prom.c 43.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Procedures for creating, accessing and interpreting the device tree.
 *
 * Paul Mackerras	August 1996.
 * Copyright (C) 1996-2005 Paul Mackerras.
 * 
 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
 *    {engebret|bergner}@us.ibm.com 
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#undef DEBUG

#include <stdarg.h>
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/threads.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/stringify.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/bitops.h>
#include <linux/module.h>
32
#include <linux/kexec.h>
33 34 35 36 37 38 39 40

#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/lmb.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/irq.h>
#include <asm/io.h>
41
#include <asm/kdump.h>
42 43 44 45 46 47 48 49 50 51
#include <asm/smp.h>
#include <asm/system.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/pci.h>
#include <asm/iommu.h>
#include <asm/btext.h>
#include <asm/sections.h>
#include <asm/machdep.h>
#include <asm/pSeries_reconfig.h>
52
#include <asm/pci-bridge.h>
53 54 55 56 57 58 59 60 61 62 63 64 65 66

#ifdef DEBUG
#define DBG(fmt...) printk(KERN_ERR fmt)
#else
#define DBG(fmt...)
#endif


static int __initdata dt_root_addr_cells;
static int __initdata dt_root_size_cells;

#ifdef CONFIG_PPC64
static int __initdata iommu_is_off;
int __initdata iommu_force_on;
67
unsigned long tce_alloc_start, tce_alloc_end;
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
#endif

typedef u32 cell_t;

#if 0
static struct boot_param_header *initial_boot_params __initdata;
#else
struct boot_param_header *initial_boot_params;
#endif

static struct device_node *allnodes = NULL;

/* use when traversing tree through the allnext, child, sibling,
 * or parent members of struct device_node.
 */
static DEFINE_RWLOCK(devtree_lock);

/* export that to outside world */
struct device_node *of_chosen;

struct device_node *dflt_interrupt_controller;
int num_interrupt_controllers;

/*
 * Wrapper for allocating memory for various data that needs to be
 * attached to device nodes as they are processed at boot or when
 * added to the device tree later (e.g. DLPAR).  At boot there is
 * already a region reserved so we just increment *mem_start by size;
 * otherwise we call kmalloc.
 */
static void * prom_alloc(unsigned long size, unsigned long *mem_start)
{
	unsigned long tmp;

	if (!mem_start)
		return kmalloc(size, GFP_KERNEL);

	tmp = *mem_start;
	*mem_start += size;
	return (void *)tmp;
}

/*
 * Find the device_node with a given phandle.
 */
static struct device_node * find_phandle(phandle ph)
{
	struct device_node *np;

	for (np = allnodes; np != 0; np = np->allnext)
		if (np->linux_phandle == ph)
			return np;
	return NULL;
}

/*
 * Find the interrupt parent of a node.
 */
static struct device_node * __devinit intr_parent(struct device_node *p)
{
	phandle *parp;

	parp = (phandle *) get_property(p, "interrupt-parent", NULL);
	if (parp == NULL)
		return p->parent;
	p = find_phandle(*parp);
	if (p != NULL)
		return p;
	/*
	 * On a powermac booted with BootX, we don't get to know the
	 * phandles for any nodes, so find_phandle will return NULL.
	 * Fortunately these machines only have one interrupt controller
	 * so there isn't in fact any ambiguity.  -- paulus
	 */
	if (num_interrupt_controllers == 1)
		p = dflt_interrupt_controller;
	return p;
}

/*
 * Find out the size of each entry of the interrupts property
 * for a node.
 */
int __devinit prom_n_intr_cells(struct device_node *np)
{
	struct device_node *p;
	unsigned int *icp;

	for (p = np; (p = intr_parent(p)) != NULL; ) {
		icp = (unsigned int *)
			get_property(p, "#interrupt-cells", NULL);
		if (icp != NULL)
			return *icp;
		if (get_property(p, "interrupt-controller", NULL) != NULL
		    || get_property(p, "interrupt-map", NULL) != NULL) {
			printk("oops, node %s doesn't have #interrupt-cells\n",
			       p->full_name);
			return 1;
		}
	}
#ifdef DEBUG_IRQ
	printk("prom_n_intr_cells failed for %s\n", np->full_name);
#endif
	return 1;
}

/*
 * Map an interrupt from a device up to the platform interrupt
 * descriptor.
 */
static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
				   struct device_node *np, unsigned int *ints,
				   int nintrc)
{
	struct device_node *p, *ipar;
	unsigned int *imap, *imask, *ip;
	int i, imaplen, match;
	int newintrc = 0, newaddrc = 0;
	unsigned int *reg;
	int naddrc;

	reg = (unsigned int *) get_property(np, "reg", NULL);
	naddrc = prom_n_addr_cells(np);
	p = intr_parent(np);
	while (p != NULL) {
		if (get_property(p, "interrupt-controller", NULL) != NULL)
			/* this node is an interrupt controller, stop here */
			break;
		imap = (unsigned int *)
			get_property(p, "interrupt-map", &imaplen);
		if (imap == NULL) {
			p = intr_parent(p);
			continue;
		}
		imask = (unsigned int *)
			get_property(p, "interrupt-map-mask", NULL);
		if (imask == NULL) {
			printk("oops, %s has interrupt-map but no mask\n",
			       p->full_name);
			return 0;
		}
		imaplen /= sizeof(unsigned int);
		match = 0;
		ipar = NULL;
		while (imaplen > 0 && !match) {
			/* check the child-interrupt field */
			match = 1;
			for (i = 0; i < naddrc && match; ++i)
				match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
			for (; i < naddrc + nintrc && match; ++i)
				match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
			imap += naddrc + nintrc;
			imaplen -= naddrc + nintrc;
			/* grab the interrupt parent */
			ipar = find_phandle((phandle) *imap++);
			--imaplen;
			if (ipar == NULL && num_interrupt_controllers == 1)
				/* cope with BootX not giving us phandles */
				ipar = dflt_interrupt_controller;
			if (ipar == NULL) {
				printk("oops, no int parent %x in map of %s\n",
				       imap[-1], p->full_name);
				return 0;
			}
			/* find the parent's # addr and intr cells */
			ip = (unsigned int *)
				get_property(ipar, "#interrupt-cells", NULL);
			if (ip == NULL) {
				printk("oops, no #interrupt-cells on %s\n",
				       ipar->full_name);
				return 0;
			}
			newintrc = *ip;
			ip = (unsigned int *)
				get_property(ipar, "#address-cells", NULL);
			newaddrc = (ip == NULL)? 0: *ip;
			imap += newaddrc + newintrc;
			imaplen -= newaddrc + newintrc;
		}
		if (imaplen < 0) {
			printk("oops, error decoding int-map on %s, len=%d\n",
			       p->full_name, imaplen);
			return 0;
		}
		if (!match) {
#ifdef DEBUG_IRQ
			printk("oops, no match in %s int-map for %s\n",
			       p->full_name, np->full_name);
#endif
			return 0;
		}
		p = ipar;
		naddrc = newaddrc;
		nintrc = newintrc;
		ints = imap - nintrc;
		reg = ints - naddrc;
	}
	if (p == NULL) {
#ifdef DEBUG_IRQ
		printk("hmmm, int tree for %s doesn't have ctrler\n",
		       np->full_name);
#endif
		return 0;
	}
	*irq = ints;
	*ictrler = p;
	return nintrc;
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
static unsigned char map_isa_senses[4] = {
	IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
	IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
	IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
	IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE
};

static unsigned char map_mpic_senses[4] = {
	IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE,
	IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
	/* 2 seems to be used for the 8259 cascade... */
	IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
	IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
};

292 293 294 295 296 297
static int __devinit finish_node_interrupts(struct device_node *np,
					    unsigned long *mem_start,
					    int measure_only)
{
	unsigned int *ints;
	int intlen, intrcells, intrcount;
298
	int i, j, n, sense;
299 300
	unsigned int *irq, virq;
	struct device_node *ic;
301 302 303 304 305 306 307 308 309 310
	int trace = 0;

	//#define TRACE(fmt...) do { if (trace) { printk(fmt); mdelay(1000); } } while(0)
#define TRACE(fmt...)

	if (!strcmp(np->name, "smu-doorbell"))
		trace = 1;

	TRACE("Finishing SMU doorbell ! num_interrupt_controllers = %d\n",
	      num_interrupt_controllers);
311

P
Paul Mackerras 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
	if (num_interrupt_controllers == 0) {
		/*
		 * Old machines just have a list of interrupt numbers
		 * and no interrupt-controller nodes.
		 */
		ints = (unsigned int *) get_property(np, "AAPL,interrupts",
						     &intlen);
		/* XXX old interpret_pci_props looked in parent too */
		/* XXX old interpret_macio_props looked for interrupts
		   before AAPL,interrupts */
		if (ints == NULL)
			ints = (unsigned int *) get_property(np, "interrupts",
							     &intlen);
		if (ints == NULL)
			return 0;

		np->n_intrs = intlen / sizeof(unsigned int);
		np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
				       mem_start);
		if (!np->intrs)
			return -ENOMEM;
		if (measure_only)
			return 0;

		for (i = 0; i < np->n_intrs; ++i) {
			np->intrs[i].line = *ints++;
338 339
			np->intrs[i].sense = IRQ_SENSE_LEVEL
				| IRQ_POLARITY_NEGATIVE;
P
Paul Mackerras 已提交
340 341 342 343
		}
		return 0;
	}

344
	ints = (unsigned int *) get_property(np, "interrupts", &intlen);
345
	TRACE("ints=%p, intlen=%d\n", ints, intlen);
346 347 348 349
	if (ints == NULL)
		return 0;
	intrcells = prom_n_intr_cells(np);
	intlen /= intrcells * sizeof(unsigned int);
350
	TRACE("intrcells=%d, new intlen=%d\n", intrcells, intlen);
351 352 353 354 355 356 357 358 359 360
	np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
	if (!np->intrs)
		return -ENOMEM;

	if (measure_only)
		return 0;

	intrcount = 0;
	for (i = 0; i < intlen; ++i, ints += intrcells) {
		n = map_interrupt(&irq, &ic, np, ints, intrcells);
361
		TRACE("map, irq=%d, ic=%p, n=%d\n", irq, ic, n);
362 363 364 365 366 367
		if (n <= 0)
			continue;

		/* don't map IRQ numbers under a cascaded 8259 controller */
		if (ic && device_is_compatible(ic, "chrp,iic")) {
			np->intrs[intrcount].line = irq[0];
368 369
			sense = (n > 1)? (irq[1] & 3): 3;
			np->intrs[intrcount].sense = map_isa_senses[sense];
370 371
		} else {
			virq = virt_irq_create_mapping(irq[0]);
372
			TRACE("virq=%d\n", virq);
373
#ifdef CONFIG_PPC64
374 375 376 377 378 379
			if (virq == NO_IRQ) {
				printk(KERN_CRIT "Could not allocate interrupt"
				       " number for %s\n", np->full_name);
				continue;
			}
#endif
380 381
			np->intrs[intrcount].line = irq_offset_up(virq);
			sense = (n > 1)? (irq[1] & 3): 1;
382 383 384 385 386 387

			/* Apple uses bits in there in a different way, let's
			 * only keep the real sense bit on macs
			 */
			if (_machine == PLATFORM_POWERMAC)
				sense &= 0x1;
388
			np->intrs[intrcount].sense = map_mpic_senses[sense];
389 390 391 392
		}

#ifdef CONFIG_PPC64
		/* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
393
		if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
394 395 396
			char *name = get_property(ic->parent, "name", NULL);
			if (name && !strcmp(name, "u3"))
				np->intrs[intrcount].line += 128;
397 398
			else if (!(name && (!strcmp(name, "mac-io") ||
					    !strcmp(name, "u4"))))
399 400 401 402
				/* ignore other cascaded controllers, such as
				   the k2-sata-root */
				break;
		}
403
#endif /* CONFIG_PPC64 */
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
		if (n > 2) {
			printk("hmmm, got %d intr cells for %s:", n,
			       np->full_name);
			for (j = 0; j < n; ++j)
				printk(" %d", irq[j]);
			printk("\n");
		}
		++intrcount;
	}
	np->n_intrs = intrcount;

	return 0;
}

static int __devinit finish_node(struct device_node *np,
				 unsigned long *mem_start,
				 int measure_only)
{
	struct device_node *child;
423
	int rc = 0;
424 425 426 427 428 429

	rc = finish_node_interrupts(np, mem_start, measure_only);
	if (rc)
		goto out;

	for (child = np->child; child != NULL; child = child->sibling) {
430
		rc = finish_node(child, mem_start, measure_only);
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
		if (rc)
			goto out;
	}
out:
	return rc;
}

static void __init scan_interrupt_controllers(void)
{
	struct device_node *np;
	int n = 0;
	char *name, *ic;
	int iclen;

	for (np = allnodes; np != NULL; np = np->allnext) {
		ic = get_property(np, "interrupt-controller", &iclen);
		name = get_property(np, "name", NULL);
		/* checking iclen makes sure we don't get a false
		   match on /chosen.interrupt_controller */
		if ((name != NULL
		     && strcmp(name, "interrupt-controller") == 0)
		    || (ic != NULL && iclen == 0
			&& strcmp(name, "AppleKiwi"))) {
			if (n == 0)
				dflt_interrupt_controller = np;
			++n;
		}
	}
	num_interrupt_controllers = n;
}

/**
 * finish_device_tree is called once things are running normally
 * (i.e. with text and data mapped to the address they were linked at).
 * It traverses the device tree and fills in some of the additional,
 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
 * mapping is also initialized at this point.
 */
void __init finish_device_tree(void)
{
	unsigned long start, end, size = 0;

	DBG(" -> finish_device_tree\n");

#ifdef CONFIG_PPC64
	/* Initialize virtual IRQ map */
	virt_irq_init();
#endif
	scan_interrupt_controllers();

	/*
	 * Finish device-tree (pre-parsing some properties etc...)
	 * We do this in 2 passes. One with "measure_only" set, which
	 * will only measure the amount of memory needed, then we can
	 * allocate that memory, and call finish_node again. However,
	 * we must be careful as most routines will fail nowadays when
	 * prom_alloc() returns 0, so we must make sure our first pass
	 * doesn't start at 0. We pre-initialize size to 16 for that
	 * reason and then remove those additional 16 bytes
	 */
	size = 16;
492
	finish_node(allnodes, &size, 1);
493 494
	size -= 16;
	end = start = (unsigned long) __va(lmb_alloc(size, 128));
495
	finish_node(allnodes, &end, 0);
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	BUG_ON(end != start + size);

	DBG(" <- finish_device_tree\n");
}

static inline char *find_flat_dt_string(u32 offset)
{
	return ((char *)initial_boot_params) +
		initial_boot_params->off_dt_strings + offset;
}

/**
 * This function is used to scan the flattened device-tree, it is
 * used to extract the memory informations at boot before we can
 * unflatten the tree
 */
512 513 514 515
int __init of_scan_flat_dt(int (*it)(unsigned long node,
				     const char *uname, int depth,
				     void *data),
			   void *data)
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
{
	unsigned long p = ((unsigned long)initial_boot_params) +
		initial_boot_params->off_dt_struct;
	int rc = 0;
	int depth = -1;

	do {
		u32 tag = *((u32 *)p);
		char *pathp;
		
		p += 4;
		if (tag == OF_DT_END_NODE) {
			depth --;
			continue;
		}
		if (tag == OF_DT_NOP)
			continue;
		if (tag == OF_DT_END)
			break;
		if (tag == OF_DT_PROP) {
			u32 sz = *((u32 *)p);
			p += 8;
			if (initial_boot_params->version < 0x10)
				p = _ALIGN(p, sz >= 8 ? 8 : 4);
			p += sz;
			p = _ALIGN(p, 4);
			continue;
		}
		if (tag != OF_DT_BEGIN_NODE) {
			printk(KERN_WARNING "Invalid tag %x scanning flattened"
			       " device tree !\n", tag);
			return -EINVAL;
		}
		depth++;
		pathp = (char *)p;
		p = _ALIGN(p + strlen(pathp) + 1, 4);
		if ((*pathp) == '/') {
			char *lp, *np;
			for (lp = NULL, np = pathp; *np; np++)
				if ((*np) == '/')
					lp = np+1;
			if (lp != NULL)
				pathp = lp;
		}
		rc = it(p, pathp, depth, data);
		if (rc != 0)
			break;		
	} while(1);

	return rc;
}

/**
 * This  function can be used within scan_flattened_dt callback to get
 * access to properties
 */
572 573
void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
				 unsigned long *size)
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
{
	unsigned long p = node;

	do {
		u32 tag = *((u32 *)p);
		u32 sz, noff;
		const char *nstr;

		p += 4;
		if (tag == OF_DT_NOP)
			continue;
		if (tag != OF_DT_PROP)
			return NULL;

		sz = *((u32 *)p);
		noff = *((u32 *)(p + 4));
		p += 8;
		if (initial_boot_params->version < 0x10)
			p = _ALIGN(p, sz >= 8 ? 8 : 4);

		nstr = find_flat_dt_string(noff);
		if (nstr == NULL) {
			printk(KERN_WARNING "Can't find property index"
			       " name !\n");
			return NULL;
		}
		if (strcmp(name, nstr) == 0) {
			if (size)
				*size = sz;
			return (void *)p;
		}
		p += sz;
		p = _ALIGN(p, 4);
	} while(1);
}

static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
				       unsigned long align)
{
	void *res;

	*mem = _ALIGN(*mem, align);
	res = (void *)*mem;
	*mem += size;

	return res;
}

static unsigned long __init unflatten_dt_node(unsigned long mem,
					      unsigned long *p,
					      struct device_node *dad,
					      struct device_node ***allnextpp,
					      unsigned long fpsize)
{
	struct device_node *np;
	struct property *pp, **prev_pp = NULL;
	char *pathp;
	u32 tag;
	unsigned int l, allocl;
	int has_name = 0;
	int new_format = 0;

	tag = *((u32 *)(*p));
	if (tag != OF_DT_BEGIN_NODE) {
		printk("Weird tag at start of node: %x\n", tag);
		return mem;
	}
	*p += 4;
	pathp = (char *)*p;
	l = allocl = strlen(pathp) + 1;
	*p = _ALIGN(*p + l, 4);

	/* version 0x10 has a more compact unit name here instead of the full
	 * path. we accumulate the full path size using "fpsize", we'll rebuild
	 * it later. We detect this because the first character of the name is
	 * not '/'.
	 */
	if ((*pathp) != '/') {
		new_format = 1;
		if (fpsize == 0) {
			/* root node: special case. fpsize accounts for path
			 * plus terminating zero. root node only has '/', so
			 * fpsize should be 2, but we want to avoid the first
			 * level nodes to have two '/' so we use fpsize 1 here
			 */
			fpsize = 1;
			allocl = 2;
		} else {
			/* account for '/' and path size minus terminal 0
			 * already in 'l'
			 */
			fpsize += l;
			allocl = fpsize;
		}
	}


	np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
				__alignof__(struct device_node));
	if (allnextpp) {
		memset(np, 0, sizeof(*np));
		np->full_name = ((char*)np) + sizeof(struct device_node);
		if (new_format) {
			char *p = np->full_name;
			/* rebuild full path for new format */
			if (dad && dad->parent) {
				strcpy(p, dad->full_name);
#ifdef DEBUG
				if ((strlen(p) + l + 1) != allocl) {
					DBG("%s: p: %d, l: %d, a: %d\n",
					    pathp, strlen(p), l, allocl);
				}
#endif
				p += strlen(p);
			}
			*(p++) = '/';
			memcpy(p, pathp, l);
		} else
			memcpy(np->full_name, pathp, l);
		prev_pp = &np->properties;
		**allnextpp = np;
		*allnextpp = &np->allnext;
		if (dad != NULL) {
			np->parent = dad;
			/* we temporarily use the next field as `last_child'*/
			if (dad->next == 0)
				dad->child = np;
			else
				dad->next->sibling = np;
			dad->next = np;
		}
		kref_init(&np->kref);
	}
	while(1) {
		u32 sz, noff;
		char *pname;

		tag = *((u32 *)(*p));
		if (tag == OF_DT_NOP) {
			*p += 4;
			continue;
		}
		if (tag != OF_DT_PROP)
			break;
		*p += 4;
		sz = *((u32 *)(*p));
		noff = *((u32 *)((*p) + 4));
		*p += 8;
		if (initial_boot_params->version < 0x10)
			*p = _ALIGN(*p, sz >= 8 ? 8 : 4);

		pname = find_flat_dt_string(noff);
		if (pname == NULL) {
			printk("Can't find property name in list !\n");
			break;
		}
		if (strcmp(pname, "name") == 0)
			has_name = 1;
		l = strlen(pname) + 1;
		pp = unflatten_dt_alloc(&mem, sizeof(struct property),
					__alignof__(struct property));
		if (allnextpp) {
			if (strcmp(pname, "linux,phandle") == 0) {
				np->node = *((u32 *)*p);
				if (np->linux_phandle == 0)
					np->linux_phandle = np->node;
			}
			if (strcmp(pname, "ibm,phandle") == 0)
				np->linux_phandle = *((u32 *)*p);
			pp->name = pname;
			pp->length = sz;
			pp->value = (void *)*p;
			*prev_pp = pp;
			prev_pp = &pp->next;
		}
		*p = _ALIGN((*p) + sz, 4);
	}
	/* with version 0x10 we may not have the name property, recreate
	 * it here from the unit name if absent
	 */
	if (!has_name) {
		char *p = pathp, *ps = pathp, *pa = NULL;
		int sz;

		while (*p) {
			if ((*p) == '@')
				pa = p;
			if ((*p) == '/')
				ps = p + 1;
			p++;
		}
		if (pa < ps)
			pa = p;
		sz = (pa - ps) + 1;
		pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
					__alignof__(struct property));
		if (allnextpp) {
			pp->name = "name";
			pp->length = sz;
			pp->value = (unsigned char *)(pp + 1);
			*prev_pp = pp;
			prev_pp = &pp->next;
			memcpy(pp->value, ps, sz - 1);
			((char *)pp->value)[sz - 1] = 0;
			DBG("fixed up name for %s -> %s\n", pathp, pp->value);
		}
	}
	if (allnextpp) {
		*prev_pp = NULL;
		np->name = get_property(np, "name", NULL);
		np->type = get_property(np, "device_type", NULL);

		if (!np->name)
			np->name = "<NULL>";
		if (!np->type)
			np->type = "<NULL>";
	}
	while (tag == OF_DT_BEGIN_NODE) {
		mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
		tag = *((u32 *)(*p));
	}
	if (tag != OF_DT_END_NODE) {
		printk("Weird tag at end of node: %x\n", tag);
		return mem;
	}
	*p += 4;
	return mem;
}


/**
 * unflattens the device-tree passed by the firmware, creating the
 * tree of struct device_node. It also fills the "name" and "type"
 * pointers of the nodes so the normal device-tree walking functions
 * can be used (this used to be done by finish_device_tree)
 */
void __init unflatten_device_tree(void)
{
	unsigned long start, mem, size;
	struct device_node **allnextp = &allnodes;
	char *p = NULL;
	int l = 0;

	DBG(" -> unflatten_device_tree()\n");

	/* First pass, scan for size */
	start = ((unsigned long)initial_boot_params) +
		initial_boot_params->off_dt_struct;
	size = unflatten_dt_node(0, &start, NULL, NULL, 0);
	size = (size | 3) + 1;

	DBG("  size is %lx, allocating...\n", size);

	/* Allocate memory for the expanded device tree */
	mem = lmb_alloc(size + 4, __alignof__(struct device_node));
	if (!mem) {
		DBG("Couldn't allocate memory with lmb_alloc()!\n");
		panic("Couldn't allocate memory with lmb_alloc()!\n");
	}
	mem = (unsigned long) __va(mem);

	((u32 *)mem)[size / 4] = 0xdeadbeef;

	DBG("  unflattening %lx...\n", mem);

	/* Second pass, do actual unflattening */
	start = ((unsigned long)initial_boot_params) +
		initial_boot_params->off_dt_struct;
	unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
	if (*((u32 *)start) != OF_DT_END)
		printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
	if (((u32 *)mem)[size / 4] != 0xdeadbeef)
		printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
		       ((u32 *)mem)[size / 4] );
	*allnextp = NULL;

	/* Get pointer to OF "/chosen" node for use everywhere */
	of_chosen = of_find_node_by_path("/chosen");
P
Paul Mackerras 已提交
852 853
	if (of_chosen == NULL)
		of_chosen = of_find_node_by_path("/chosen@0");
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875

	/* Retreive command line */
	if (of_chosen != NULL) {
		p = (char *)get_property(of_chosen, "bootargs", &l);
		if (p != NULL && l > 0)
			strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
	}
#ifdef CONFIG_CMDLINE
	if (l == 0 || (l == 1 && (*p) == 0))
		strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
#endif /* CONFIG_CMDLINE */

	DBG("Command line is: %s\n", cmd_line);

	DBG(" <- unflatten_device_tree()\n");
}


static int __init early_init_dt_scan_cpus(unsigned long node,
					  const char *uname, int depth, void *data)
{
	u32 *prop;
876 877
	unsigned long size;
	char *type = of_get_flat_dt_prop(node, "device_type", &size);
878 879 880 881 882

	/* We are scanning "cpu" nodes only */
	if (type == NULL || strcmp(type, "cpu") != 0)
		return 0;

P
Paul Mackerras 已提交
883 884
	boot_cpuid = 0;
	boot_cpuid_phys = 0;
885 886 887 888 889 890
	if (initial_boot_params && initial_boot_params->version >= 2) {
		/* version 2 of the kexec param format adds the phys cpuid
		 * of booted proc.
		 */
		boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
	} else {
P
Paul Mackerras 已提交
891
		/* Check if it's the boot-cpu, set it's hw index now */
892 893 894
		if (of_get_flat_dt_prop(node,
					"linux,boot-cpu", NULL) != NULL) {
			prop = of_get_flat_dt_prop(node, "reg", NULL);
P
Paul Mackerras 已提交
895 896
			if (prop != NULL)
				boot_cpuid_phys = *prop;
897 898
		}
	}
P
Paul Mackerras 已提交
899
	set_hard_smp_processor_id(0, boot_cpuid_phys);
900 901 902

#ifdef CONFIG_ALTIVEC
	/* Check if we have a VMX and eventually update CPU features */
903
	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
904 905 906 907 908 909
	if (prop && (*prop) > 0) {
		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
	}

	/* Same goes for Apple's "altivec" property */
910
	prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
911 912 913 914 915 916 917 918 919 920 921 922
	if (prop) {
		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
	}
#endif /* CONFIG_ALTIVEC */

#ifdef CONFIG_PPC_PSERIES
	/*
	 * Check for an SMT capable CPU and set the CPU feature. We do
	 * this by looking at the size of the ibm,ppc-interrupt-server#s
	 * property
	 */
923
	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
				       &size);
	cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
	if (prop && ((size / sizeof(u32)) > 1))
		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
#endif

	return 0;
}

static int __init early_init_dt_scan_chosen(unsigned long node,
					    const char *uname, int depth, void *data)
{
	u32 *prop;
	unsigned long *lprop;

	DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);

P
Paul Mackerras 已提交
941 942
	if (depth != 1 ||
	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
943 944 945
		return 0;

	/* get platform type */
946
	prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
947 948
	if (prop == NULL)
		return 0;
K
Kumar Gala 已提交
949
#ifdef CONFIG_PPC_MULTIPLATFORM
950 951 952 953 954
	_machine = *prop;
#endif

#ifdef CONFIG_PPC64
	/* check if iommu is forced on or off */
955
	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
956
		iommu_is_off = 1;
957
	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
958 959 960
		iommu_force_on = 1;
#endif

961
 	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
962 963 964 965
 	if (lprop)
 		memory_limit = *lprop;

#ifdef CONFIG_PPC64
966
 	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
967 968
 	if (lprop)
 		tce_alloc_start = *lprop;
969
 	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
970 971 972 973 974 975 976 977 978 979 980
 	if (lprop)
 		tce_alloc_end = *lprop;
#endif

#ifdef CONFIG_PPC_RTAS
	/* To help early debugging via the front panel, we retreive a minimal
	 * set of RTAS infos now if available
	 */
	{
		u64 *basep, *entryp;

981 982 983
		basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
		entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
		prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
984 985 986 987 988 989 990 991
		if (basep && entryp && prop) {
			rtas.base = *basep;
			rtas.entry = *entryp;
			rtas.size = *prop;
		}
	}
#endif /* CONFIG_PPC_RTAS */

992 993 994 995 996 997 998 999 1000 1001
#ifdef CONFIG_KEXEC
       lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
       if (lprop)
               crashk_res.start = *lprop;

       lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
       if (lprop)
               crashk_res.end = crashk_res.start + *lprop - 1;
#endif

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	/* break now */
	return 1;
}

static int __init early_init_dt_scan_root(unsigned long node,
					  const char *uname, int depth, void *data)
{
	u32 *prop;

	if (depth != 0)
		return 0;

1014
	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1015 1016 1017
	dt_root_size_cells = (prop == NULL) ? 1 : *prop;
	DBG("dt_root_size_cells = %x\n", dt_root_size_cells);

1018
	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
	DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
	
	/* break now */
	return 1;
}

static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
{
	cell_t *p = *cellp;
	unsigned long r;

	/* Ignore more than 2 cells */
	while (s > sizeof(unsigned long) / 4) {
		p++;
		s--;
	}
	r = *p++;
#ifdef CONFIG_PPC64
	if (s > 1) {
		r <<= 32;
		r |= *(p++);
		s--;
	}
#endif

	*cellp = p;
	return r;
}


static int __init early_init_dt_scan_memory(unsigned long node,
					    const char *uname, int depth, void *data)
{
1053
	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1054 1055 1056 1057
	cell_t *reg, *endp;
	unsigned long l;

	/* We are scanning "memory" nodes only */
1058 1059 1060 1061 1062 1063 1064 1065
	if (type == NULL) {
		/*
		 * The longtrail doesn't have a device_type on the
		 * /memory node, so look for the node called /memory@0.
		 */
		if (depth != 1 || strcmp(uname, "memory@0") != 0)
			return 0;
	} else if (strcmp(type, "memory") != 0)
1066 1067
		return 0;

1068 1069 1070
	reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
	if (reg == NULL)
		reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1071 1072 1073 1074 1075
	if (reg == NULL)
		return 0;

	endp = reg + (l / sizeof(cell_t));

1076
	DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	    uname, l, reg[0], reg[1], reg[2], reg[3]);

	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
		unsigned long base, size;

		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
		size = dt_mem_next_cell(dt_root_size_cells, &reg);

		if (size == 0)
			continue;
		DBG(" - %lx ,  %lx\n", base, size);
#ifdef CONFIG_PPC64
		if (iommu_is_off) {
			if (base >= 0x80000000ul)
				continue;
			if ((base + size) > 0x80000000ul)
				size = 0x80000000ul - base;
		}
#endif
		lmb_add(base, size);
	}
	return 0;
}

static void __init early_reserve_mem(void)
{
	unsigned long base, size;
	unsigned long *reserve_map;

	reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
					initial_boot_params->off_mem_rsvmap);
	while (1) {
		base = *(reserve_map++);
		size = *(reserve_map++);
		if (size == 0)
			break;
		DBG("reserving: %lx -> %lx\n", base, size);
		lmb_reserve(base, size);
	}

#if 0
	DBG("memory reserved, lmbs :\n");
      	lmb_dump_all();
#endif
}

void __init early_init_devtree(void *params)
{
	DBG(" -> early_init_devtree()\n");

	/* Setup flat device-tree pointer */
	initial_boot_params = params;

	/* Retrieve various informations from the /chosen node of the
	 * device-tree, including the platform type, initrd location and
	 * size, TCE reserve, and more ...
	 */
1134
	of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1135 1136 1137

	/* Scan memory nodes and rebuild LMBs */
	lmb_init();
1138 1139
	of_scan_flat_dt(early_init_dt_scan_root, NULL);
	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1140 1141 1142 1143 1144 1145
	lmb_enforce_memory_limit(memory_limit);
	lmb_analyze();

	DBG("Phys. mem: %lx\n", lmb_phys_mem_size());

	/* Reserve LMB regions used by kernel, initrd, dt, etc... */
1146 1147 1148 1149
	lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
#ifdef CONFIG_CRASH_DUMP
	lmb_reserve(0, KDUMP_RESERVE_LIMIT);
#endif
1150 1151 1152 1153
	early_reserve_mem();

	DBG("Scanning CPUs ...\n");

1154 1155
	/* Retreive CPU related informations from the flat tree
	 * (altivec support, boot CPU ID, ...)
1156
	 */
1157
	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

	DBG(" <- early_init_devtree()\n");
}

#undef printk

int
prom_n_addr_cells(struct device_node* np)
{
	int* ip;
	do {
		if (np->parent)
			np = np->parent;
		ip = (int *) get_property(np, "#address-cells", NULL);
		if (ip != NULL)
			return *ip;
	} while (np->parent);
	/* No #address-cells property for the root node, default to 1 */
	return 1;
}
1178
EXPORT_SYMBOL(prom_n_addr_cells);
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

int
prom_n_size_cells(struct device_node* np)
{
	int* ip;
	do {
		if (np->parent)
			np = np->parent;
		ip = (int *) get_property(np, "#size-cells", NULL);
		if (ip != NULL)
			return *ip;
	} while (np->parent);
	/* No #size-cells property for the root node, default to 1 */
	return 1;
}
1194
EXPORT_SYMBOL(prom_n_size_cells);
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

/**
 * Work out the sense (active-low level / active-high edge)
 * of each interrupt from the device tree.
 */
void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
{
	struct device_node *np;
	int i, j;

	/* default to level-triggered */
1206
	memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1207 1208 1209 1210 1211

	for (np = allnodes; np != 0; np = np->allnext) {
		for (j = 0; j < np->n_intrs; j++) {
			i = np->intrs[j].line;
			if (i >= off && i < max)
1212
				senses[i-off] = np->intrs[j].sense;
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
		}
	}
}

/**
 * Construct and return a list of the device_nodes with a given name.
 */
struct device_node *find_devices(const char *name)
{
	struct device_node *head, **prevp, *np;

	prevp = &head;
	for (np = allnodes; np != 0; np = np->allnext) {
		if (np->name != 0 && strcasecmp(np->name, name) == 0) {
			*prevp = np;
			prevp = &np->next;
		}
	}
	*prevp = NULL;
	return head;
}
EXPORT_SYMBOL(find_devices);

/**
 * Construct and return a list of the device_nodes with a given type.
 */
struct device_node *find_type_devices(const char *type)
{
	struct device_node *head, **prevp, *np;

	prevp = &head;
	for (np = allnodes; np != 0; np = np->allnext) {
		if (np->type != 0 && strcasecmp(np->type, type) == 0) {
			*prevp = np;
			prevp = &np->next;
		}
	}
	*prevp = NULL;
	return head;
}
EXPORT_SYMBOL(find_type_devices);

/**
 * Returns all nodes linked together
 */
struct device_node *find_all_nodes(void)
{
	struct device_node *head, **prevp, *np;

	prevp = &head;
	for (np = allnodes; np != 0; np = np->allnext) {
		*prevp = np;
		prevp = &np->next;
	}
	*prevp = NULL;
	return head;
}
EXPORT_SYMBOL(find_all_nodes);

/** Checks if the given "compat" string matches one of the strings in
 * the device's "compatible" property
 */
int device_is_compatible(struct device_node *device, const char *compat)
{
	const char* cp;
	int cplen, l;

	cp = (char *) get_property(device, "compatible", &cplen);
	if (cp == NULL)
		return 0;
	while (cplen > 0) {
		if (strncasecmp(cp, compat, strlen(compat)) == 0)
			return 1;
		l = strlen(cp) + 1;
		cp += l;
		cplen -= l;
	}

	return 0;
}
EXPORT_SYMBOL(device_is_compatible);


/**
 * Indicates whether the root node has a given value in its
 * compatible property.
 */
int machine_is_compatible(const char *compat)
{
	struct device_node *root;
	int rc = 0;

	root = of_find_node_by_path("/");
	if (root) {
		rc = device_is_compatible(root, compat);
		of_node_put(root);
	}
	return rc;
}
EXPORT_SYMBOL(machine_is_compatible);

/**
 * Construct and return a list of the device_nodes with a given type
 * and compatible property.
 */
struct device_node *find_compatible_devices(const char *type,
					    const char *compat)
{
	struct device_node *head, **prevp, *np;

	prevp = &head;
	for (np = allnodes; np != 0; np = np->allnext) {
		if (type != NULL
		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
			continue;
		if (device_is_compatible(np, compat)) {
			*prevp = np;
			prevp = &np->next;
		}
	}
	*prevp = NULL;
	return head;
}
EXPORT_SYMBOL(find_compatible_devices);

/**
 * Find the device_node with a given full_name.
 */
struct device_node *find_path_device(const char *path)
{
	struct device_node *np;

	for (np = allnodes; np != 0; np = np->allnext)
		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
			return np;
	return NULL;
}
EXPORT_SYMBOL(find_path_device);

/*******
 *
 * New implementation of the OF "find" APIs, return a refcounted
 * object, call of_node_put() when done.  The device tree and list
 * are protected by a rw_lock.
 *
 * Note that property management will need some locking as well,
 * this isn't dealt with yet.
 *
 *******/

/**
 *	of_find_node_by_name - Find a node by its "name" property
 *	@from:	The node to start searching from or NULL, the node
 *		you pass will not be searched, only the next one
 *		will; typically, you pass what the previous call
 *		returned. of_node_put() will be called on it
 *	@name:	The name string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_name(struct device_node *from,
	const char *name)
{
	struct device_node *np;

	read_lock(&devtree_lock);
	np = from ? from->allnext : allnodes;
	for (; np != 0; np = np->allnext)
		if (np->name != 0 && strcasecmp(np->name, name) == 0
		    && of_node_get(np))
			break;
	if (from)
		of_node_put(from);
	read_unlock(&devtree_lock);
	return np;
}
EXPORT_SYMBOL(of_find_node_by_name);

/**
 *	of_find_node_by_type - Find a node by its "device_type" property
 *	@from:	The node to start searching from or NULL, the node
 *		you pass will not be searched, only the next one
 *		will; typically, you pass what the previous call
 *		returned. of_node_put() will be called on it
 *	@name:	The type string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_type(struct device_node *from,
	const char *type)
{
	struct device_node *np;

	read_lock(&devtree_lock);
	np = from ? from->allnext : allnodes;
	for (; np != 0; np = np->allnext)
		if (np->type != 0 && strcasecmp(np->type, type) == 0
		    && of_node_get(np))
			break;
	if (from)
		of_node_put(from);
	read_unlock(&devtree_lock);
	return np;
}
EXPORT_SYMBOL(of_find_node_by_type);

/**
 *	of_find_compatible_node - Find a node based on type and one of the
 *                                tokens in its "compatible" property
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@type:		The type string to match "device_type" or NULL to ignore
 *	@compatible:	The string to match to one of the tokens in the device
 *			"compatible" list.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_compatible_node(struct device_node *from,
	const char *type, const char *compatible)
{
	struct device_node *np;

	read_lock(&devtree_lock);
	np = from ? from->allnext : allnodes;
	for (; np != 0; np = np->allnext) {
		if (type != NULL
		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
			continue;
		if (device_is_compatible(np, compatible) && of_node_get(np))
			break;
	}
	if (from)
		of_node_put(from);
	read_unlock(&devtree_lock);
	return np;
}
EXPORT_SYMBOL(of_find_compatible_node);

/**
 *	of_find_node_by_path - Find a node matching a full OF path
 *	@path:	The full path to match
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_path(const char *path)
{
	struct device_node *np = allnodes;

	read_lock(&devtree_lock);
	for (; np != 0; np = np->allnext) {
		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
		    && of_node_get(np))
			break;
	}
	read_unlock(&devtree_lock);
	return np;
}
EXPORT_SYMBOL(of_find_node_by_path);

/**
 *	of_find_node_by_phandle - Find a node given a phandle
 *	@handle:	phandle of the node to find
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_phandle(phandle handle)
{
	struct device_node *np;

	read_lock(&devtree_lock);
	for (np = allnodes; np != 0; np = np->allnext)
		if (np->linux_phandle == handle)
			break;
	if (np)
		of_node_get(np);
	read_unlock(&devtree_lock);
	return np;
}
EXPORT_SYMBOL(of_find_node_by_phandle);

/**
 *	of_find_all_nodes - Get next node in global list
 *	@prev:	Previous node or NULL to start iteration
 *		of_node_put() will be called on it
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_all_nodes(struct device_node *prev)
{
	struct device_node *np;

	read_lock(&devtree_lock);
	np = prev ? prev->allnext : allnodes;
	for (; np != 0; np = np->allnext)
		if (of_node_get(np))
			break;
	if (prev)
		of_node_put(prev);
	read_unlock(&devtree_lock);
	return np;
}
EXPORT_SYMBOL(of_find_all_nodes);

/**
 *	of_get_parent - Get a node's parent if any
 *	@node:	Node to get parent
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_parent(const struct device_node *node)
{
	struct device_node *np;

	if (!node)
		return NULL;

	read_lock(&devtree_lock);
	np = of_node_get(node->parent);
	read_unlock(&devtree_lock);
	return np;
}
EXPORT_SYMBOL(of_get_parent);

/**
 *	of_get_next_child - Iterate a node childs
 *	@node:	parent node
 *	@prev:	previous child of the parent node, or NULL to get first
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_next_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;

	read_lock(&devtree_lock);
	next = prev ? prev->sibling : node->child;
	for (; next != 0; next = next->sibling)
		if (of_node_get(next))
			break;
	if (prev)
		of_node_put(prev);
	read_unlock(&devtree_lock);
	return next;
}
EXPORT_SYMBOL(of_get_next_child);

/**
 *	of_node_get - Increment refcount of a node
 *	@node:	Node to inc refcount, NULL is supported to
 *		simplify writing of callers
 *
 *	Returns node.
 */
struct device_node *of_node_get(struct device_node *node)
{
	if (node)
		kref_get(&node->kref);
	return node;
}
EXPORT_SYMBOL(of_node_get);

static inline struct device_node * kref_to_device_node(struct kref *kref)
{
	return container_of(kref, struct device_node, kref);
}

/**
 *	of_node_release - release a dynamically allocated node
 *	@kref:  kref element of the node to be released
 *
 *	In of_node_put() this function is passed to kref_put()
 *	as the destructor.
 */
static void of_node_release(struct kref *kref)
{
	struct device_node *node = kref_to_device_node(kref);
	struct property *prop = node->properties;

	if (!OF_IS_DYNAMIC(node))
		return;
	while (prop) {
		struct property *next = prop->next;
		kfree(prop->name);
		kfree(prop->value);
		kfree(prop);
		prop = next;
	}
	kfree(node->intrs);
	kfree(node->full_name);
	kfree(node->data);
	kfree(node);
}

/**
 *	of_node_put - Decrement refcount of a node
 *	@node:	Node to dec refcount, NULL is supported to
 *		simplify writing of callers
 *
 */
void of_node_put(struct device_node *node)
{
	if (node)
		kref_put(&node->kref, of_node_release);
}
EXPORT_SYMBOL(of_node_put);

/*
 * Plug a device node into the tree and global list.
 */
void of_attach_node(struct device_node *np)
{
	write_lock(&devtree_lock);
	np->sibling = np->parent->child;
	np->allnext = allnodes;
	np->parent->child = np;
	allnodes = np;
	write_unlock(&devtree_lock);
}

/*
 * "Unplug" a node from the device tree.  The caller must hold
 * a reference to the node.  The memory associated with the node
 * is not freed until its refcount goes to zero.
 */
void of_detach_node(const struct device_node *np)
{
	struct device_node *parent;

	write_lock(&devtree_lock);

	parent = np->parent;

	if (allnodes == np)
		allnodes = np->allnext;
	else {
		struct device_node *prev;
		for (prev = allnodes;
		     prev->allnext != np;
		     prev = prev->allnext)
			;
		prev->allnext = np->allnext;
	}

	if (parent->child == np)
		parent->child = np->sibling;
	else {
		struct device_node *prevsib;
		for (prevsib = np->parent->child;
		     prevsib->sibling != np;
		     prevsib = prevsib->sibling)
			;
		prevsib->sibling = np->sibling;
	}

	write_unlock(&devtree_lock);
}

#ifdef CONFIG_PPC_PSERIES
/*
 * Fix up the uninitialized fields in a new device node:
 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
 *
 * A lot of boot-time code is duplicated here, because functions such
 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
 * slab allocator.
 *
 * This should probably be split up into smaller chunks.
 */

1693
static int of_finish_dynamic_node(struct device_node *node)
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
{
	struct device_node *parent = of_get_parent(node);
	int err = 0;
	phandle *ibm_phandle;

	node->name = get_property(node, "name", NULL);
	node->type = get_property(node, "device_type", NULL);

	if (!parent) {
		err = -ENODEV;
		goto out;
	}

	/* We don't support that function on PowerMac, at least
	 * not yet
	 */
1710
	if (_machine == PLATFORM_POWERMAC)
1711 1712 1713
		return -ENODEV;

	/* fix up new node's linux_phandle field */
1714 1715
	if ((ibm_phandle = (unsigned int *)get_property(node,
							"ibm,phandle", NULL)))
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
		node->linux_phandle = *ibm_phandle;

out:
	of_node_put(parent);
	return err;
}

static int prom_reconfig_notifier(struct notifier_block *nb,
				  unsigned long action, void *node)
{
	int err;

	switch (action) {
	case PSERIES_RECONFIG_ADD:
1730 1731 1732
		err = of_finish_dynamic_node(node);
		if (!err)
			finish_node(node, NULL, 0);
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
		if (err < 0) {
			printk(KERN_ERR "finish_node returned %d\n", err);
			err = NOTIFY_BAD;
		}
		break;
	default:
		err = NOTIFY_DONE;
		break;
	}
	return err;
}

static struct notifier_block prom_reconfig_nb = {
	.notifier_call = prom_reconfig_notifier,
	.priority = 10, /* This one needs to run first */
};

static int __init prom_reconfig_setup(void)
{
	return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
}
__initcall(prom_reconfig_setup);
#endif

/*
 * Find a property with a given name for a given node
 * and return the value.
 */
unsigned char *get_property(struct device_node *np, const char *name,
			    int *lenp)
{
	struct property *pp;

	for (pp = np->properties; pp != 0; pp = pp->next)
		if (strcmp(pp->name, name) == 0) {
			if (lenp != 0)
				*lenp = pp->length;
			return pp->value;
		}
	return NULL;
}
EXPORT_SYMBOL(get_property);

/*
 * Add a property to a node
 */
1779
int prom_add_property(struct device_node* np, struct property* prop)
1780
{
1781
	struct property **next;
1782 1783

	prop->next = NULL;	
1784 1785 1786 1787 1788 1789 1790 1791
	write_lock(&devtree_lock);
	next = &np->properties;
	while (*next) {
		if (strcmp(prop->name, (*next)->name) == 0) {
			/* duplicate ! don't insert it */
			write_unlock(&devtree_lock);
			return -1;
		}
1792
		next = &(*next)->next;
1793
	}
1794
	*next = prop;
1795 1796
	write_unlock(&devtree_lock);

1797
#ifdef CONFIG_PROC_DEVICETREE
1798 1799 1800
	/* try to add to proc as well if it was initialized */
	if (np->pde)
		proc_device_tree_add_prop(np->pde, prop);
1801
#endif /* CONFIG_PROC_DEVICETREE */
1802 1803

	return 0;
1804 1805 1806
}