tkip.c 11.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * Copyright 2002-2004, Instant802 Networks, Inc.
 * Copyright 2005, Devicescape Software, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
11
#include <linux/bitops.h>
12 13
#include <linux/types.h>
#include <linux/netdevice.h>
14
#include <asm/unaligned.h>
15 16

#include <net/mac80211.h>
J
Johannes Berg 已提交
17
#include "key.h"
18 19 20 21 22
#include "tkip.h"
#include "wep.h"

#define PHASE1_LOOP_COUNT 8

23 24 25 26
/*
 * 2-byte by 2-byte subset of the full AES S-box table; second part of this
 * table is identical to first part but byte-swapped
 */
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
static const u16 tkip_sbox[256] =
{
	0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
	0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
	0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
	0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
	0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
	0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
	0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
	0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
	0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
	0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
	0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
	0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
	0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
	0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
	0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
	0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
	0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
	0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
	0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
	0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
	0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
	0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
	0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
	0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
	0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
	0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
	0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
	0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
	0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
	0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
	0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
	0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
};

63
static u16 tkipS(u16 val)
64
{
65
	return tkip_sbox[val & 0xff] ^ swab16(tkip_sbox[val >> 8]);
66 67
}

68 69
/*
 * P1K := Phase1(TA, TK, TSC)
70 71 72 73 74 75 76 77 78 79
 * TA = transmitter address (48 bits)
 * TK = dot11DefaultKeyValue or dot11KeyMappingValue (128 bits)
 * TSC = TKIP sequence counter (48 bits, only 32 msb bits used)
 * P1K: 80 bits
 */
static void tkip_mixing_phase1(const u8 *ta, const u8 *tk, u32 tsc_IV32,
			       u16 *p1k)
{
	int i, j;

80 81 82 83 84
	p1k[0] = tsc_IV32 & 0xFFFF;
	p1k[1] = tsc_IV32 >> 16;
	p1k[2] = get_unaligned_le16(ta + 0);
	p1k[3] = get_unaligned_le16(ta + 2);
	p1k[4] = get_unaligned_le16(ta + 4);
85 86 87

	for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
		j = 2 * (i & 1);
88 89 90 91 92
		p1k[0] += tkipS(p1k[4] ^ get_unaligned_le16(tk + 0 + j));
		p1k[1] += tkipS(p1k[0] ^ get_unaligned_le16(tk + 4 + j));
		p1k[2] += tkipS(p1k[1] ^ get_unaligned_le16(tk + 8 + j));
		p1k[3] += tkipS(p1k[2] ^ get_unaligned_le16(tk + 12 + j));
		p1k[4] += tkipS(p1k[3] ^ get_unaligned_le16(tk + 0 + j)) + i;
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	}
}

static void tkip_mixing_phase2(const u16 *p1k, const u8 *tk, u16 tsc_IV16,
			       u8 *rc4key)
{
	u16 ppk[6];
	int i;

	ppk[0] = p1k[0];
	ppk[1] = p1k[1];
	ppk[2] = p1k[2];
	ppk[3] = p1k[3];
	ppk[4] = p1k[4];
	ppk[5] = p1k[4] + tsc_IV16;

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
	ppk[0] += tkipS(ppk[5] ^ get_unaligned_le16(tk + 0));
	ppk[1] += tkipS(ppk[0] ^ get_unaligned_le16(tk + 2));
	ppk[2] += tkipS(ppk[1] ^ get_unaligned_le16(tk + 4));
	ppk[3] += tkipS(ppk[2] ^ get_unaligned_le16(tk + 6));
	ppk[4] += tkipS(ppk[3] ^ get_unaligned_le16(tk + 8));
	ppk[5] += tkipS(ppk[4] ^ get_unaligned_le16(tk + 10));
	ppk[0] += ror16(ppk[5] ^ get_unaligned_le16(tk + 12), 1);
	ppk[1] += ror16(ppk[0] ^ get_unaligned_le16(tk + 14), 1);
	ppk[2] += ror16(ppk[1], 1);
	ppk[3] += ror16(ppk[2], 1);
	ppk[4] += ror16(ppk[3], 1);
	ppk[5] += ror16(ppk[4], 1);

	rc4key[0] = tsc_IV16 >> 8;
	rc4key[1] = ((tsc_IV16 >> 8) | 0x20) & 0x7f;
	rc4key[2] = tsc_IV16 & 0xFF;
	rc4key[3] = ((ppk[5] ^ get_unaligned_le16(tk)) >> 1) & 0xFF;

	rc4key += 4;
	for (i = 0; i < 6; i++)
		put_unaligned_le16(ppk[i], rc4key + 2 * i);
130 131 132 133 134 135 136 137 138 139 140
}

/* Add TKIP IV and Ext. IV at @pos. @iv0, @iv1, and @iv2 are the first octets
 * of the IV. Returns pointer to the octet following IVs (i.e., beginning of
 * the packet payload). */
u8 * ieee80211_tkip_add_iv(u8 *pos, struct ieee80211_key *key,
			   u8 iv0, u8 iv1, u8 iv2)
{
	*pos++ = iv0;
	*pos++ = iv1;
	*pos++ = iv2;
141
	*pos++ = (key->conf.keyidx << 6) | (1 << 5) /* Ext IV */;
142 143
	put_unaligned_le32(key->u.tkip.iv32, pos);
	return pos + 4;
144 145 146 147 148
}

void ieee80211_tkip_gen_phase1key(struct ieee80211_key *key, u8 *ta,
				  u16 *phase1key)
{
149
	tkip_mixing_phase1(ta, &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
150 151 152 153 154 155 156 157 158
			   key->u.tkip.iv32, phase1key);
}

void ieee80211_tkip_gen_rc4key(struct ieee80211_key *key, u8 *ta,
			       u8 *rc4key)
{
	/* Calculate per-packet key */
	if (key->u.tkip.iv16 == 0 || !key->u.tkip.tx_initialized) {
		/* IV16 wrapped around - perform TKIP phase 1 */
159
		tkip_mixing_phase1(ta, &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
160 161 162 163
				   key->u.tkip.iv32, key->u.tkip.p1k);
		key->u.tkip.tx_initialized = 1;
	}

164 165
	tkip_mixing_phase2(key->u.tkip.p1k,
			   &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
166 167 168
			   key->u.tkip.iv16, rc4key);
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182
void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
			struct sk_buff *skb, enum ieee80211_tkip_key_type type,
			u8 *outkey)
{
	struct ieee80211_key *key = (struct ieee80211_key *)
			container_of(keyconf, struct ieee80211_key, conf);
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
	u8 *data = (u8 *) hdr;
	u16 fc = le16_to_cpu(hdr->frame_control);
	int hdr_len = ieee80211_get_hdrlen(fc);
	u8 *ta = hdr->addr2;
	u16 iv16;
	u32 iv32;

183 184
	iv16 = data[hdr_len + 2] | (data[hdr_len] << 8);
	iv32 = get_unaligned_le32(data + hdr_len + 4);
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

#ifdef CONFIG_TKIP_DEBUG
	printk(KERN_DEBUG "TKIP encrypt: iv16 = 0x%04x, iv32 = 0x%08x\n",
			iv16, iv32);

	if (iv32 != key->u.tkip.iv32) {
		printk(KERN_DEBUG "skb: iv32 = 0x%08x key: iv32 = 0x%08x\n",
			iv32, key->u.tkip.iv32);
		printk(KERN_DEBUG "Wrap around of iv16 in the middle of a "
			"fragmented packet\n");
	}
#endif /* CONFIG_TKIP_DEBUG */

	/* Update the p1k only when the iv16 in the packet wraps around, this
	 * might occur after the wrap around of iv16 in the key in case of
	 * fragmented packets. */
	if (iv16 == 0 || !key->u.tkip.tx_initialized) {
		/* IV16 wrapped around - perform TKIP phase 1 */
		tkip_mixing_phase1(ta, &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
			iv32, key->u.tkip.p1k);
		key->u.tkip.tx_initialized = 1;
	}

	if (type == IEEE80211_TKIP_P1_KEY) {
		memcpy(outkey, key->u.tkip.p1k, sizeof(u16) * 5);
		return;
	}

	tkip_mixing_phase2(key->u.tkip.p1k,
		&key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],	iv16, outkey);
}
EXPORT_SYMBOL(ieee80211_get_tkip_key);

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
/* Encrypt packet payload with TKIP using @key. @pos is a pointer to the
 * beginning of the buffer containing payload. This payload must include
 * headroom of eight octets for IV and Ext. IV and taildroom of four octets
 * for ICV. @payload_len is the length of payload (_not_ including extra
 * headroom and tailroom). @ta is the transmitter addresses. */
void ieee80211_tkip_encrypt_data(struct crypto_blkcipher *tfm,
				 struct ieee80211_key *key,
				 u8 *pos, size_t payload_len, u8 *ta)
{
	u8 rc4key[16];

	ieee80211_tkip_gen_rc4key(key, ta, rc4key);
	pos = ieee80211_tkip_add_iv(pos, key, rc4key[0], rc4key[1], rc4key[2]);
	ieee80211_wep_encrypt_data(tfm, rc4key, 16, pos, payload_len);
}

/* Decrypt packet payload with TKIP using @key. @pos is a pointer to the
 * beginning of the buffer containing IEEE 802.11 header payload, i.e.,
 * including IV, Ext. IV, real data, Michael MIC, ICV. @payload_len is the
 * length of payload, including IV, Ext. IV, MIC, ICV.  */
int ieee80211_tkip_decrypt_data(struct crypto_blkcipher *tfm,
				struct ieee80211_key *key,
				u8 *payload, size_t payload_len, u8 *ta,
241
				u8 *ra, int only_iv, int queue,
242
				u32 *out_iv32, u16 *out_iv16)
243 244 245 246 247 248 249 250 251 252 253
{
	u32 iv32;
	u32 iv16;
	u8 rc4key[16], keyid, *pos = payload;
	int res;

	if (payload_len < 12)
		return -1;

	iv16 = (pos[0] << 8) | pos[2];
	keyid = pos[3];
254
	iv32 = get_unaligned_le32(pos + 4);
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	pos += 8;
#ifdef CONFIG_TKIP_DEBUG
	{
		int i;
		printk(KERN_DEBUG "TKIP decrypt: data(len=%zd)", payload_len);
		for (i = 0; i < payload_len; i++)
			printk(" %02x", payload[i]);
		printk("\n");
		printk(KERN_DEBUG "TKIP decrypt: iv16=%04x iv32=%08x\n",
		       iv16, iv32);
	}
#endif /* CONFIG_TKIP_DEBUG */

	if (!(keyid & (1 << 5)))
		return TKIP_DECRYPT_NO_EXT_IV;

271
	if ((keyid >> 6) != key->conf.keyidx)
272 273 274 275 276 277 278
		return TKIP_DECRYPT_INVALID_KEYIDX;

	if (key->u.tkip.rx_initialized[queue] &&
	    (iv32 < key->u.tkip.iv32_rx[queue] ||
	     (iv32 == key->u.tkip.iv32_rx[queue] &&
	      iv16 <= key->u.tkip.iv16_rx[queue]))) {
#ifdef CONFIG_TKIP_DEBUG
279
		DECLARE_MAC_BUF(mac);
280
		printk(KERN_DEBUG "TKIP replay detected for RX frame from "
281 282
		       "%s (RX IV (%04x,%02x) <= prev. IV (%04x,%02x)\n",
		       print_mac(mac, ta),
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
		       iv32, iv16, key->u.tkip.iv32_rx[queue],
		       key->u.tkip.iv16_rx[queue]);
#endif /* CONFIG_TKIP_DEBUG */
		return TKIP_DECRYPT_REPLAY;
	}

	if (only_iv) {
		res = TKIP_DECRYPT_OK;
		key->u.tkip.rx_initialized[queue] = 1;
		goto done;
	}

	if (!key->u.tkip.rx_initialized[queue] ||
	    key->u.tkip.iv32_rx[queue] != iv32) {
		key->u.tkip.rx_initialized[queue] = 1;
		/* IV16 wrapped around - perform TKIP phase 1 */
299
		tkip_mixing_phase1(ta, &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
300 301 302 303
				   iv32, key->u.tkip.p1k_rx[queue]);
#ifdef CONFIG_TKIP_DEBUG
		{
			int i;
304 305 306
			DECLARE_MAC_BUF(mac);
			printk(KERN_DEBUG "TKIP decrypt: Phase1 TA=%s"
			       " TK=", print_mac(mac, ta));
307 308
			for (i = 0; i < 16; i++)
				printk("%02x ",
309 310
				       key->conf.key[
						ALG_TKIP_TEMP_ENCR_KEY + i]);
311 312 313 314 315 316 317
			printk("\n");
			printk(KERN_DEBUG "TKIP decrypt: P1K=");
			for (i = 0; i < 5; i++)
				printk("%04x ", key->u.tkip.p1k_rx[queue][i]);
			printk("\n");
		}
#endif /* CONFIG_TKIP_DEBUG */
318 319 320 321 322 323 324 325 326 327 328 329 330
		if (key->local->ops->update_tkip_key &&
			key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
			u8 bcast[ETH_ALEN] =
				{0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
			u8 *sta_addr = key->sta->addr;

			if (is_multicast_ether_addr(ra))
				sta_addr = bcast;

			key->local->ops->update_tkip_key(
				local_to_hw(key->local), &key->conf,
				sta_addr, iv32, key->u.tkip.p1k_rx[queue]);
		}
331 332 333
	}

	tkip_mixing_phase2(key->u.tkip.p1k_rx[queue],
334
			   &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
335 336 337 338 339 340 341 342 343 344 345 346 347 348
			   iv16, rc4key);
#ifdef CONFIG_TKIP_DEBUG
	{
		int i;
		printk(KERN_DEBUG "TKIP decrypt: Phase2 rc4key=");
		for (i = 0; i < 16; i++)
			printk("%02x ", rc4key[i]);
		printk("\n");
	}
#endif /* CONFIG_TKIP_DEBUG */

	res = ieee80211_wep_decrypt_data(tfm, rc4key, 16, pos, payload_len - 12);
 done:
	if (res == TKIP_DECRYPT_OK) {
349 350 351 352 353 354 355 356
		/*
		 * Record previously received IV, will be copied into the
		 * key information after MIC verification. It is possible
		 * that we don't catch replays of fragments but that's ok
		 * because the Michael MIC verication will then fail.
		 */
		*out_iv32 = iv32;
		*out_iv16 = iv16;
357 358 359 360
	}

	return res;
}