ib_rdma.c 20.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 * Copyright (c) 2006 Oracle.  All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */
#include <linux/kernel.h>
34
#include <linux/slab.h>
C
Chris Mason 已提交
35
#include <linux/rculist.h>
36 37 38

#include "rds.h"
#include "ib.h"
39
#include "xlist.h"
40

41 42
struct workqueue_struct *rds_ib_fmr_wq;

43 44
static DEFINE_PER_CPU(unsigned long, clean_list_grace);
#define CLEAN_LIST_BUSY_BIT 0
45 46 47 48 49 50 51 52

/*
 * This is stored as mr->r_trans_private.
 */
struct rds_ib_mr {
	struct rds_ib_device	*device;
	struct rds_ib_mr_pool	*pool;
	struct ib_fmr		*fmr;
53 54 55 56 57

	struct xlist_head	xlist;

	/* unmap_list is for freeing */
	struct list_head	unmap_list;
58 59 60 61 62 63 64 65 66 67 68 69 70
	unsigned int		remap_count;

	struct scatterlist	*sg;
	unsigned int		sg_len;
	u64			*dma;
	int			sg_dma_len;
};

/*
 * Our own little FMR pool
 */
struct rds_ib_mr_pool {
	struct mutex		flush_lock;		/* serialize fmr invalidate */
71
	struct delayed_work	flush_worker;		/* flush worker */
72 73 74

	atomic_t		item_count;		/* total # of MRs */
	atomic_t		dirty_count;		/* # dirty of MRs */
75 76 77 78 79 80

	struct xlist_head	drop_list;		/* MRs that have reached their max_maps limit */
	struct xlist_head	free_list;		/* unused MRs */
	struct xlist_head	clean_list;		/* global unused & unamapped MRs */
	wait_queue_head_t	flush_wait;

81 82 83 84 85 86 87
	atomic_t		free_pinned;		/* memory pinned by free MRs */
	unsigned long		max_items;
	unsigned long		max_items_soft;
	unsigned long		max_free_pinned;
	struct ib_fmr_attr	fmr_attr;
};

88
static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **);
89 90 91 92 93 94 95 96 97
static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr);
static void rds_ib_mr_pool_flush_worker(struct work_struct *work);

static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
{
	struct rds_ib_device *rds_ibdev;
	struct rds_ib_ipaddr *i_ipaddr;

	list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
C
Chris Mason 已提交
98 99
		rcu_read_lock();
		list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
100
			if (i_ipaddr->ipaddr == ipaddr) {
101
				atomic_inc(&rds_ibdev->refcount);
C
Chris Mason 已提交
102
				rcu_read_unlock();
103 104 105
				return rds_ibdev;
			}
		}
C
Chris Mason 已提交
106
		rcu_read_unlock();
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
	}

	return NULL;
}

static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
{
	struct rds_ib_ipaddr *i_ipaddr;

	i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
	if (!i_ipaddr)
		return -ENOMEM;

	i_ipaddr->ipaddr = ipaddr;

	spin_lock_irq(&rds_ibdev->spinlock);
C
Chris Mason 已提交
123
	list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
124 125 126 127 128 129 130
	spin_unlock_irq(&rds_ibdev->spinlock);

	return 0;
}

static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
{
131
	struct rds_ib_ipaddr *i_ipaddr;
C
Chris Mason 已提交
132 133
	struct rds_ib_ipaddr *to_free = NULL;

134 135

	spin_lock_irq(&rds_ibdev->spinlock);
C
Chris Mason 已提交
136
	list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
137
		if (i_ipaddr->ipaddr == ipaddr) {
C
Chris Mason 已提交
138 139
			list_del_rcu(&i_ipaddr->list);
			to_free = i_ipaddr;
140 141 142 143
			break;
		}
	}
	spin_unlock_irq(&rds_ibdev->spinlock);
C
Chris Mason 已提交
144 145 146 147 148

	if (to_free) {
		synchronize_rcu();
		kfree(to_free);
	}
149 150 151 152 153 154 155
}

int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
{
	struct rds_ib_device *rds_ibdev_old;

	rds_ibdev_old = rds_ib_get_device(ipaddr);
156
	if (rds_ibdev_old) {
157
		rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
158 159
		rds_ib_dev_put(rds_ibdev_old);
	}
160 161 162 163

	return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
}

164
void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
165 166 167 168 169 170 171 172 173 174 175 176
{
	struct rds_ib_connection *ic = conn->c_transport_data;

	/* conn was previously on the nodev_conns_list */
	spin_lock_irq(&ib_nodev_conns_lock);
	BUG_ON(list_empty(&ib_nodev_conns));
	BUG_ON(list_empty(&ic->ib_node));
	list_del(&ic->ib_node);

	spin_lock_irq(&rds_ibdev->spinlock);
	list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
	spin_unlock_irq(&rds_ibdev->spinlock);
177
	spin_unlock_irq(&ib_nodev_conns_lock);
178 179

	ic->rds_ibdev = rds_ibdev;
180
	atomic_inc(&rds_ibdev->refcount);
181 182
}

183
void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
184
{
185
	struct rds_ib_connection *ic = conn->c_transport_data;
186

187 188
	/* place conn on nodev_conns_list */
	spin_lock(&ib_nodev_conns_lock);
189

190 191 192 193 194 195 196 197 198 199
	spin_lock_irq(&rds_ibdev->spinlock);
	BUG_ON(list_empty(&ic->ib_node));
	list_del(&ic->ib_node);
	spin_unlock_irq(&rds_ibdev->spinlock);

	list_add_tail(&ic->ib_node, &ib_nodev_conns);

	spin_unlock(&ib_nodev_conns_lock);

	ic->rds_ibdev = NULL;
200
	rds_ib_dev_put(rds_ibdev);
201 202
}

203
void rds_ib_destroy_nodev_conns(void)
204 205 206 207 208
{
	struct rds_ib_connection *ic, *_ic;
	LIST_HEAD(tmp_list);

	/* avoid calling conn_destroy with irqs off */
209 210 211
	spin_lock_irq(&ib_nodev_conns_lock);
	list_splice(&ib_nodev_conns, &tmp_list);
	spin_unlock_irq(&ib_nodev_conns_lock);
212

A
Andy Grover 已提交
213
	list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
214 215 216 217 218 219 220 221 222 223 224
		rds_conn_destroy(ic->conn);
}

struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev)
{
	struct rds_ib_mr_pool *pool;

	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool)
		return ERR_PTR(-ENOMEM);

225 226 227
	INIT_XLIST_HEAD(&pool->free_list);
	INIT_XLIST_HEAD(&pool->drop_list);
	INIT_XLIST_HEAD(&pool->clean_list);
228
	mutex_init(&pool->flush_lock);
229
	init_waitqueue_head(&pool->flush_wait);
230
	INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
231 232 233

	pool->fmr_attr.max_pages = fmr_message_size;
	pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
234
	pool->fmr_attr.page_shift = PAGE_SHIFT;
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	pool->max_free_pinned = rds_ibdev->max_fmrs * fmr_message_size / 4;

	/* We never allow more than max_items MRs to be allocated.
	 * When we exceed more than max_items_soft, we start freeing
	 * items more aggressively.
	 * Make sure that max_items > max_items_soft > max_items / 2
	 */
	pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4;
	pool->max_items = rds_ibdev->max_fmrs;

	return pool;
}

void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
{
	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;

	iinfo->rdma_mr_max = pool->max_items;
	iinfo->rdma_mr_size = pool->fmr_attr.max_pages;
}

void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
{
258
	cancel_delayed_work_sync(&pool->flush_worker);
259
	rds_ib_flush_mr_pool(pool, 1, NULL);
260 261
	WARN_ON(atomic_read(&pool->item_count));
	WARN_ON(atomic_read(&pool->free_pinned));
262 263 264
	kfree(pool);
}

265 266 267 268 269 270 271 272
static void refill_local(struct rds_ib_mr_pool *pool, struct xlist_head *xl,
			 struct rds_ib_mr **ibmr_ret)
{
	struct xlist_head *ibmr_xl;
	ibmr_xl = xlist_del_head_fast(xl);
	*ibmr_ret = list_entry(ibmr_xl, struct rds_ib_mr, xlist);
}

273 274 275
static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool)
{
	struct rds_ib_mr *ibmr = NULL;
276 277
	struct xlist_head *ret;
	unsigned long *flag;
278

279 280 281 282 283 284
	preempt_disable();
	flag = &__get_cpu_var(clean_list_grace);
	set_bit(CLEAN_LIST_BUSY_BIT, flag);
	ret = xlist_del_head(&pool->clean_list);
	if (ret)
		ibmr = list_entry(ret, struct rds_ib_mr, xlist);
285

286 287
	clear_bit(CLEAN_LIST_BUSY_BIT, flag);
	preempt_enable();
288 289 290
	return ibmr;
}

291 292 293 294 295 296 297 298 299 300 301 302
static inline void wait_clean_list_grace(void)
{
	int cpu;
	unsigned long *flag;

	for_each_online_cpu(cpu) {
		flag = &per_cpu(clean_list_grace, cpu);
		while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
			cpu_relax();
	}
}

303 304 305 306 307 308
static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev)
{
	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
	struct rds_ib_mr *ibmr = NULL;
	int err = 0, iter = 0;

309 310 311
	if (atomic_read(&pool->dirty_count) >= pool->max_items / 10)
		queue_delayed_work(rds_ib_fmr_wq, &pool->flush_worker, 10);

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
	while (1) {
		ibmr = rds_ib_reuse_fmr(pool);
		if (ibmr)
			return ibmr;

		/* No clean MRs - now we have the choice of either
		 * allocating a fresh MR up to the limit imposed by the
		 * driver, or flush any dirty unused MRs.
		 * We try to avoid stalling in the send path if possible,
		 * so we allocate as long as we're allowed to.
		 *
		 * We're fussy with enforcing the FMR limit, though. If the driver
		 * tells us we can't use more than N fmrs, we shouldn't start
		 * arguing with it */
		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
			break;

		atomic_dec(&pool->item_count);

		if (++iter > 2) {
			rds_ib_stats_inc(s_ib_rdma_mr_pool_depleted);
			return ERR_PTR(-EAGAIN);
		}

		/* We do have some empty MRs. Flush them out. */
		rds_ib_stats_inc(s_ib_rdma_mr_pool_wait);
338 339 340
		rds_ib_flush_mr_pool(pool, 0, &ibmr);
		if (ibmr)
			return ibmr;
341 342
	}

343
	ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev));
344 345 346 347 348
	if (!ibmr) {
		err = -ENOMEM;
		goto out_no_cigar;
	}

349 350
	memset(ibmr, 0, sizeof(*ibmr));

351 352 353
	ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd,
			(IB_ACCESS_LOCAL_WRITE |
			 IB_ACCESS_REMOTE_READ |
A
Andy Grover 已提交
354 355
			 IB_ACCESS_REMOTE_WRITE|
			 IB_ACCESS_REMOTE_ATOMIC),
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
			&pool->fmr_attr);
	if (IS_ERR(ibmr->fmr)) {
		err = PTR_ERR(ibmr->fmr);
		ibmr->fmr = NULL;
		printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err);
		goto out_no_cigar;
	}

	rds_ib_stats_inc(s_ib_rdma_mr_alloc);
	return ibmr;

out_no_cigar:
	if (ibmr) {
		if (ibmr->fmr)
			ib_dealloc_fmr(ibmr->fmr);
		kfree(ibmr);
	}
	atomic_dec(&pool->item_count);
	return ERR_PTR(err);
}

static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr,
	       struct scatterlist *sg, unsigned int nents)
{
	struct ib_device *dev = rds_ibdev->dev;
	struct scatterlist *scat = sg;
	u64 io_addr = 0;
	u64 *dma_pages;
	u32 len;
	int page_cnt, sg_dma_len;
	int i, j;
	int ret;

	sg_dma_len = ib_dma_map_sg(dev, sg, nents,
				 DMA_BIDIRECTIONAL);
	if (unlikely(!sg_dma_len)) {
		printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n");
		return -EBUSY;
	}

	len = 0;
	page_cnt = 0;

	for (i = 0; i < sg_dma_len; ++i) {
		unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
		u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);

403
		if (dma_addr & ~PAGE_MASK) {
404 405 406 407 408
			if (i > 0)
				return -EINVAL;
			else
				++page_cnt;
		}
409
		if ((dma_addr + dma_len) & ~PAGE_MASK) {
410 411 412 413 414 415 416 417 418
			if (i < sg_dma_len - 1)
				return -EINVAL;
			else
				++page_cnt;
		}

		len += dma_len;
	}

419
	page_cnt += len >> PAGE_SHIFT;
420 421 422
	if (page_cnt > fmr_message_size)
		return -EINVAL;

423 424
	dma_pages = kmalloc_node(sizeof(u64) * page_cnt, GFP_ATOMIC,
				 rdsibdev_to_node(rds_ibdev));
425 426 427 428 429 430 431 432
	if (!dma_pages)
		return -ENOMEM;

	page_cnt = 0;
	for (i = 0; i < sg_dma_len; ++i) {
		unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
		u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);

433
		for (j = 0; j < dma_len; j += PAGE_SIZE)
434
			dma_pages[page_cnt++] =
435
				(dma_addr & PAGE_MASK) + j;
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	}

	ret = ib_map_phys_fmr(ibmr->fmr,
				   dma_pages, page_cnt, io_addr);
	if (ret)
		goto out;

	/* Success - we successfully remapped the MR, so we can
	 * safely tear down the old mapping. */
	rds_ib_teardown_mr(ibmr);

	ibmr->sg = scat;
	ibmr->sg_len = nents;
	ibmr->sg_dma_len = sg_dma_len;
	ibmr->remap_count++;

	rds_ib_stats_inc(s_ib_rdma_mr_used);
	ret = 0;

out:
	kfree(dma_pages);

	return ret;
}

void rds_ib_sync_mr(void *trans_private, int direction)
{
	struct rds_ib_mr *ibmr = trans_private;
	struct rds_ib_device *rds_ibdev = ibmr->device;

	switch (direction) {
	case DMA_FROM_DEVICE:
		ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
		break;
	case DMA_TO_DEVICE:
		ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
		break;
	}
}

static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
{
	struct rds_ib_device *rds_ibdev = ibmr->device;

	if (ibmr->sg_dma_len) {
		ib_dma_unmap_sg(rds_ibdev->dev,
				ibmr->sg, ibmr->sg_len,
				DMA_BIDIRECTIONAL);
		ibmr->sg_dma_len = 0;
	}

	/* Release the s/g list */
	if (ibmr->sg_len) {
		unsigned int i;

		for (i = 0; i < ibmr->sg_len; ++i) {
			struct page *page = sg_page(&ibmr->sg[i]);

			/* FIXME we need a way to tell a r/w MR
			 * from a r/o MR */
498
			BUG_ON(irqs_disabled());
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
			set_page_dirty(page);
			put_page(page);
		}
		kfree(ibmr->sg);

		ibmr->sg = NULL;
		ibmr->sg_len = 0;
	}
}

static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
{
	unsigned int pinned = ibmr->sg_len;

	__rds_ib_teardown_mr(ibmr);
	if (pinned) {
		struct rds_ib_device *rds_ibdev = ibmr->device;
		struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;

		atomic_sub(pinned, &pool->free_pinned);
	}
}

static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
{
	unsigned int item_count;

	item_count = atomic_read(&pool->item_count);
	if (free_all)
		return item_count;

	return 0;
}

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
/*
 * given an xlist of mrs, put them all into the list_head for more processing
 */
static void xlist_append_to_list(struct xlist_head *xlist, struct list_head *list)
{
	struct rds_ib_mr *ibmr;
	struct xlist_head splice;
	struct xlist_head *cur;
	struct xlist_head *next;

	splice.next = NULL;
	xlist_splice(xlist, &splice);
	cur = splice.next;
	while (cur) {
		next = cur->next;
		ibmr = list_entry(cur, struct rds_ib_mr, xlist);
		list_add_tail(&ibmr->unmap_list, list);
		cur = next;
	}
}

/*
 * this takes a list head of mrs and turns it into an xlist of clusters.
 * each cluster has an xlist of MR_CLUSTER_SIZE mrs that are ready for
 * reuse.
 */
static void list_append_to_xlist(struct rds_ib_mr_pool *pool,
				struct list_head *list, struct xlist_head *xlist,
				struct xlist_head **tail_ret)
{
	struct rds_ib_mr *ibmr;
	struct xlist_head *cur_mr = xlist;
	struct xlist_head *tail_mr = NULL;

	list_for_each_entry(ibmr, list, unmap_list) {
		tail_mr = &ibmr->xlist;
		tail_mr->next = NULL;
		cur_mr->next = tail_mr;
		cur_mr = tail_mr;
	}
	*tail_ret = tail_mr;
}

576 577 578 579 580 581
/*
 * Flush our pool of MRs.
 * At a minimum, all currently unused MRs are unmapped.
 * If the number of MRs allocated exceeds the limit, we also try
 * to free as many MRs as needed to get back to this limit.
 */
582 583
static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
			        int free_all, struct rds_ib_mr **ibmr_ret)
584 585
{
	struct rds_ib_mr *ibmr, *next;
586 587
	struct xlist_head clean_xlist;
	struct xlist_head *clean_tail;
588 589 590 591 592 593 594 595
	LIST_HEAD(unmap_list);
	LIST_HEAD(fmr_list);
	unsigned long unpinned = 0;
	unsigned int nfreed = 0, ncleaned = 0, free_goal;
	int ret = 0;

	rds_ib_stats_inc(s_ib_rdma_mr_pool_flush);

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
	if (ibmr_ret) {
		DEFINE_WAIT(wait);
		while(!mutex_trylock(&pool->flush_lock)) {
			ibmr = rds_ib_reuse_fmr(pool);
			if (ibmr) {
				*ibmr_ret = ibmr;
				finish_wait(&pool->flush_wait, &wait);
				goto out_nolock;
			}

			prepare_to_wait(&pool->flush_wait, &wait,
					TASK_UNINTERRUPTIBLE);
			if (xlist_empty(&pool->clean_list))
				schedule();

			ibmr = rds_ib_reuse_fmr(pool);
			if (ibmr) {
				*ibmr_ret = ibmr;
				finish_wait(&pool->flush_wait, &wait);
				goto out_nolock;
			}
		}
		finish_wait(&pool->flush_wait, &wait);
	} else
		mutex_lock(&pool->flush_lock);

	if (ibmr_ret) {
		ibmr = rds_ib_reuse_fmr(pool);
		if (ibmr) {
			*ibmr_ret = ibmr;
			goto out;
		}
	}
629 630

	/* Get the list of all MRs to be dropped. Ordering matters -
631 632 633 634
	 * we want to put drop_list ahead of free_list.
	 */
	xlist_append_to_list(&pool->drop_list, &unmap_list);
	xlist_append_to_list(&pool->free_list, &unmap_list);
635
	if (free_all)
636
		xlist_append_to_list(&pool->clean_list, &unmap_list);
637 638 639 640 641 642 643

	free_goal = rds_ib_flush_goal(pool, free_all);

	if (list_empty(&unmap_list))
		goto out;

	/* String all ib_mr's onto one list and hand them to ib_unmap_fmr */
644
	list_for_each_entry(ibmr, &unmap_list, unmap_list)
645
		list_add(&ibmr->fmr->list, &fmr_list);
646

647 648 649 650 651
	ret = ib_unmap_fmr(&fmr_list);
	if (ret)
		printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret);

	/* Now we can destroy the DMA mapping and unpin any pages */
652
	list_for_each_entry_safe(ibmr, next, &unmap_list, unmap_list) {
653 654 655 656
		unpinned += ibmr->sg_len;
		__rds_ib_teardown_mr(ibmr);
		if (nfreed < free_goal || ibmr->remap_count >= pool->fmr_attr.max_maps) {
			rds_ib_stats_inc(s_ib_rdma_mr_free);
657
			list_del(&ibmr->unmap_list);
658 659 660 661 662 663 664
			ib_dealloc_fmr(ibmr->fmr);
			kfree(ibmr);
			nfreed++;
		}
		ncleaned++;
	}

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
	if (!list_empty(&unmap_list)) {
		/* we have to make sure that none of the things we're about
		 * to put on the clean list would race with other cpus trying
		 * to pull items off.  The xlist would explode if we managed to
		 * remove something from the clean list and then add it back again
		 * while another CPU was spinning on that same item in xlist_del_head.
		 *
		 * This is pretty unlikely, but just in case  wait for an xlist grace period
		 * here before adding anything back into the clean list.
		 */
		wait_clean_list_grace();

		list_append_to_xlist(pool, &unmap_list, &clean_xlist, &clean_tail);
		if (ibmr_ret)
			refill_local(pool, &clean_xlist, ibmr_ret);

		/* refill_local may have emptied our list */
		if (!xlist_empty(&clean_xlist))
			xlist_add(clean_xlist.next, clean_tail, &pool->clean_list);

	}
686 687 688 689 690 691 692

	atomic_sub(unpinned, &pool->free_pinned);
	atomic_sub(ncleaned, &pool->dirty_count);
	atomic_sub(nfreed, &pool->item_count);

out:
	mutex_unlock(&pool->flush_lock);
693 694 695
	if (waitqueue_active(&pool->flush_wait))
		wake_up(&pool->flush_wait);
out_nolock:
696 697 698
	return ret;
}

699
int rds_ib_fmr_init(void)
700 701 702 703 704 705 706 707 708 709 710 711
{
	rds_ib_fmr_wq = create_workqueue("rds_fmr_flushd");
	if (!rds_ib_fmr_wq)
		return -ENOMEM;
	return 0;
}

/*
 * By the time this is called all the IB devices should have been torn down and
 * had their pools freed.  As each pool is freed its work struct is waited on,
 * so the pool flushing work queue should be idle by the time we get here.
 */
712
void rds_ib_fmr_exit(void)
713 714 715 716
{
	destroy_workqueue(rds_ib_fmr_wq);
}

717 718
static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
{
719
	struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
720

721
	rds_ib_flush_mr_pool(pool, 0, NULL);
722 723 724 725 726 727 728 729 730 731 732 733
}

void rds_ib_free_mr(void *trans_private, int invalidate)
{
	struct rds_ib_mr *ibmr = trans_private;
	struct rds_ib_device *rds_ibdev = ibmr->device;
	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;

	rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);

	/* Return it to the pool's free list */
	if (ibmr->remap_count >= pool->fmr_attr.max_maps)
734
		xlist_add(&ibmr->xlist, &ibmr->xlist, &pool->drop_list);
735
	else
736
		xlist_add(&ibmr->xlist, &ibmr->xlist, &pool->free_list);
737 738 739 740 741

	atomic_add(ibmr->sg_len, &pool->free_pinned);
	atomic_inc(&pool->dirty_count);

	/* If we've pinned too many pages, request a flush */
742 743
	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
	    atomic_read(&pool->dirty_count) >= pool->max_items / 10)
744
		queue_delayed_work(rds_ib_fmr_wq, &pool->flush_worker, 10);
745 746 747

	if (invalidate) {
		if (likely(!in_interrupt())) {
748
			rds_ib_flush_mr_pool(pool, 0, NULL);
749 750 751
		} else {
			/* We get here if the user created a MR marked
			 * as use_once and invalidate at the same time. */
752 753
			queue_delayed_work(rds_ib_fmr_wq,
					   &pool->flush_worker, 10);
754 755
		}
	}
756 757

	rds_ib_dev_put(rds_ibdev);
758 759 760 761 762 763 764 765 766 767
}

void rds_ib_flush_mrs(void)
{
	struct rds_ib_device *rds_ibdev;

	list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
		struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;

		if (pool)
768
			rds_ib_flush_mr_pool(pool, 0, NULL);
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	}
}

void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
		    struct rds_sock *rs, u32 *key_ret)
{
	struct rds_ib_device *rds_ibdev;
	struct rds_ib_mr *ibmr = NULL;
	int ret;

	rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
	if (!rds_ibdev) {
		ret = -ENODEV;
		goto out;
	}

	if (!rds_ibdev->mr_pool) {
		ret = -ENODEV;
		goto out;
	}

	ibmr = rds_ib_alloc_fmr(rds_ibdev);
	if (IS_ERR(ibmr))
		return ibmr;

	ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents);
	if (ret == 0)
		*key_ret = ibmr->fmr->rkey;
	else
		printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret);

	ibmr->device = rds_ibdev;
801
	rds_ibdev = NULL;
802 803 804 805 806 807 808

 out:
	if (ret) {
		if (ibmr)
			rds_ib_free_mr(ibmr, 0);
		ibmr = ERR_PTR(ret);
	}
809 810
	if (rds_ibdev)
		rds_ib_dev_put(rds_ibdev);
811 812
	return ibmr;
}
813