.id		= HCI_UART_INTEL,
	.name		= "Intel",
	.init_speed	= 115200,
1148
	.oper_speed	= 3000000,
1149 1150 1151 1152
	.open		= intel_open,
	.close		= intel_close,
	.flush		= intel_flush,
	.setup		= intel_setup,
1153
	.set_baudrate	= intel_set_baudrate,
1154 1155 1156 1157 1158
	.recv		= intel_recv,
	.enqueue	= intel_enqueue,
	.dequeue	= intel_dequeue,
};

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
#ifdef CONFIG_ACPI
static const struct acpi_device_id intel_acpi_match[] = {
	{ "INT33E1", 0 },
	{ },
};
MODULE_DEVICE_TABLE(acpi, intel_acpi_match);

static int intel_acpi_probe(struct intel_device *idev)
{
	const struct acpi_device_id *id;

	id = acpi_match_device(intel_acpi_match, &idev->pdev->dev);
	if (!id)
		return -ENODEV;

	return 0;
}
#else
static int intel_acpi_probe(struct intel_device *idev)
{
	return -ENODEV;
}
#endif

1183
#ifdef CONFIG_PM
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
static int intel_suspend(struct device *dev)
{
	struct intel_device *idev = dev_get_drvdata(dev);

	dev_dbg(dev, "intel_suspend");

	mutex_lock(&idev->hu_lock);
	if (idev->hu)
		intel_lpm_suspend(idev->hu);
	mutex_unlock(&idev->hu_lock);

	return 0;
}

static int intel_resume(struct device *dev)
{
	struct intel_device *idev = dev_get_drvdata(dev);

	dev_dbg(dev, "intel_resume");

	mutex_lock(&idev->hu_lock);
	if (idev->hu)
		intel_lpm_resume(idev->hu);
	mutex_unlock(&idev->hu_lock);

	return 0;
}
#endif

static const struct dev_pm_ops intel_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1215
	SET_RUNTIME_PM_OPS(intel_suspend, intel_resume, NULL)
1216 1217
};

1218 1219 1220 1221 1222 1223 1224 1225
static int intel_probe(struct platform_device *pdev)
{
	struct intel_device *idev;

	idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
	if (!idev)
		return -ENOMEM;

1226 1227
	mutex_init(&idev->hu_lock);

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	idev->pdev = pdev;

	if (ACPI_HANDLE(&pdev->dev)) {
		int err = intel_acpi_probe(idev);
		if (err)
			return err;
	} else {
		return -ENODEV;
	}

	idev->reset = devm_gpiod_get_optional(&pdev->dev, "reset",
					      GPIOD_OUT_LOW);
	if (IS_ERR(idev->reset)) {
		dev_err(&pdev->dev, "Unable to retrieve gpio\n");
		return PTR_ERR(idev->reset);
	}

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	idev->irq = platform_get_irq(pdev, 0);
	if (idev->irq < 0) {
		struct gpio_desc *host_wake;

		dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");

		host_wake = devm_gpiod_get_optional(&pdev->dev, "host-wake",
						    GPIOD_IN);
		if (IS_ERR(host_wake)) {
			dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
			goto no_irq;
		}

		idev->irq = gpiod_to_irq(host_wake);
		if (idev->irq < 0) {
			dev_err(&pdev->dev, "No corresponding irq for gpio\n");
			goto no_irq;
		}
	}

	/* Only enable wake-up/irq when controller is powered */
	device_set_wakeup_capable(&pdev->dev, true);
	device_wakeup_disable(&pdev->dev);

no_irq:
1270 1271 1272
	platform_set_drvdata(pdev, idev);

	/* Place this instance on the device list */
1273
	mutex_lock(&intel_device_list_lock);
1274
	list_add_tail(&idev->list, &intel_device_list);
1275
	mutex_unlock(&intel_device_list_lock);
1276

1277 1278
	dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
		 desc_to_gpio(idev->reset), idev->irq);
1279 1280 1281 1282 1283 1284 1285 1286

	return 0;
}

static int intel_remove(struct platform_device *pdev)
{
	struct intel_device *idev = platform_get_drvdata(pdev);

1287 1288
	device_wakeup_disable(&pdev->dev);

1289
	mutex_lock(&intel_device_list_lock);
1290
	list_del(&idev->list);
1291
	mutex_unlock(&intel_device_list_lock);
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

	dev_info(&pdev->dev, "unregistered.\n");

	return 0;
}

static struct platform_driver intel_driver = {
	.probe = intel_probe,
	.remove = intel_remove,
	.driver = {
		.name = "hci_intel",
		.acpi_match_table = ACPI_PTR(intel_acpi_match),
1304
		.pm = &intel_pm_ops,
1305 1306 1307
	},
};

1308 1309
int __init intel_init(void)
{
1310 1311
	platform_driver_register(&intel_driver);

1312 1313 1314 1315 1316
	return hci_uart_register_proto(&intel_proto);
}

int __exit intel_deinit(void)
{
1317 1318
	platform_driver_unregister(&intel_driver);

1319 1320
	return hci_uart_unregister_proto(&intel_proto);
}