bcmgenet.c 94.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * Broadcom GENET (Gigabit Ethernet) controller driver
 *
 * Copyright (c) 2014 Broadcom Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#define pr_fmt(fmt)				"bcmgenet: " fmt

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/if_ether.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/pm.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <net/arp.h>

#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/phy.h>
45
#include <linux/platform_data/bcmgenet.h>
46 47 48 49 50 51 52 53 54 55 56

#include <asm/unaligned.h>

#include "bcmgenet.h"

/* Maximum number of hardware queues, downsized if needed */
#define GENET_MAX_MQ_CNT	4

/* Default highest priority queue for multi queue support */
#define GENET_Q0_PRIORITY	0

57 58
#define GENET_Q16_RX_BD_CNT	\
	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 60
#define GENET_Q16_TX_BD_CNT	\
	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

#define RX_BUF_LENGTH		2048
#define SKB_ALIGNMENT		32

/* Tx/Rx DMA register offset, skip 256 descriptors */
#define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
#define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))

#define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
				TOTAL_DESC * DMA_DESC_SIZE)

#define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
				TOTAL_DESC * DMA_DESC_SIZE)

static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76
					     void __iomem *d, u32 value)
77 78 79 80 81
{
	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
}

static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82
					    void __iomem *d)
83 84 85 86 87 88 89 90 91 92 93 94
{
	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
}

static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
				    void __iomem *d,
				    dma_addr_t addr)
{
	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);

	/* Register writes to GISB bus can take couple hundred nanoseconds
	 * and are done for each packet, save these expensive writes unless
B
Brian Norris 已提交
95
	 * the platform is explicitly configured for 64-bits/LPAE.
96 97 98 99 100 101 102 103 104
	 */
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	if (priv->hw_params->flags & GENET_HAS_40BITS)
		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
#endif
}

/* Combined address + length/status setter */
static inline void dmadesc_set(struct bcmgenet_priv *priv,
105
			       void __iomem *d, dma_addr_t addr, u32 val)
106 107 108 109 110 111 112 113 114 115 116 117 118 119
{
	dmadesc_set_length_status(priv, d, val);
	dmadesc_set_addr(priv, d, addr);
}

static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
					  void __iomem *d)
{
	dma_addr_t addr;

	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);

	/* Register writes to GISB bus can take couple hundred nanoseconds
	 * and are done for each packet, save these expensive writes unless
B
Brian Norris 已提交
120
	 * the platform is explicitly configured for 64-bits/LPAE.
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	 */
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	if (priv->hw_params->flags & GENET_HAS_40BITS)
		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
#endif
	return addr;
}

#define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"

#define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
				NETIF_MSG_LINK)

static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv))
		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
	else
		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
}

static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
{
	if (GENET_IS_V1(priv))
		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
	else
		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
}

/* These macros are defined to deal with register map change
 * between GENET1.1 and GENET2. Only those currently being used
 * by driver are defined.
 */
static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv))
		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
	else
		return __raw_readl(priv->base +
				priv->hw_params->tbuf_offset + TBUF_CTRL);
}

static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
{
	if (GENET_IS_V1(priv))
		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
	else
		__raw_writel(val, priv->base +
				priv->hw_params->tbuf_offset + TBUF_CTRL);
}

static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv))
		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
	else
		return __raw_readl(priv->base +
				priv->hw_params->tbuf_offset + TBUF_BP_MC);
}

static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
{
	if (GENET_IS_V1(priv))
		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
	else
		__raw_writel(val, priv->base +
				priv->hw_params->tbuf_offset + TBUF_BP_MC);
}

/* RX/TX DMA register accessors */
enum dma_reg {
	DMA_RING_CFG = 0,
	DMA_CTRL,
	DMA_STATUS,
	DMA_SCB_BURST_SIZE,
	DMA_ARB_CTRL,
197 198 199
	DMA_PRIORITY_0,
	DMA_PRIORITY_1,
	DMA_PRIORITY_2,
200 201 202 203 204 205 206 207
	DMA_INDEX2RING_0,
	DMA_INDEX2RING_1,
	DMA_INDEX2RING_2,
	DMA_INDEX2RING_3,
	DMA_INDEX2RING_4,
	DMA_INDEX2RING_5,
	DMA_INDEX2RING_6,
	DMA_INDEX2RING_7,
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	DMA_RING0_TIMEOUT,
	DMA_RING1_TIMEOUT,
	DMA_RING2_TIMEOUT,
	DMA_RING3_TIMEOUT,
	DMA_RING4_TIMEOUT,
	DMA_RING5_TIMEOUT,
	DMA_RING6_TIMEOUT,
	DMA_RING7_TIMEOUT,
	DMA_RING8_TIMEOUT,
	DMA_RING9_TIMEOUT,
	DMA_RING10_TIMEOUT,
	DMA_RING11_TIMEOUT,
	DMA_RING12_TIMEOUT,
	DMA_RING13_TIMEOUT,
	DMA_RING14_TIMEOUT,
	DMA_RING15_TIMEOUT,
	DMA_RING16_TIMEOUT,
225 226 227 228 229 230 231 232
};

static const u8 bcmgenet_dma_regs_v3plus[] = {
	[DMA_RING_CFG]		= 0x00,
	[DMA_CTRL]		= 0x04,
	[DMA_STATUS]		= 0x08,
	[DMA_SCB_BURST_SIZE]	= 0x0C,
	[DMA_ARB_CTRL]		= 0x2C,
233 234 235
	[DMA_PRIORITY_0]	= 0x30,
	[DMA_PRIORITY_1]	= 0x34,
	[DMA_PRIORITY_2]	= 0x38,
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	[DMA_RING0_TIMEOUT]	= 0x2C,
	[DMA_RING1_TIMEOUT]	= 0x30,
	[DMA_RING2_TIMEOUT]	= 0x34,
	[DMA_RING3_TIMEOUT]	= 0x38,
	[DMA_RING4_TIMEOUT]	= 0x3c,
	[DMA_RING5_TIMEOUT]	= 0x40,
	[DMA_RING6_TIMEOUT]	= 0x44,
	[DMA_RING7_TIMEOUT]	= 0x48,
	[DMA_RING8_TIMEOUT]	= 0x4c,
	[DMA_RING9_TIMEOUT]	= 0x50,
	[DMA_RING10_TIMEOUT]	= 0x54,
	[DMA_RING11_TIMEOUT]	= 0x58,
	[DMA_RING12_TIMEOUT]	= 0x5c,
	[DMA_RING13_TIMEOUT]	= 0x60,
	[DMA_RING14_TIMEOUT]	= 0x64,
	[DMA_RING15_TIMEOUT]	= 0x68,
	[DMA_RING16_TIMEOUT]	= 0x6C,
253 254 255 256 257 258 259 260
	[DMA_INDEX2RING_0]	= 0x70,
	[DMA_INDEX2RING_1]	= 0x74,
	[DMA_INDEX2RING_2]	= 0x78,
	[DMA_INDEX2RING_3]	= 0x7C,
	[DMA_INDEX2RING_4]	= 0x80,
	[DMA_INDEX2RING_5]	= 0x84,
	[DMA_INDEX2RING_6]	= 0x88,
	[DMA_INDEX2RING_7]	= 0x8C,
261 262 263 264 265 266 267 268
};

static const u8 bcmgenet_dma_regs_v2[] = {
	[DMA_RING_CFG]		= 0x00,
	[DMA_CTRL]		= 0x04,
	[DMA_STATUS]		= 0x08,
	[DMA_SCB_BURST_SIZE]	= 0x0C,
	[DMA_ARB_CTRL]		= 0x30,
269 270 271
	[DMA_PRIORITY_0]	= 0x34,
	[DMA_PRIORITY_1]	= 0x38,
	[DMA_PRIORITY_2]	= 0x3C,
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	[DMA_RING0_TIMEOUT]	= 0x2C,
	[DMA_RING1_TIMEOUT]	= 0x30,
	[DMA_RING2_TIMEOUT]	= 0x34,
	[DMA_RING3_TIMEOUT]	= 0x38,
	[DMA_RING4_TIMEOUT]	= 0x3c,
	[DMA_RING5_TIMEOUT]	= 0x40,
	[DMA_RING6_TIMEOUT]	= 0x44,
	[DMA_RING7_TIMEOUT]	= 0x48,
	[DMA_RING8_TIMEOUT]	= 0x4c,
	[DMA_RING9_TIMEOUT]	= 0x50,
	[DMA_RING10_TIMEOUT]	= 0x54,
	[DMA_RING11_TIMEOUT]	= 0x58,
	[DMA_RING12_TIMEOUT]	= 0x5c,
	[DMA_RING13_TIMEOUT]	= 0x60,
	[DMA_RING14_TIMEOUT]	= 0x64,
	[DMA_RING15_TIMEOUT]	= 0x68,
	[DMA_RING16_TIMEOUT]	= 0x6C,
289 290 291 292 293 294 295
};

static const u8 bcmgenet_dma_regs_v1[] = {
	[DMA_CTRL]		= 0x00,
	[DMA_STATUS]		= 0x04,
	[DMA_SCB_BURST_SIZE]	= 0x0C,
	[DMA_ARB_CTRL]		= 0x30,
296 297 298
	[DMA_PRIORITY_0]	= 0x34,
	[DMA_PRIORITY_1]	= 0x38,
	[DMA_PRIORITY_2]	= 0x3C,
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	[DMA_RING0_TIMEOUT]	= 0x2C,
	[DMA_RING1_TIMEOUT]	= 0x30,
	[DMA_RING2_TIMEOUT]	= 0x34,
	[DMA_RING3_TIMEOUT]	= 0x38,
	[DMA_RING4_TIMEOUT]	= 0x3c,
	[DMA_RING5_TIMEOUT]	= 0x40,
	[DMA_RING6_TIMEOUT]	= 0x44,
	[DMA_RING7_TIMEOUT]	= 0x48,
	[DMA_RING8_TIMEOUT]	= 0x4c,
	[DMA_RING9_TIMEOUT]	= 0x50,
	[DMA_RING10_TIMEOUT]	= 0x54,
	[DMA_RING11_TIMEOUT]	= 0x58,
	[DMA_RING12_TIMEOUT]	= 0x5c,
	[DMA_RING13_TIMEOUT]	= 0x60,
	[DMA_RING14_TIMEOUT]	= 0x64,
	[DMA_RING15_TIMEOUT]	= 0x68,
	[DMA_RING16_TIMEOUT]	= 0x6C,
316 317 318 319 320 321 322 323 324 325 326
};

/* Set at runtime once bcmgenet version is known */
static const u8 *bcmgenet_dma_regs;

static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
{
	return netdev_priv(dev_get_drvdata(dev));
}

static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327
				      enum dma_reg r)
328 329 330 331 332 333 334 335 336 337 338 339 340
{
	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
					u32 val, enum dma_reg r)
{
	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341
				      enum dma_reg r)
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
{
	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
					u32 val, enum dma_reg r)
{
	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

/* RDMA/TDMA ring registers and accessors
 * we merge the common fields and just prefix with T/D the registers
 * having different meaning depending on the direction
 */
enum dma_ring_reg {
	TDMA_READ_PTR = 0,
	RDMA_WRITE_PTR = TDMA_READ_PTR,
	TDMA_READ_PTR_HI,
	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
	TDMA_CONS_INDEX,
	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
	TDMA_PROD_INDEX,
	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
	DMA_RING_BUF_SIZE,
	DMA_START_ADDR,
	DMA_START_ADDR_HI,
	DMA_END_ADDR,
	DMA_END_ADDR_HI,
	DMA_MBUF_DONE_THRESH,
	TDMA_FLOW_PERIOD,
	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
	TDMA_WRITE_PTR,
	RDMA_READ_PTR = TDMA_WRITE_PTR,
	TDMA_WRITE_PTR_HI,
	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
};

/* GENET v4 supports 40-bits pointer addressing
 * for obvious reasons the LO and HI word parts
 * are contiguous, but this offsets the other
 * registers.
 */
static const u8 genet_dma_ring_regs_v4[] = {
	[TDMA_READ_PTR]			= 0x00,
	[TDMA_READ_PTR_HI]		= 0x04,
	[TDMA_CONS_INDEX]		= 0x08,
	[TDMA_PROD_INDEX]		= 0x0C,
	[DMA_RING_BUF_SIZE]		= 0x10,
	[DMA_START_ADDR]		= 0x14,
	[DMA_START_ADDR_HI]		= 0x18,
	[DMA_END_ADDR]			= 0x1C,
	[DMA_END_ADDR_HI]		= 0x20,
	[DMA_MBUF_DONE_THRESH]		= 0x24,
	[TDMA_FLOW_PERIOD]		= 0x28,
	[TDMA_WRITE_PTR]		= 0x2C,
	[TDMA_WRITE_PTR_HI]		= 0x30,
};

static const u8 genet_dma_ring_regs_v123[] = {
	[TDMA_READ_PTR]			= 0x00,
	[TDMA_CONS_INDEX]		= 0x04,
	[TDMA_PROD_INDEX]		= 0x08,
	[DMA_RING_BUF_SIZE]		= 0x0C,
	[DMA_START_ADDR]		= 0x10,
	[DMA_END_ADDR]			= 0x14,
	[DMA_MBUF_DONE_THRESH]		= 0x18,
	[TDMA_FLOW_PERIOD]		= 0x1C,
	[TDMA_WRITE_PTR]		= 0x20,
};

/* Set at runtime once GENET version is known */
static const u8 *genet_dma_ring_regs;

static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 419
					   unsigned int ring,
					   enum dma_ring_reg r)
420 421 422 423 424 425 426
{
	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 428
					     unsigned int ring, u32 val,
					     enum dma_ring_reg r)
429 430 431 432 433 434 435
{
	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 437
					   unsigned int ring,
					   enum dma_ring_reg r)
438 439 440 441 442 443 444
{
	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 446
					     unsigned int ring, u32 val,
					     enum dma_ring_reg r)
447 448 449 450 451 452 453
{
	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

static int bcmgenet_get_settings(struct net_device *dev,
454
				 struct ethtool_cmd *cmd)
455 456 457 458 459 460 461 462 463 464 465 466 467
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	if (!netif_running(dev))
		return -EINVAL;

	if (!priv->phydev)
		return -ENODEV;

	return phy_ethtool_gset(priv->phydev, cmd);
}

static int bcmgenet_set_settings(struct net_device *dev,
468
				 struct ethtool_cmd *cmd)
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	if (!netif_running(dev))
		return -EINVAL;

	if (!priv->phydev)
		return -ENODEV;

	return phy_ethtool_sset(priv->phydev, cmd);
}

static int bcmgenet_set_rx_csum(struct net_device *dev,
				netdev_features_t wanted)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	u32 rbuf_chk_ctrl;
	bool rx_csum_en;

	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);

	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);

	/* enable rx checksumming */
	if (rx_csum_en)
		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
	else
		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
	priv->desc_rxchk_en = rx_csum_en;
498 499 500 501 502 503 504 505 506

	/* If UniMAC forwards CRC, we need to skip over it to get
	 * a valid CHK bit to be set in the per-packet status word
	*/
	if (rx_csum_en && priv->crc_fwd_en)
		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
	else
		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);

	return 0;
}

static int bcmgenet_set_tx_csum(struct net_device *dev,
				netdev_features_t wanted)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	bool desc_64b_en;
	u32 tbuf_ctrl, rbuf_ctrl;

	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);

	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));

	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
	if (desc_64b_en) {
		tbuf_ctrl |= RBUF_64B_EN;
		rbuf_ctrl |= RBUF_64B_EN;
	} else {
		tbuf_ctrl &= ~RBUF_64B_EN;
		rbuf_ctrl &= ~RBUF_64B_EN;
	}
	priv->desc_64b_en = desc_64b_en;

	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);

	return 0;
}

static int bcmgenet_set_features(struct net_device *dev,
541
				 netdev_features_t features)
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
{
	netdev_features_t changed = features ^ dev->features;
	netdev_features_t wanted = dev->wanted_features;
	int ret = 0;

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
		ret = bcmgenet_set_tx_csum(dev, wanted);
	if (changed & (NETIF_F_RXCSUM))
		ret = bcmgenet_set_rx_csum(dev, wanted);

	return ret;
}

static u32 bcmgenet_get_msglevel(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	return priv->msg_enable;
}

static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	priv->msg_enable = level;
}

569 570 571 572 573 574 575 576
static int bcmgenet_get_coalesce(struct net_device *dev,
				 struct ethtool_coalesce *ec)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	ec->tx_max_coalesced_frames =
		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
					 DMA_MBUF_DONE_THRESH);
577 578 579 580 581
	ec->rx_max_coalesced_frames =
		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
					 DMA_MBUF_DONE_THRESH);
	ec->rx_coalesce_usecs =
		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
582 583 584 585 586 587 588 589 590

	return 0;
}

static int bcmgenet_set_coalesce(struct net_device *dev,
				 struct ethtool_coalesce *ec)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned int i;
591
	u32 reg;
592

593 594 595 596
	/* Base system clock is 125Mhz, DMA timeout is this reference clock
	 * divided by 1024, which yields roughly 8.192us, our maximum value
	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
	 */
597
	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
598 599 600 601 602 603
	    ec->tx_max_coalesced_frames == 0 ||
	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
		return -EINVAL;

	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
604 605 606 607 608 609 610
		return -EINVAL;

	/* GENET TDMA hardware does not support a configurable timeout, but will
	 * always generate an interrupt either after MBDONE packets have been
	 * transmitted, or when the ring is emtpy.
	 */
	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
611
	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
612 613 614 615 616 617 618 619 620 621 622 623 624
		return -EOPNOTSUPP;

	/* Program all TX queues with the same values, as there is no
	 * ethtool knob to do coalescing on a per-queue basis
	 */
	for (i = 0; i < priv->hw_params->tx_queues; i++)
		bcmgenet_tdma_ring_writel(priv, i,
					  ec->tx_max_coalesced_frames,
					  DMA_MBUF_DONE_THRESH);
	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
				  ec->tx_max_coalesced_frames,
				  DMA_MBUF_DONE_THRESH);

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	for (i = 0; i < priv->hw_params->rx_queues; i++) {
		bcmgenet_rdma_ring_writel(priv, i,
					  ec->rx_max_coalesced_frames,
					  DMA_MBUF_DONE_THRESH);

		reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
		reg &= ~DMA_TIMEOUT_MASK;
		reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
		bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
	}

	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
				  ec->rx_max_coalesced_frames,
				  DMA_MBUF_DONE_THRESH);

	reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
	reg &= ~DMA_TIMEOUT_MASK;
	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
	bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);

645 646 647
	return 0;
}

648 649 650 651 652 653 654
/* standard ethtool support functions. */
enum bcmgenet_stat_type {
	BCMGENET_STAT_NETDEV = -1,
	BCMGENET_STAT_MIB_RX,
	BCMGENET_STAT_MIB_TX,
	BCMGENET_STAT_RUNT,
	BCMGENET_STAT_MISC,
655
	BCMGENET_STAT_SOFT,
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
};

struct bcmgenet_stats {
	char stat_string[ETH_GSTRING_LEN];
	int stat_sizeof;
	int stat_offset;
	enum bcmgenet_stat_type type;
	/* reg offset from UMAC base for misc counters */
	u16 reg_offset;
};

#define STAT_NETDEV(m) { \
	.stat_string = __stringify(m), \
	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
	.stat_offset = offsetof(struct net_device_stats, m), \
	.type = BCMGENET_STAT_NETDEV, \
}

#define STAT_GENET_MIB(str, m, _type) { \
	.stat_string = str, \
	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
	.stat_offset = offsetof(struct bcmgenet_priv, m), \
	.type = _type, \
}

#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
684
#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

#define STAT_GENET_MISC(str, m, offset) { \
	.stat_string = str, \
	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
	.stat_offset = offsetof(struct bcmgenet_priv, m), \
	.type = BCMGENET_STAT_MISC, \
	.reg_offset = offset, \
}


/* There is a 0xC gap between the end of RX and beginning of TX stats and then
 * between the end of TX stats and the beginning of the RX RUNT
 */
#define BCMGENET_STAT_OFFSET	0xc

/* Hardware counters must be kept in sync because the order/offset
 * is important here (order in structure declaration = order in hardware)
 */
static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
	/* general stats */
	STAT_NETDEV(rx_packets),
	STAT_NETDEV(tx_packets),
	STAT_NETDEV(rx_bytes),
	STAT_NETDEV(tx_bytes),
	STAT_NETDEV(rx_errors),
	STAT_NETDEV(tx_errors),
	STAT_NETDEV(rx_dropped),
	STAT_NETDEV(tx_dropped),
	STAT_NETDEV(multicast),
	/* UniMAC RSV counters */
	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
	/* UniMAC TSV counters */
	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
	/* UniMAC RUNT counters */
	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
	/* Misc UniMAC counters */
	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
			UMAC_RBUF_OVFL_CNT),
	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
784 785 786
	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
787 788 789 790 791
};

#define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)

static void bcmgenet_get_drvinfo(struct net_device *dev,
792
				 struct ethtool_drvinfo *info)
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
{
	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
	strlcpy(info->version, "v2.0", sizeof(info->version));
}

static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
{
	switch (string_set) {
	case ETH_SS_STATS:
		return BCMGENET_STATS_LEN;
	default:
		return -EOPNOTSUPP;
	}
}

808 809
static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
				 u8 *data)
810 811 812 813 814 815 816
{
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
			memcpy(data + i * ETH_GSTRING_LEN,
817 818
			       bcmgenet_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
		}
		break;
	}
}

static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
{
	int i, j = 0;

	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
		const struct bcmgenet_stats *s;
		u8 offset = 0;
		u32 val = 0;
		char *p;

		s = &bcmgenet_gstrings_stats[i];
		switch (s->type) {
		case BCMGENET_STAT_NETDEV:
837
		case BCMGENET_STAT_SOFT:
838 839 840 841 842 843
			continue;
		case BCMGENET_STAT_MIB_RX:
		case BCMGENET_STAT_MIB_TX:
		case BCMGENET_STAT_RUNT:
			if (s->type != BCMGENET_STAT_MIB_RX)
				offset = BCMGENET_STAT_OFFSET;
844 845
			val = bcmgenet_umac_readl(priv,
						  UMAC_MIB_START + j + offset);
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
			break;
		case BCMGENET_STAT_MISC:
			val = bcmgenet_umac_readl(priv, s->reg_offset);
			/* clear if overflowed */
			if (val == ~0)
				bcmgenet_umac_writel(priv, 0, s->reg_offset);
			break;
		}

		j += s->stat_sizeof;
		p = (char *)priv + s->stat_offset;
		*(u32 *)p = val;
	}
}

static void bcmgenet_get_ethtool_stats(struct net_device *dev,
862 863
				       struct ethtool_stats *stats,
				       u64 *data)
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int i;

	if (netif_running(dev))
		bcmgenet_update_mib_counters(priv);

	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
		const struct bcmgenet_stats *s;
		char *p;

		s = &bcmgenet_gstrings_stats[i];
		if (s->type == BCMGENET_STAT_NETDEV)
			p = (char *)&dev->stats;
		else
			p = (char *)priv;
		p += s->stat_offset;
		data[i] = *(u32 *)p;
	}
}

F
Florian Fainelli 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
	u32 reg;

	if (enable && !priv->clk_eee_enabled) {
		clk_prepare_enable(priv->clk_eee);
		priv->clk_eee_enabled = true;
	}

	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
	if (enable)
		reg |= EEE_EN;
	else
		reg &= ~EEE_EN;
	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);

	/* Enable EEE and switch to a 27Mhz clock automatically */
	reg = __raw_readl(priv->base + off);
	if (enable)
		reg |= TBUF_EEE_EN | TBUF_PM_EN;
	else
		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
	__raw_writel(reg, priv->base + off);

	/* Do the same for thing for RBUF */
	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
	if (enable)
		reg |= RBUF_EEE_EN | RBUF_PM_EN;
	else
		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);

	if (!enable && priv->clk_eee_enabled) {
		clk_disable_unprepare(priv->clk_eee);
		priv->clk_eee_enabled = false;
	}

	priv->eee.eee_enabled = enable;
	priv->eee.eee_active = enable;
}

static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct ethtool_eee *p = &priv->eee;

	if (GENET_IS_V1(priv))
		return -EOPNOTSUPP;

	e->eee_enabled = p->eee_enabled;
	e->eee_active = p->eee_active;
	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);

	return phy_ethtool_get_eee(priv->phydev, e);
}

static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct ethtool_eee *p = &priv->eee;
	int ret = 0;

	if (GENET_IS_V1(priv))
		return -EOPNOTSUPP;

	p->eee_enabled = e->eee_enabled;

	if (!p->eee_enabled) {
		bcmgenet_eee_enable_set(dev, false);
	} else {
		ret = phy_init_eee(priv->phydev, 0);
		if (ret) {
			netif_err(priv, hw, dev, "EEE initialization failed\n");
			return ret;
		}

		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
		bcmgenet_eee_enable_set(dev, true);
	}

	return phy_ethtool_set_eee(priv->phydev, e);
}

970 971 972 973 974 975 976
static int bcmgenet_nway_reset(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	return genphy_restart_aneg(priv->phydev);
}

977 978 979 980 981 982 983 984 985 986 987
/* standard ethtool support functions. */
static struct ethtool_ops bcmgenet_ethtool_ops = {
	.get_strings		= bcmgenet_get_strings,
	.get_sset_count		= bcmgenet_get_sset_count,
	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
	.get_settings		= bcmgenet_get_settings,
	.set_settings		= bcmgenet_set_settings,
	.get_drvinfo		= bcmgenet_get_drvinfo,
	.get_link		= ethtool_op_get_link,
	.get_msglevel		= bcmgenet_get_msglevel,
	.set_msglevel		= bcmgenet_set_msglevel,
988 989
	.get_wol		= bcmgenet_get_wol,
	.set_wol		= bcmgenet_set_wol,
F
Florian Fainelli 已提交
990 991
	.get_eee		= bcmgenet_get_eee,
	.set_eee		= bcmgenet_set_eee,
992
	.nway_reset		= bcmgenet_nway_reset,
993 994
	.get_coalesce		= bcmgenet_get_coalesce,
	.set_coalesce		= bcmgenet_set_coalesce,
995 996 997
};

/* Power down the unimac, based on mode. */
998
static int bcmgenet_power_down(struct bcmgenet_priv *priv,
999 1000
				enum bcmgenet_power_mode mode)
{
1001
	int ret = 0;
1002 1003 1004 1005
	u32 reg;

	switch (mode) {
	case GENET_POWER_CABLE_SENSE:
1006
		phy_detach(priv->phydev);
1007 1008
		break;

1009
	case GENET_POWER_WOL_MAGIC:
1010
		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1011 1012
		break;

1013 1014 1015 1016 1017 1018 1019
	case GENET_POWER_PASSIVE:
		/* Power down LED */
		if (priv->hw_params->flags & GENET_HAS_EXT) {
			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
			reg |= (EXT_PWR_DOWN_PHY |
				EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1020 1021

			bcmgenet_phy_power_set(priv->dev, false);
1022 1023 1024 1025 1026
		}
		break;
	default:
		break;
	}
1027 1028

	return 0;
1029 1030 1031
}

static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1032
			      enum bcmgenet_power_mode mode)
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
{
	u32 reg;

	if (!(priv->hw_params->flags & GENET_HAS_EXT))
		return;

	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);

	switch (mode) {
	case GENET_POWER_PASSIVE:
		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
				EXT_PWR_DOWN_BIAS);
		/* fallthrough */
	case GENET_POWER_CABLE_SENSE:
		/* enable APD */
		reg |= EXT_PWR_DN_EN_LD;
		break;
1050 1051 1052
	case GENET_POWER_WOL_MAGIC:
		bcmgenet_wol_power_up_cfg(priv, mode);
		return;
1053 1054 1055 1056 1057
	default:
		break;
	}

	bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1058
	if (mode == GENET_POWER_PASSIVE) {
1059
		bcmgenet_phy_power_set(priv->dev, true);
1060 1061
		bcmgenet_mii_reset(priv->dev);
	}
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
}

/* ioctl handle special commands that are not present in ethtool. */
static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int val = 0;

	if (!netif_running(dev))
		return -EINVAL;

	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		if (!priv->phydev)
			val = -ENODEV;
		else
			val = phy_mii_ioctl(priv->phydev, rq, cmd);
		break;

	default:
		val = -EINVAL;
		break;
	}

	return val;
}

static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
					 struct bcmgenet_tx_ring *ring)
{
	struct enet_cb *tx_cb_ptr;

	tx_cb_ptr = ring->cbs;
	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	/* Advancing local write pointer */
	if (ring->write_ptr == ring->end_ptr)
		ring->write_ptr = ring->cb_ptr;
	else
		ring->write_ptr++;

	return tx_cb_ptr;
}

/* Simple helper to free a control block's resources */
static void bcmgenet_free_cb(struct enet_cb *cb)
{
	dev_kfree_skb_any(cb->skb);
	cb->skb = NULL;
	dma_unmap_addr_set(cb, dma_addr, 0);
}

1116 1117
static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
{
1118
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1119 1120 1121 1122 1123
				 INTRL2_CPU_MASK_SET);
}

static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
{
1124
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
				 INTRL2_CPU_MASK_CLEAR);
}

static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
{
	bcmgenet_intrl2_1_writel(ring->priv,
				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
				 INTRL2_CPU_MASK_SET);
}

static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
{
	bcmgenet_intrl2_1_writel(ring->priv,
				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
				 INTRL2_CPU_MASK_CLEAR);
}

1142
static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1143
{
1144
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1145
				 INTRL2_CPU_MASK_SET);
1146 1147
}

1148
static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1149
{
1150
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1151
				 INTRL2_CPU_MASK_CLEAR);
1152 1153
}

1154
static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1155
{
1156
	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1157
				 INTRL2_CPU_MASK_CLEAR);
1158 1159
}

1160
static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1161
{
1162
	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1163
				 INTRL2_CPU_MASK_SET);
1164 1165 1166
}

/* Unlocked version of the reclaim routine */
1167 1168
static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
					  struct bcmgenet_tx_ring *ring)
1169 1170 1171
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct enet_cb *tx_cb_ptr;
1172
	struct netdev_queue *txq;
1173
	unsigned int pkts_compl = 0;
1174
	unsigned int c_index;
1175 1176
	unsigned int txbds_ready;
	unsigned int txbds_processed = 0;
1177

B
Brian Norris 已提交
1178
	/* Compute how many buffers are transmitted since last xmit call */
1179
	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1180
	c_index &= DMA_C_INDEX_MASK;
1181

1182 1183
	if (likely(c_index >= ring->c_index))
		txbds_ready = c_index - ring->c_index;
1184
	else
1185
		txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1186 1187

	netif_dbg(priv, tx_done, dev,
1188 1189
		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1190 1191

	/* Reclaim transmitted buffers */
1192 1193
	while (txbds_processed < txbds_ready) {
		tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1194
		if (tx_cb_ptr->skb) {
1195
			pkts_compl++;
1196
			dev->stats.tx_packets++;
1197 1198
			dev->stats.tx_bytes += tx_cb_ptr->skb->len;
			dma_unmap_single(&dev->dev,
1199 1200 1201
					 dma_unmap_addr(tx_cb_ptr, dma_addr),
					 tx_cb_ptr->skb->len,
					 DMA_TO_DEVICE);
1202 1203 1204 1205 1206
			bcmgenet_free_cb(tx_cb_ptr);
		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
			dev->stats.tx_bytes +=
				dma_unmap_len(tx_cb_ptr, dma_len);
			dma_unmap_page(&dev->dev,
1207 1208 1209
				       dma_unmap_addr(tx_cb_ptr, dma_addr),
				       dma_unmap_len(tx_cb_ptr, dma_len),
				       DMA_TO_DEVICE);
1210 1211 1212
			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
		}

1213 1214 1215 1216 1217
		txbds_processed++;
		if (likely(ring->clean_ptr < ring->end_ptr))
			ring->clean_ptr++;
		else
			ring->clean_ptr = ring->cb_ptr;
1218 1219
	}

1220 1221 1222
	ring->free_bds += txbds_processed;
	ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;

1223
	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1224
		txq = netdev_get_tx_queue(dev, ring->queue);
1225 1226 1227
		if (netif_tx_queue_stopped(txq))
			netif_tx_wake_queue(txq);
	}
1228

1229
	return pkts_compl;
1230 1231
}

1232
static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1233
				struct bcmgenet_tx_ring *ring)
1234
{
1235
	unsigned int released;
1236 1237 1238
	unsigned long flags;

	spin_lock_irqsave(&ring->lock, flags);
1239
	released = __bcmgenet_tx_reclaim(dev, ring);
1240
	spin_unlock_irqrestore(&ring->lock, flags);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

	return released;
}

static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
{
	struct bcmgenet_tx_ring *ring =
		container_of(napi, struct bcmgenet_tx_ring, napi);
	unsigned int work_done = 0;

	work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);

	if (work_done == 0) {
		napi_complete(napi);
1255
		ring->int_enable(ring);
1256 1257 1258 1259 1260

		return 0;
	}

	return budget;
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
}

static void bcmgenet_tx_reclaim_all(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int i;

	if (netif_is_multiqueue(dev)) {
		for (i = 0; i < priv->hw_params->tx_queues; i++)
			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
	}

	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
}

/* Transmits a single SKB (either head of a fragment or a single SKB)
 * caller must hold priv->lock
 */
static int bcmgenet_xmit_single(struct net_device *dev,
				struct sk_buff *skb,
				u16 dma_desc_flags,
				struct bcmgenet_tx_ring *ring)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct device *kdev = &priv->pdev->dev;
	struct enet_cb *tx_cb_ptr;
	unsigned int skb_len;
	dma_addr_t mapping;
	u32 length_status;
	int ret;

	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);

	if (unlikely(!tx_cb_ptr))
		BUG();

	tx_cb_ptr->skb = skb;

	skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);

	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
	ret = dma_mapping_error(kdev, mapping);
	if (ret) {
1304
		priv->mib.tx_dma_failed++;
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
		dev_kfree_skb(skb);
		return ret;
	}

	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
	dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
			DMA_TX_APPEND_CRC;

	if (skb->ip_summed == CHECKSUM_PARTIAL)
		length_status |= DMA_TX_DO_CSUM;

	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);

	return 0;
}

B
Brian Norris 已提交
1324
/* Transmit a SKB fragment */
1325
static int bcmgenet_xmit_frag(struct net_device *dev,
1326 1327 1328
			      skb_frag_t *frag,
			      u16 dma_desc_flags,
			      struct bcmgenet_tx_ring *ring)
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct device *kdev = &priv->pdev->dev;
	struct enet_cb *tx_cb_ptr;
	dma_addr_t mapping;
	int ret;

	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);

	if (unlikely(!tx_cb_ptr))
		BUG();
	tx_cb_ptr->skb = NULL;

	mapping = skb_frag_dma_map(kdev, frag, 0,
1343
				   skb_frag_size(frag), DMA_TO_DEVICE);
1344 1345
	ret = dma_mapping_error(kdev, mapping);
	if (ret) {
1346
		priv->mib.tx_dma_failed++;
1347
		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1348
			  __func__);
1349 1350 1351 1352 1353 1354 1355
		return ret;
	}

	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
	dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);

	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1356 1357
		    (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1358 1359 1360 1361 1362 1363 1364

	return 0;
}

/* Reallocate the SKB to put enough headroom in front of it and insert
 * the transmit checksum offsets in the descriptors
 */
1365 1366
static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
					    struct sk_buff *skb)
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
{
	struct status_64 *status = NULL;
	struct sk_buff *new_skb;
	u16 offset;
	u8 ip_proto;
	u16 ip_ver;
	u32 tx_csum_info;

	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
		/* If 64 byte status block enabled, must make sure skb has
		 * enough headroom for us to insert 64B status block.
		 */
		new_skb = skb_realloc_headroom(skb, sizeof(*status));
		dev_kfree_skb(skb);
		if (!new_skb) {
			dev->stats.tx_dropped++;
1383
			return NULL;
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
		}
		skb = new_skb;
	}

	skb_push(skb, sizeof(*status));
	status = (struct status_64 *)skb->data;

	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
		ip_ver = htons(skb->protocol);
		switch (ip_ver) {
		case ETH_P_IP:
			ip_proto = ip_hdr(skb)->protocol;
			break;
		case ETH_P_IPV6:
			ip_proto = ipv6_hdr(skb)->nexthdr;
			break;
		default:
1401
			return skb;
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
		}

		offset = skb_checksum_start_offset(skb) - sizeof(*status);
		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
				(offset + skb->csum_offset);

		/* Set the length valid bit for TCP and UDP and just set
		 * the special UDP flag for IPv4, else just set to 0.
		 */
		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
			tx_csum_info |= STATUS_TX_CSUM_LV;
			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1415
		} else {
1416
			tx_csum_info = 0;
1417
		}
1418 1419 1420 1421

		status->tx_csum_info = tx_csum_info;
	}

1422
	return skb;
1423 1424 1425 1426 1427 1428
}

static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct bcmgenet_tx_ring *ring = NULL;
1429
	struct netdev_queue *txq;
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	unsigned long flags = 0;
	int nr_frags, index;
	u16 dma_desc_flags;
	int ret;
	int i;

	index = skb_get_queue_mapping(skb);
	/* Mapping strategy:
	 * queue_mapping = 0, unclassified, packet xmited through ring16
	 * queue_mapping = 1, goes to ring 0. (highest priority queue
	 * queue_mapping = 2, goes to ring 1.
	 * queue_mapping = 3, goes to ring 2.
	 * queue_mapping = 4, goes to ring 3.
	 */
	if (index == 0)
		index = DESC_INDEX;
	else
		index -= 1;

	nr_frags = skb_shinfo(skb)->nr_frags;
	ring = &priv->tx_rings[index];
1451
	txq = netdev_get_tx_queue(dev, ring->queue);
1452 1453 1454

	spin_lock_irqsave(&ring->lock, flags);
	if (ring->free_bds <= nr_frags + 1) {
1455
		netif_tx_stop_queue(txq);
1456
		netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1457
			   __func__, index, ring->queue);
1458 1459 1460 1461
		ret = NETDEV_TX_BUSY;
		goto out;
	}

1462 1463 1464 1465 1466
	if (skb_padto(skb, ETH_ZLEN)) {
		ret = NETDEV_TX_OK;
		goto out;
	}

1467 1468
	/* set the SKB transmit checksum */
	if (priv->desc_64b_en) {
1469 1470
		skb = bcmgenet_put_tx_csum(dev, skb);
		if (!skb) {
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
			ret = NETDEV_TX_OK;
			goto out;
		}
	}

	dma_desc_flags = DMA_SOP;
	if (nr_frags == 0)
		dma_desc_flags |= DMA_EOP;

	/* Transmit single SKB or head of fragment list */
	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
	if (ret) {
		ret = NETDEV_TX_OK;
		goto out;
	}

	/* xmit fragment */
	for (i = 0; i < nr_frags; i++) {
		ret = bcmgenet_xmit_frag(dev,
1490 1491 1492
					 &skb_shinfo(skb)->frags[i],
					 (i == nr_frags - 1) ? DMA_EOP : 0,
					 ring);
1493 1494 1495 1496 1497 1498
		if (ret) {
			ret = NETDEV_TX_OK;
			goto out;
		}
	}

1499 1500
	skb_tx_timestamp(skb);

1501 1502 1503 1504 1505
	/* Decrement total BD count and advance our write pointer */
	ring->free_bds -= nr_frags + 1;
	ring->prod_index += nr_frags + 1;
	ring->prod_index &= DMA_P_INDEX_MASK;

1506
	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1507
		netif_tx_stop_queue(txq);
1508

1509 1510 1511 1512
	if (!skb->xmit_more || netif_xmit_stopped(txq))
		/* Packets are ready, update producer index */
		bcmgenet_tdma_ring_writel(priv, ring->index,
					  ring->prod_index, TDMA_PROD_INDEX);
1513 1514 1515 1516 1517 1518
out:
	spin_unlock_irqrestore(&ring->lock, flags);

	return ret;
}

1519 1520
static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
					  struct enet_cb *cb)
1521 1522 1523
{
	struct device *kdev = &priv->pdev->dev;
	struct sk_buff *skb;
1524
	struct sk_buff *rx_skb;
1525 1526
	dma_addr_t mapping;

1527
	/* Allocate a new Rx skb */
1528
	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1529 1530 1531 1532 1533 1534
	if (!skb) {
		priv->mib.alloc_rx_buff_failed++;
		netif_err(priv, rx_err, priv->dev,
			  "%s: Rx skb allocation failed\n", __func__);
		return NULL;
	}
1535

1536 1537 1538 1539
	/* DMA-map the new Rx skb */
	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
				 DMA_FROM_DEVICE);
	if (dma_mapping_error(kdev, mapping)) {
1540
		priv->mib.rx_dma_failed++;
1541
		dev_kfree_skb_any(skb);
1542
		netif_err(priv, rx_err, priv->dev,
1543 1544
			  "%s: Rx skb DMA mapping failed\n", __func__);
		return NULL;
1545 1546
	}

1547 1548 1549 1550 1551 1552 1553 1554
	/* Grab the current Rx skb from the ring and DMA-unmap it */
	rx_skb = cb->skb;
	if (likely(rx_skb))
		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
				 priv->rx_buf_len, DMA_FROM_DEVICE);

	/* Put the new Rx skb on the ring */
	cb->skb = skb;
1555
	dma_unmap_addr_set(cb, dma_addr, mapping);
1556
	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1557

1558 1559
	/* Return the current Rx skb to caller */
	return rx_skb;
1560 1561 1562 1563 1564
}

/* bcmgenet_desc_rx - descriptor based rx process.
 * this could be called from bottom half, or from NAPI polling method.
 */
1565
static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1566 1567
				     unsigned int budget)
{
1568
	struct bcmgenet_priv *priv = ring->priv;
1569 1570 1571 1572 1573
	struct net_device *dev = priv->dev;
	struct enet_cb *cb;
	struct sk_buff *skb;
	u32 dma_length_status;
	unsigned long dma_flag;
1574
	int len;
1575 1576
	unsigned int rxpktprocessed = 0, rxpkttoprocess;
	unsigned int p_index;
1577
	unsigned int discards;
1578 1579
	unsigned int chksum_ok = 0;

1580
	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592

	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
		   DMA_P_INDEX_DISCARD_CNT_MASK;
	if (discards > ring->old_discards) {
		discards = discards - ring->old_discards;
		dev->stats.rx_missed_errors += discards;
		dev->stats.rx_errors += discards;
		ring->old_discards += discards;

		/* Clear HW register when we reach 75% of maximum 0xFFFF */
		if (ring->old_discards >= 0xC000) {
			ring->old_discards = 0;
1593
			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1594 1595 1596 1597
						  RDMA_PROD_INDEX);
		}
	}

1598 1599
	p_index &= DMA_P_INDEX_MASK;

1600 1601
	if (likely(p_index >= ring->c_index))
		rxpkttoprocess = p_index - ring->c_index;
1602
	else
1603 1604
		rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
				 p_index;
1605 1606

	netif_dbg(priv, rx_status, dev,
1607
		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1608 1609

	while ((rxpktprocessed < rxpkttoprocess) &&
1610
	       (rxpktprocessed < budget)) {
1611
		cb = &priv->rx_cbs[ring->read_ptr];
1612
		skb = bcmgenet_rx_refill(priv, cb);
1613 1614 1615

		if (unlikely(!skb)) {
			dev->stats.rx_dropped++;
1616
			goto next;
1617 1618
		}

1619
		if (!priv->desc_64b_en) {
1620
			dma_length_status =
1621
				dmadesc_get_length_status(priv, cb->bd_addr);
1622 1623
		} else {
			struct status_64 *status;
1624

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
			status = (struct status_64 *)skb->data;
			dma_length_status = status->length_status;
		}

		/* DMA flags and length are still valid no matter how
		 * we got the Receive Status Vector (64B RSB or register)
		 */
		dma_flag = dma_length_status & 0xffff;
		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;

		netif_dbg(priv, rx_status, dev,
1636
			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1637 1638
			  __func__, p_index, ring->c_index,
			  ring->read_ptr, dma_length_status);
1639 1640 1641

		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
			netif_err(priv, rx_status, dev,
1642
				  "dropping fragmented packet!\n");
1643
			dev->stats.rx_errors++;
1644 1645
			dev_kfree_skb_any(skb);
			goto next;
1646
		}
1647

1648 1649 1650 1651 1652 1653 1654
		/* report errors */
		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
						DMA_RX_OV |
						DMA_RX_NO |
						DMA_RX_LG |
						DMA_RX_RXER))) {
			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1655
				  (unsigned int)dma_flag);
1656 1657 1658 1659 1660 1661 1662 1663 1664
			if (dma_flag & DMA_RX_CRC_ERROR)
				dev->stats.rx_crc_errors++;
			if (dma_flag & DMA_RX_OV)
				dev->stats.rx_over_errors++;
			if (dma_flag & DMA_RX_NO)
				dev->stats.rx_frame_errors++;
			if (dma_flag & DMA_RX_LG)
				dev->stats.rx_length_errors++;
			dev->stats.rx_errors++;
1665 1666
			dev_kfree_skb_any(skb);
			goto next;
1667 1668 1669
		} /* error packet */

		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1670
			     priv->desc_rxchk_en;
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

		skb_put(skb, len);
		if (priv->desc_64b_en) {
			skb_pull(skb, 64);
			len -= 64;
		}

		if (likely(chksum_ok))
			skb->ip_summed = CHECKSUM_UNNECESSARY;

		/* remove hardware 2bytes added for IP alignment */
		skb_pull(skb, 2);
		len -= 2;

		if (priv->crc_fwd_en) {
			skb_trim(skb, len - ETH_FCS_LEN);
			len -= ETH_FCS_LEN;
		}

		/*Finish setting up the received SKB and send it to the kernel*/
		skb->protocol = eth_type_trans(skb, priv->dev);
		dev->stats.rx_packets++;
		dev->stats.rx_bytes += len;
		if (dma_flag & DMA_RX_MULT)
			dev->stats.multicast++;

		/* Notify kernel */
1698
		napi_gro_receive(&ring->napi, skb);
1699 1700
		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");

1701
next:
1702
		rxpktprocessed++;
1703 1704 1705 1706 1707 1708
		if (likely(ring->read_ptr < ring->end_ptr))
			ring->read_ptr++;
		else
			ring->read_ptr = ring->cb_ptr;

		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1709
		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1710 1711 1712 1713 1714
	}

	return rxpktprocessed;
}

1715 1716 1717
/* Rx NAPI polling method */
static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
{
1718 1719
	struct bcmgenet_rx_ring *ring = container_of(napi,
			struct bcmgenet_rx_ring, napi);
1720 1721
	unsigned int work_done;

1722
	work_done = bcmgenet_desc_rx(ring, budget);
1723 1724 1725

	if (work_done < budget) {
		napi_complete(napi);
1726
		ring->int_enable(ring);
1727 1728 1729 1730 1731
	}

	return work_done;
}

1732
/* Assign skb to RX DMA descriptor. */
1733 1734
static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
				     struct bcmgenet_rx_ring *ring)
1735 1736
{
	struct enet_cb *cb;
1737
	struct sk_buff *skb;
1738 1739
	int i;

1740
	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1741 1742

	/* loop here for each buffer needing assign */
1743 1744
	for (i = 0; i < ring->size; i++) {
		cb = ring->cbs + i;
1745 1746 1747 1748 1749
		skb = bcmgenet_rx_refill(priv, cb);
		if (skb)
			dev_kfree_skb_any(skb);
		if (!cb->skb)
			return -ENOMEM;
1750 1751
	}

1752
	return 0;
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
}

static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
{
	struct enet_cb *cb;
	int i;

	for (i = 0; i < priv->num_rx_bds; i++) {
		cb = &priv->rx_cbs[i];

		if (dma_unmap_addr(cb, dma_addr)) {
			dma_unmap_single(&priv->dev->dev,
1765 1766
					 dma_unmap_addr(cb, dma_addr),
					 priv->rx_buf_len, DMA_FROM_DEVICE);
1767 1768 1769 1770 1771 1772 1773 1774
			dma_unmap_addr_set(cb, dma_addr, 0);
		}

		if (cb->skb)
			bcmgenet_free_cb(cb);
	}
}

1775
static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
{
	u32 reg;

	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
	if (enable)
		reg |= mask;
	else
		reg &= ~mask;
	bcmgenet_umac_writel(priv, reg, UMAC_CMD);

	/* UniMAC stops on a packet boundary, wait for a full-size packet
	 * to be processed
	 */
	if (enable == 0)
		usleep_range(1000, 2000);
}

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
static int reset_umac(struct bcmgenet_priv *priv)
{
	struct device *kdev = &priv->pdev->dev;
	unsigned int timeout = 0;
	u32 reg;

	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
	bcmgenet_rbuf_ctrl_set(priv, 0);
	udelay(10);

	/* disable MAC while updating its registers */
	bcmgenet_umac_writel(priv, 0, UMAC_CMD);

	/* issue soft reset, wait for it to complete */
	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
	while (timeout++ < 1000) {
		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
		if (!(reg & CMD_SW_RESET))
			return 0;

		udelay(1);
	}

	if (timeout == 1000) {
		dev_err(kdev,
B
Brian Norris 已提交
1818
			"timeout waiting for MAC to come out of reset\n");
1819 1820 1821 1822 1823 1824
		return -ETIMEDOUT;
	}

	return 0;
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
{
	/* Mask all interrupts.*/
	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
	bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
	bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
}

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
{
	u32 int0_enable = 0;

	/* Monitor cable plug/unplugged event for internal PHY, external PHY
	 * and MoCA PHY
	 */
	if (priv->internal_phy) {
		int0_enable |= UMAC_IRQ_LINK_EVENT;
	} else if (priv->ext_phy) {
		int0_enable |= UMAC_IRQ_LINK_EVENT;
	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
			int0_enable |= UMAC_IRQ_LINK_EVENT;
	}
	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
}

1854 1855 1856 1857
static int init_umac(struct bcmgenet_priv *priv)
{
	struct device *kdev = &priv->pdev->dev;
	int ret;
P
Petri Gynther 已提交
1858 1859 1860 1861
	u32 reg;
	u32 int0_enable = 0;
	u32 int1_enable = 0;
	int i;
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");

	ret = reset_umac(priv);
	if (ret)
		return ret;

	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
	/* clear tx/rx counter */
	bcmgenet_umac_writel(priv,
1872 1873
			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
			     UMAC_MIB_CTRL);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);

	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);

	/* init rx registers, enable ip header optimization */
	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
	reg |= RBUF_ALIGN_2B;
	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);

	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);

1886
	bcmgenet_intr_disable(priv);
1887

P
Petri Gynther 已提交
1888
	/* Enable Rx default queue 16 interrupts */
1889
	int0_enable |= UMAC_IRQ_RXDMA_DONE;
1890

P
Petri Gynther 已提交
1891
	/* Enable Tx default queue 16 interrupts */
1892
	int0_enable |= UMAC_IRQ_TXDMA_DONE;
1893

1894 1895
	/* Configure backpressure vectors for MoCA */
	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
		reg = bcmgenet_bp_mc_get(priv);
		reg |= BIT(priv->hw_params->bp_in_en_shift);

		/* bp_mask: back pressure mask */
		if (netif_is_multiqueue(priv->dev))
			reg |= priv->hw_params->bp_in_mask;
		else
			reg &= ~priv->hw_params->bp_in_mask;
		bcmgenet_bp_mc_set(priv, reg);
	}

	/* Enable MDIO interrupts on GENET v3+ */
	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
P
Petri Gynther 已提交
1909
		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1910

1911 1912 1913 1914
	/* Enable Rx priority queue interrupts */
	for (i = 0; i < priv->hw_params->rx_queues; ++i)
		int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));

P
Petri Gynther 已提交
1915 1916 1917
	/* Enable Tx priority queue interrupts */
	for (i = 0; i < priv->hw_params->tx_queues; ++i)
		int1_enable |= (1 << i);
1918

P
Petri Gynther 已提交
1919 1920
	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1921

1922 1923 1924 1925 1926 1927
	/* Enable rx/tx engine.*/
	dev_dbg(kdev, "done init umac\n");

	return 0;
}

1928
/* Initialize a Tx ring along with corresponding hardware registers */
1929 1930
static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
				  unsigned int index, unsigned int size,
1931
				  unsigned int start_ptr, unsigned int end_ptr)
1932 1933 1934 1935 1936 1937
{
	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
	u32 words_per_bd = WORDS_PER_BD(priv);
	u32 flow_period_val = 0;

	spin_lock_init(&ring->lock);
1938
	ring->priv = priv;
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
	ring->index = index;
	if (index == DESC_INDEX) {
		ring->queue = 0;
		ring->int_enable = bcmgenet_tx_ring16_int_enable;
		ring->int_disable = bcmgenet_tx_ring16_int_disable;
	} else {
		ring->queue = index + 1;
		ring->int_enable = bcmgenet_tx_ring_int_enable;
		ring->int_disable = bcmgenet_tx_ring_int_disable;
	}
1949
	ring->cbs = priv->tx_cbs + start_ptr;
1950
	ring->size = size;
1951
	ring->clean_ptr = start_ptr;
1952 1953
	ring->c_index = 0;
	ring->free_bds = size;
1954 1955
	ring->write_ptr = start_ptr;
	ring->cb_ptr = start_ptr;
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	ring->end_ptr = end_ptr - 1;
	ring->prod_index = 0;

	/* Set flow period for ring != 16 */
	if (index != DESC_INDEX)
		flow_period_val = ENET_MAX_MTU_SIZE << 16;

	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
	/* Disable rate control for now */
	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1968
				  TDMA_FLOW_PERIOD);
1969
	bcmgenet_tdma_ring_writel(priv, index,
1970 1971
				  ((size << DMA_RING_SIZE_SHIFT) |
				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1972 1973

	/* Set start and end address, read and write pointers */
1974
	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1975
				  DMA_START_ADDR);
1976
	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1977
				  TDMA_READ_PTR);
1978
	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1979
				  TDMA_WRITE_PTR);
1980
	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1981
				  DMA_END_ADDR);
1982 1983 1984 1985
}

/* Initialize a RDMA ring */
static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1986 1987
				 unsigned int index, unsigned int size,
				 unsigned int start_ptr, unsigned int end_ptr)
1988
{
1989
	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
1990 1991 1992
	u32 words_per_bd = WORDS_PER_BD(priv);
	int ret;

1993
	ring->priv = priv;
1994
	ring->index = index;
1995 1996 1997 1998 1999 2000 2001
	if (index == DESC_INDEX) {
		ring->int_enable = bcmgenet_rx_ring16_int_enable;
		ring->int_disable = bcmgenet_rx_ring16_int_disable;
	} else {
		ring->int_enable = bcmgenet_rx_ring_int_enable;
		ring->int_disable = bcmgenet_rx_ring_int_disable;
	}
2002 2003 2004 2005 2006 2007
	ring->cbs = priv->rx_cbs + start_ptr;
	ring->size = size;
	ring->c_index = 0;
	ring->read_ptr = start_ptr;
	ring->cb_ptr = start_ptr;
	ring->end_ptr = end_ptr - 1;
2008

2009 2010
	ret = bcmgenet_alloc_rx_buffers(priv, ring);
	if (ret)
2011 2012 2013 2014
		return ret;

	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2015
	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2016
	bcmgenet_rdma_ring_writel(priv, index,
2017 2018
				  ((size << DMA_RING_SIZE_SHIFT) |
				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2019
	bcmgenet_rdma_ring_writel(priv, index,
2020 2021 2022
				  (DMA_FC_THRESH_LO <<
				   DMA_XOFF_THRESHOLD_SHIFT) |
				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2023 2024

	/* Set start and end address, read and write pointers */
2025 2026 2027 2028 2029 2030 2031
	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
				  DMA_START_ADDR);
	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
				  RDMA_READ_PTR);
	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
				  RDMA_WRITE_PTR);
	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2032
				  DMA_END_ADDR);
2033 2034 2035 2036

	return ret;
}

2037 2038 2039 2040 2041 2042 2043
static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
E
Eric Dumazet 已提交
2044
		netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2045 2046 2047
	}

	ring = &priv->tx_rings[DESC_INDEX];
E
Eric Dumazet 已提交
2048
	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
}

static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		napi_enable(&ring->napi);
	}

	ring = &priv->tx_rings[DESC_INDEX];
	napi_enable(&ring->napi);
}

static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		napi_disable(&ring->napi);
	}

	ring = &priv->tx_rings[DESC_INDEX];
	napi_disable(&ring->napi);
}

static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		netif_napi_del(&ring->napi);
	}

	ring = &priv->tx_rings[DESC_INDEX];
	netif_napi_del(&ring->napi);
}

2093
/* Initialize Tx queues
2094
 *
2095
 * Queues 0-3 are priority-based, each one has 32 descriptors,
2096 2097
 * with queue 0 being the highest priority queue.
 *
2098
 * Queue 16 is the default Tx queue with
2099
 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2100
 *
2101 2102 2103 2104 2105 2106
 * The transmit control block pool is then partitioned as follows:
 * - Tx queue 0 uses tx_cbs[0..31]
 * - Tx queue 1 uses tx_cbs[32..63]
 * - Tx queue 2 uses tx_cbs[64..95]
 * - Tx queue 3 uses tx_cbs[96..127]
 * - Tx queue 16 uses tx_cbs[128..255]
2107
 */
2108
static void bcmgenet_init_tx_queues(struct net_device *dev)
2109 2110
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
2111 2112
	u32 i, dma_enable;
	u32 dma_ctrl, ring_cfg;
2113
	u32 dma_priority[3] = {0, 0, 0};
2114 2115 2116 2117 2118 2119

	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
	dma_enable = dma_ctrl & DMA_EN;
	dma_ctrl &= ~DMA_EN;
	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);

2120 2121 2122
	dma_ctrl = 0;
	ring_cfg = 0;

2123 2124 2125
	/* Enable strict priority arbiter mode */
	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);

2126
	/* Initialize Tx priority queues */
2127
	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2128 2129 2130
		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
				      i * priv->hw_params->tx_bds_per_q,
				      (i + 1) * priv->hw_params->tx_bds_per_q);
2131 2132
		ring_cfg |= (1 << i);
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2133 2134
		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2135 2136
	}

2137
	/* Initialize Tx default queue 16 */
2138
	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2139
			      priv->hw_params->tx_queues *
2140
			      priv->hw_params->tx_bds_per_q,
2141 2142 2143
			      TOTAL_DESC);
	ring_cfg |= (1 << DESC_INDEX);
	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2144 2145 2146
	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2147 2148

	/* Set Tx queue priorities */
2149 2150 2151 2152
	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);

2153 2154 2155
	/* Initialize Tx NAPI */
	bcmgenet_init_tx_napi(priv);

2156 2157
	/* Enable Tx queues */
	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2158

2159
	/* Enable Tx DMA */
2160
	if (dma_enable)
2161 2162
		dma_ctrl |= DMA_EN;
	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2163 2164
}

2165 2166
static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
{
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	unsigned int i;
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2177 2178 2179 2180
}

static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
{
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	unsigned int i;
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		napi_enable(&ring->napi);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	napi_enable(&ring->napi);
2191 2192 2193 2194
}

static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
{
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	unsigned int i;
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		napi_disable(&ring->napi);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	napi_disable(&ring->napi);
2205 2206 2207 2208
}

static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
{
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	unsigned int i;
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		netif_napi_del(&ring->napi);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	netif_napi_del(&ring->napi);
2219 2220
}

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
/* Initialize Rx queues
 *
 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
 * used to direct traffic to these queues.
 *
 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
 */
static int bcmgenet_init_rx_queues(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	u32 i;
	u32 dma_enable;
	u32 dma_ctrl;
	u32 ring_cfg;
	int ret;

	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
	dma_enable = dma_ctrl & DMA_EN;
	dma_ctrl &= ~DMA_EN;
	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);

	dma_ctrl = 0;
	ring_cfg = 0;

	/* Initialize Rx priority queues */
	for (i = 0; i < priv->hw_params->rx_queues; i++) {
		ret = bcmgenet_init_rx_ring(priv, i,
					    priv->hw_params->rx_bds_per_q,
					    i * priv->hw_params->rx_bds_per_q,
					    (i + 1) *
					    priv->hw_params->rx_bds_per_q);
		if (ret)
			return ret;

		ring_cfg |= (1 << i);
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
	}

	/* Initialize Rx default queue 16 */
	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
				    priv->hw_params->rx_queues *
				    priv->hw_params->rx_bds_per_q,
				    TOTAL_DESC);
	if (ret)
		return ret;

	ring_cfg |= (1 << DESC_INDEX);
	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));

2270 2271 2272
	/* Initialize Rx NAPI */
	bcmgenet_init_rx_napi(priv);

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	/* Enable rings */
	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);

	/* Configure ring as descriptor ring and re-enable DMA if enabled */
	if (dma_enable)
		dma_ctrl |= DMA_EN;
	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);

	return 0;
}

2284 2285 2286 2287 2288
static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
{
	int ret = 0;
	int timeout = 0;
	u32 reg;
2289 2290
	u32 dma_ctrl;
	int i;
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333

	/* Disable TDMA to stop add more frames in TX DMA */
	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg &= ~DMA_EN;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);

	/* Check TDMA status register to confirm TDMA is disabled */
	while (timeout++ < DMA_TIMEOUT_VAL) {
		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
		if (reg & DMA_DISABLED)
			break;

		udelay(1);
	}

	if (timeout == DMA_TIMEOUT_VAL) {
		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
		ret = -ETIMEDOUT;
	}

	/* Wait 10ms for packet drain in both tx and rx dma */
	usleep_range(10000, 20000);

	/* Disable RDMA */
	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg &= ~DMA_EN;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	timeout = 0;
	/* Check RDMA status register to confirm RDMA is disabled */
	while (timeout++ < DMA_TIMEOUT_VAL) {
		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
		if (reg & DMA_DISABLED)
			break;

		udelay(1);
	}

	if (timeout == DMA_TIMEOUT_VAL) {
		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
		ret = -ETIMEDOUT;
	}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
	dma_ctrl = 0;
	for (i = 0; i < priv->hw_params->rx_queues; i++)
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	dma_ctrl = 0;
	for (i = 0; i < priv->hw_params->tx_queues; i++)
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);

2348 2349 2350
	return ret;
}

2351
static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2352 2353 2354
{
	int i;

2355 2356 2357
	bcmgenet_fini_rx_napi(priv);
	bcmgenet_fini_tx_napi(priv);

2358
	/* disable DMA */
2359
	bcmgenet_dma_teardown(priv);
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376

	for (i = 0; i < priv->num_tx_bds; i++) {
		if (priv->tx_cbs[i].skb != NULL) {
			dev_kfree_skb(priv->tx_cbs[i].skb);
			priv->tx_cbs[i].skb = NULL;
		}
	}

	bcmgenet_free_rx_buffers(priv);
	kfree(priv->rx_cbs);
	kfree(priv->tx_cbs);
}

/* init_edma: Initialize DMA control register */
static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
{
	int ret;
2377 2378
	unsigned int i;
	struct enet_cb *cb;
2379

2380
	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2381

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	/* Initialize common Rx ring structures */
	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
	priv->num_rx_bds = TOTAL_DESC;
	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
			       GFP_KERNEL);
	if (!priv->rx_cbs)
		return -ENOMEM;

	for (i = 0; i < priv->num_rx_bds; i++) {
		cb = priv->rx_cbs + i;
		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
	}

B
Brian Norris 已提交
2395
	/* Initialize common TX ring structures */
2396 2397
	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
	priv->num_tx_bds = TOTAL_DESC;
2398
	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2399
			       GFP_KERNEL);
2400
	if (!priv->tx_cbs) {
2401
		kfree(priv->rx_cbs);
2402 2403 2404
		return -ENOMEM;
	}

2405 2406 2407 2408 2409
	for (i = 0; i < priv->num_tx_bds; i++) {
		cb = priv->tx_cbs + i;
		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
	}

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	/* Init rDma */
	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);

	/* Initialize Rx queues */
	ret = bcmgenet_init_rx_queues(priv->dev);
	if (ret) {
		netdev_err(priv->dev, "failed to initialize Rx queues\n");
		bcmgenet_free_rx_buffers(priv);
		kfree(priv->rx_cbs);
		kfree(priv->tx_cbs);
		return ret;
	}

	/* Init tDma */
	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);

2426 2427
	/* Initialize Tx queues */
	bcmgenet_init_tx_queues(priv->dev);
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439

	return 0;
}

/* Interrupt bottom half */
static void bcmgenet_irq_task(struct work_struct *work)
{
	struct bcmgenet_priv *priv = container_of(
			work, struct bcmgenet_priv, bcmgenet_irq_work);

	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);

2440 2441 2442 2443 2444 2445 2446
	if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
		priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
		netif_dbg(priv, wol, priv->dev,
			  "magic packet detected, waking up\n");
		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
	}

2447 2448
	/* Link UP/DOWN event */
	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2449
	    (priv->irq0_stat & UMAC_IRQ_LINK_EVENT)) {
2450
		phy_mac_interrupt(priv->phydev,
2451
				  !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2452
		priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2453 2454 2455
	}
}

2456
/* bcmgenet_isr1: handle Rx and Tx priority queues */
2457 2458 2459
static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
{
	struct bcmgenet_priv *priv = dev_id;
2460 2461
	struct bcmgenet_rx_ring *rx_ring;
	struct bcmgenet_tx_ring *tx_ring;
2462 2463 2464 2465 2466
	unsigned int index;

	/* Save irq status for bottom-half processing. */
	priv->irq1_stat =
		bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2467
		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2468

B
Brian Norris 已提交
2469
	/* clear interrupts */
2470 2471 2472
	bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);

	netif_dbg(priv, intr, priv->dev,
2473
		  "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2474

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	/* Check Rx priority queue interrupts */
	for (index = 0; index < priv->hw_params->rx_queues; index++) {
		if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
			continue;

		rx_ring = &priv->rx_rings[index];

		if (likely(napi_schedule_prep(&rx_ring->napi))) {
			rx_ring->int_disable(rx_ring);
			__napi_schedule(&rx_ring->napi);
		}
	}

	/* Check Tx priority queue interrupts */
2489 2490 2491 2492
	for (index = 0; index < priv->hw_params->tx_queues; index++) {
		if (!(priv->irq1_stat & BIT(index)))
			continue;

2493
		tx_ring = &priv->tx_rings[index];
2494

2495 2496 2497
		if (likely(napi_schedule_prep(&tx_ring->napi))) {
			tx_ring->int_disable(tx_ring);
			__napi_schedule(&tx_ring->napi);
2498 2499
		}
	}
2500

2501 2502 2503
	return IRQ_HANDLED;
}

2504
/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2505 2506 2507
static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
{
	struct bcmgenet_priv *priv = dev_id;
2508 2509
	struct bcmgenet_rx_ring *rx_ring;
	struct bcmgenet_tx_ring *tx_ring;
2510 2511 2512 2513 2514

	/* Save irq status for bottom-half processing. */
	priv->irq0_stat =
		bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2515

B
Brian Norris 已提交
2516
	/* clear interrupts */
2517 2518 2519
	bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);

	netif_dbg(priv, intr, priv->dev,
2520
		  "IRQ=0x%x\n", priv->irq0_stat);
2521

2522
	if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2523 2524 2525 2526 2527
		rx_ring = &priv->rx_rings[DESC_INDEX];

		if (likely(napi_schedule_prep(&rx_ring->napi))) {
			rx_ring->int_disable(rx_ring);
			__napi_schedule(&rx_ring->napi);
2528 2529
		}
	}
2530

2531
	if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2532 2533 2534 2535 2536
		tx_ring = &priv->tx_rings[DESC_INDEX];

		if (likely(napi_schedule_prep(&tx_ring->napi))) {
			tx_ring->int_disable(tx_ring);
			__napi_schedule(&tx_ring->napi);
2537
		}
2538
	}
2539

2540 2541
	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
				UMAC_IRQ_PHY_DET_F |
2542
				UMAC_IRQ_LINK_EVENT |
2543 2544 2545 2546 2547 2548 2549 2550
				UMAC_IRQ_HFB_SM |
				UMAC_IRQ_HFB_MM |
				UMAC_IRQ_MPD_R)) {
		/* all other interested interrupts handled in bottom half */
		schedule_work(&priv->bcmgenet_irq_work);
	}

	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2551
	    priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2552 2553 2554 2555 2556 2557 2558
		priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
		wake_up(&priv->wq);
	}

	return IRQ_HANDLED;
}

2559 2560 2561 2562 2563 2564 2565 2566 2567
static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
{
	struct bcmgenet_priv *priv = dev_id;

	pm_wakeup_event(&priv->pdev->dev, 0);

	return IRQ_HANDLED;
}

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
#ifdef CONFIG_NET_POLL_CONTROLLER
static void bcmgenet_poll_controller(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Invoke the main RX/TX interrupt handler */
	disable_irq(priv->irq0);
	bcmgenet_isr0(priv->irq0, priv);
	enable_irq(priv->irq0);

	/* And the interrupt handler for RX/TX priority queues */
	disable_irq(priv->irq1);
	bcmgenet_isr1(priv->irq1, priv);
	enable_irq(priv->irq1);
}
#endif

2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
{
	u32 reg;

	reg = bcmgenet_rbuf_ctrl_get(priv);
	reg |= BIT(1);
	bcmgenet_rbuf_ctrl_set(priv, reg);
	udelay(10);

	reg &= ~BIT(1);
	bcmgenet_rbuf_ctrl_set(priv, reg);
	udelay(10);
}

static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2600
				 unsigned char *addr)
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
{
	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
			(addr[2] << 8) | addr[3], UMAC_MAC0);
	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
}

/* Returns a reusable dma control register value */
static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
{
	u32 reg;
	u32 dma_ctrl;

	/* disable DMA */
	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);

	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
	udelay(10);
	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);

	return dma_ctrl;
}

static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
{
	u32 reg;

	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg |= dma_ctrl;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg |= dma_ctrl;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
}

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
					   u32 f_index)
{
	u32 offset;
	u32 reg;

	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
	reg = bcmgenet_hfb_reg_readl(priv, offset);
	return !!(reg & (1 << (f_index % 32)));
}

static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
{
	u32 offset;
	u32 reg;

	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
	reg = bcmgenet_hfb_reg_readl(priv, offset);
	reg |= (1 << (f_index % 32));
	bcmgenet_hfb_reg_writel(priv, reg, offset);
}

static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
						     u32 f_index, u32 rx_queue)
{
	u32 offset;
	u32 reg;

	offset = f_index / 8;
	reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
	reg &= ~(0xF << (4 * (f_index % 8)));
	reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
	bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
}

static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
					   u32 f_index, u32 f_length)
{
	u32 offset;
	u32 reg;

	offset = HFB_FLT_LEN_V3PLUS +
		 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
		 sizeof(u32);
	reg = bcmgenet_hfb_reg_readl(priv, offset);
	reg &= ~(0xFF << (8 * (f_index % 4)));
	reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
	bcmgenet_hfb_reg_writel(priv, reg, offset);
}

static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
{
	u32 f_index;

	for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++)
		if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
			return f_index;

	return -ENOMEM;
}

/* bcmgenet_hfb_add_filter
 *
 * Add new filter to Hardware Filter Block to match and direct Rx traffic to
 * desired Rx queue.
 *
 * f_data is an array of unsigned 32-bit integers where each 32-bit integer
 * provides filter data for 2 bytes (4 nibbles) of Rx frame:
 *
 * bits 31:20 - unused
 * bit  19    - nibble 0 match enable
 * bit  18    - nibble 1 match enable
 * bit  17    - nibble 2 match enable
 * bit  16    - nibble 3 match enable
 * bits 15:12 - nibble 0 data
 * bits 11:8  - nibble 1 data
 * bits 7:4   - nibble 2 data
 * bits 3:0   - nibble 3 data
 *
 * Example:
 * In order to match:
 * - Ethernet frame type = 0x0800 (IP)
 * - IP version field = 4
 * - IP protocol field = 0x11 (UDP)
 *
 * The following filter is needed:
 * u32 hfb_filter_ipv4_udp[] = {
 *   Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
 *   Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
 *   Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
 * };
 *
 * To add the filter to HFB and direct the traffic to Rx queue 0, call:
 * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
 *                         ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
 */
int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
			    u32 f_length, u32 rx_queue)
{
	int f_index;
	u32 i;

	f_index = bcmgenet_hfb_find_unused_filter(priv);
	if (f_index < 0)
		return -ENOMEM;

	if (f_length > priv->hw_params->hfb_filter_size)
		return -EINVAL;

	for (i = 0; i < f_length; i++)
		bcmgenet_hfb_writel(priv, f_data[i],
			(f_index * priv->hw_params->hfb_filter_size + i) *
			sizeof(u32));

	bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
	bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
	bcmgenet_hfb_enable_filter(priv, f_index);
	bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL);

	return 0;
}

/* bcmgenet_hfb_clear
 *
 * Clear Hardware Filter Block and disable all filtering.
 */
static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
{
	u32 i;

	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);

	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
		bcmgenet_rdma_writel(priv, 0x0, i);

	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
		bcmgenet_hfb_reg_writel(priv, 0x0,
					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));

	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
			priv->hw_params->hfb_filter_size; i++)
		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
}

static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
		return;

	bcmgenet_hfb_clear(priv);
}

2797 2798 2799 2800 2801
static void bcmgenet_netif_start(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Start the network engine */
2802
	bcmgenet_enable_rx_napi(priv);
2803
	bcmgenet_enable_tx_napi(priv);
2804 2805 2806 2807 2808

	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);

	netif_tx_start_all_queues(dev);

2809 2810 2811
	/* Monitor link interrupts now */
	bcmgenet_link_intr_enable(priv);

2812 2813 2814
	phy_start(priv->phydev);
}

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
static int bcmgenet_open(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned long dma_ctrl;
	u32 reg;
	int ret;

	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");

	/* Turn on the clock */
2825
	clk_prepare_enable(priv->clk);
2826

2827 2828 2829
	/* If this is an internal GPHY, power it back on now, before UniMAC is
	 * brought out of reset as absolutely no UniMAC activity is allowed
	 */
2830
	if (priv->internal_phy)
2831 2832
		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);

2833 2834 2835 2836 2837 2838 2839 2840
	/* take MAC out of reset */
	bcmgenet_umac_reset(priv);

	ret = init_umac(priv);
	if (ret)
		goto err_clk_disable;

	/* disable ethernet MAC while updating its registers */
2841
	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2842

2843 2844 2845 2846
	/* Make sure we reflect the value of CRC_CMD_FWD */
	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);

2847 2848
	bcmgenet_set_hw_addr(priv, dev->dev_addr);

2849
	if (priv->internal_phy) {
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
		reg |= EXT_ENERGY_DET_MASK;
		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
	}

	/* Disable RX/TX DMA and flush TX queues */
	dma_ctrl = bcmgenet_dma_disable(priv);

	/* Reinitialize TDMA and RDMA and SW housekeeping */
	ret = bcmgenet_init_dma(priv);
	if (ret) {
		netdev_err(dev, "failed to initialize DMA\n");
2862
		goto err_clk_disable;
2863 2864 2865 2866 2867
	}

	/* Always enable ring 16 - descriptor ring */
	bcmgenet_enable_dma(priv, dma_ctrl);

2868 2869 2870
	/* HFB init */
	bcmgenet_hfb_init(priv);

2871
	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2872
			  dev->name, priv);
2873 2874 2875 2876 2877 2878
	if (ret < 0) {
		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
		goto err_fini_dma;
	}

	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2879
			  dev->name, priv);
2880 2881 2882 2883 2884
	if (ret < 0) {
		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
		goto err_irq0;
	}

2885 2886 2887 2888 2889
	ret = bcmgenet_mii_probe(dev);
	if (ret) {
		netdev_err(dev, "failed to connect to PHY\n");
		goto err_irq1;
	}
2890

2891
	bcmgenet_netif_start(dev);
2892 2893 2894

	return 0;

2895 2896
err_irq1:
	free_irq(priv->irq1, priv);
2897
err_irq0:
2898
	free_irq(priv->irq0, priv);
2899 2900 2901
err_fini_dma:
	bcmgenet_fini_dma(priv);
err_clk_disable:
2902
	clk_disable_unprepare(priv->clk);
2903 2904 2905
	return ret;
}

2906 2907 2908 2909 2910 2911 2912
static void bcmgenet_netif_stop(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	netif_tx_stop_all_queues(dev);
	phy_stop(priv->phydev);
	bcmgenet_intr_disable(priv);
2913
	bcmgenet_disable_rx_napi(priv);
2914
	bcmgenet_disable_tx_napi(priv);
2915 2916 2917 2918 2919

	/* Wait for pending work items to complete. Since interrupts are
	 * disabled no new work will be scheduled.
	 */
	cancel_work_sync(&priv->bcmgenet_irq_work);
2920 2921

	priv->old_link = -1;
2922
	priv->old_speed = -1;
2923
	priv->old_duplex = -1;
2924
	priv->old_pause = -1;
2925 2926
}

2927 2928 2929 2930 2931 2932 2933
static int bcmgenet_close(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int ret;

	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");

2934
	bcmgenet_netif_stop(dev);
2935

2936 2937 2938
	/* Really kill the PHY state machine and disconnect from it */
	phy_disconnect(priv->phydev);

2939
	/* Disable MAC receive */
2940
	umac_enable_set(priv, CMD_RX_EN, false);
2941 2942 2943 2944 2945 2946

	ret = bcmgenet_dma_teardown(priv);
	if (ret)
		return ret;

	/* Disable MAC transmit. TX DMA disabled have to done before this */
2947
	umac_enable_set(priv, CMD_TX_EN, false);
2948 2949 2950 2951 2952 2953 2954 2955

	/* tx reclaim */
	bcmgenet_tx_reclaim_all(dev);
	bcmgenet_fini_dma(priv);

	free_irq(priv->irq0, priv);
	free_irq(priv->irq1, priv);

2956
	if (priv->internal_phy)
2957
		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2958

2959
	clk_disable_unprepare(priv->clk);
2960

2961
	return ret;
2962 2963
}

2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
{
	struct bcmgenet_priv *priv = ring->priv;
	u32 p_index, c_index, intsts, intmsk;
	struct netdev_queue *txq;
	unsigned int free_bds;
	unsigned long flags;
	bool txq_stopped;

	if (!netif_msg_tx_err(priv))
		return;

	txq = netdev_get_tx_queue(priv->dev, ring->queue);

	spin_lock_irqsave(&ring->lock, flags);
	if (ring->index == DESC_INDEX) {
		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
	} else {
		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
		intmsk = 1 << ring->index;
	}
	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
	txq_stopped = netif_tx_queue_stopped(txq);
	free_bds = ring->free_bds;
	spin_unlock_irqrestore(&ring->lock, flags);

	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
		  "TX queue status: %s, interrupts: %s\n"
		  "(sw)free_bds: %d (sw)size: %d\n"
		  "(sw)p_index: %d (hw)p_index: %d\n"
		  "(sw)c_index: %d (hw)c_index: %d\n"
		  "(sw)clean_p: %d (sw)write_p: %d\n"
		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
		  ring->index, ring->queue,
		  txq_stopped ? "stopped" : "active",
		  intsts & intmsk ? "enabled" : "disabled",
		  free_bds, ring->size,
		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
		  ring->c_index, c_index & DMA_C_INDEX_MASK,
		  ring->clean_ptr, ring->write_ptr,
		  ring->cb_ptr, ring->end_ptr);
}

3009 3010 3011
static void bcmgenet_timeout(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
3012 3013 3014
	u32 int0_enable = 0;
	u32 int1_enable = 0;
	unsigned int q;
3015 3016 3017

	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");

3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
	for (q = 0; q < priv->hw_params->tx_queues; q++)
		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);

	bcmgenet_tx_reclaim_all(dev);

	for (q = 0; q < priv->hw_params->tx_queues; q++)
		int1_enable |= (1 << q);

	int0_enable = UMAC_IRQ_TXDMA_DONE;

	/* Re-enable TX interrupts if disabled */
	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
	dev->trans_start = jiffies;

	dev->stats.tx_errors++;

	netif_tx_wake_all_queues(dev);
}

#define MAX_MC_COUNT	16

static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
					 unsigned char *addr,
					 int *i,
					 int *mc)
{
	u32 reg;

3049 3050 3051 3052 3053
	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
			     UMAC_MDF_ADDR + (*i * 4));
	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
			     addr[4] << 8 | addr[5],
			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
	reg |= (1 << (MAX_MC_COUNT - *mc));
	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
	*i += 2;
	(*mc)++;
}

static void bcmgenet_set_rx_mode(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct netdev_hw_addr *ha;
	int i, mc;
	u32 reg;

	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);

B
Brian Norris 已提交
3070
	/* Promiscuous mode */
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
	if (dev->flags & IFF_PROMISC) {
		reg |= CMD_PROMISC;
		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
		return;
	} else {
		reg &= ~CMD_PROMISC;
		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
	}

	/* UniMac doesn't support ALLMULTI */
	if (dev->flags & IFF_ALLMULTI) {
		netdev_warn(dev, "ALLMULTI is not supported\n");
		return;
	}

	/* update MDF filter */
	i = 0;
	mc = 0;
	/* Broadcast */
	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
	/* my own address.*/
	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
	/* Unicast list*/
	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
		return;

	if (!netdev_uc_empty(dev))
		netdev_for_each_uc_addr(ha, dev)
			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
	/* Multicast */
	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
		return;

	netdev_for_each_mc_addr(ha, dev)
		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
}

/* Set the hardware MAC address. */
static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
{
	struct sockaddr *addr = p;

	/* Setting the MAC address at the hardware level is not possible
	 * without disabling the UniMAC RX/TX enable bits.
	 */
	if (netif_running(dev))
		return -EBUSY;

	ether_addr_copy(dev->dev_addr, addr->sa_data);

	return 0;
}

static const struct net_device_ops bcmgenet_netdev_ops = {
	.ndo_open		= bcmgenet_open,
	.ndo_stop		= bcmgenet_close,
	.ndo_start_xmit		= bcmgenet_xmit,
	.ndo_tx_timeout		= bcmgenet_timeout,
	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
	.ndo_do_ioctl		= bcmgenet_ioctl,
	.ndo_set_features	= bcmgenet_set_features,
3135 3136 3137
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= bcmgenet_poll_controller,
#endif
3138 3139 3140 3141 3142 3143
};

/* Array of GENET hardware parameters/characteristics */
static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
	[GENET_V1] = {
		.tx_queues = 0,
3144
		.tx_bds_per_q = 0,
3145
		.rx_queues = 0,
3146
		.rx_bds_per_q = 0,
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
		.bp_in_en_shift = 16,
		.bp_in_mask = 0xffff,
		.hfb_filter_cnt = 16,
		.qtag_mask = 0x1F,
		.hfb_offset = 0x1000,
		.rdma_offset = 0x2000,
		.tdma_offset = 0x3000,
		.words_per_bd = 2,
	},
	[GENET_V2] = {
		.tx_queues = 4,
3158
		.tx_bds_per_q = 32,
3159
		.rx_queues = 0,
3160
		.rx_bds_per_q = 0,
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
		.bp_in_en_shift = 16,
		.bp_in_mask = 0xffff,
		.hfb_filter_cnt = 16,
		.qtag_mask = 0x1F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x1000,
		.hfb_reg_offset = 0x2000,
		.rdma_offset = 0x3000,
		.tdma_offset = 0x4000,
		.words_per_bd = 2,
		.flags = GENET_HAS_EXT,
	},
	[GENET_V3] = {
		.tx_queues = 4,
3175
		.tx_bds_per_q = 32,
3176
		.rx_queues = 0,
3177
		.rx_bds_per_q = 0,
3178 3179 3180
		.bp_in_en_shift = 17,
		.bp_in_mask = 0x1ffff,
		.hfb_filter_cnt = 48,
3181
		.hfb_filter_size = 128,
3182 3183 3184 3185 3186 3187 3188
		.qtag_mask = 0x3F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x8000,
		.hfb_reg_offset = 0xfc00,
		.rdma_offset = 0x10000,
		.tdma_offset = 0x11000,
		.words_per_bd = 2,
3189 3190
		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
			 GENET_HAS_MOCA_LINK_DET,
3191 3192 3193
	},
	[GENET_V4] = {
		.tx_queues = 4,
3194
		.tx_bds_per_q = 32,
3195
		.rx_queues = 0,
3196
		.rx_bds_per_q = 0,
3197 3198 3199
		.bp_in_en_shift = 17,
		.bp_in_mask = 0x1ffff,
		.hfb_filter_cnt = 48,
3200
		.hfb_filter_size = 128,
3201 3202 3203 3204 3205 3206 3207
		.qtag_mask = 0x3F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x8000,
		.hfb_reg_offset = 0xfc00,
		.rdma_offset = 0x2000,
		.tdma_offset = 0x4000,
		.words_per_bd = 3,
3208 3209
		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3210 3211 3212 3213 3214 3215 3216 3217 3218
	},
};

/* Infer hardware parameters from the detected GENET version */
static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
{
	struct bcmgenet_hw_params *params;
	u32 reg;
	u8 major;
3219
	u16 gphy_rev;
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261

	if (GENET_IS_V4(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
		genet_dma_ring_regs = genet_dma_ring_regs_v4;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
		priv->version = GENET_V4;
	} else if (GENET_IS_V3(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
		genet_dma_ring_regs = genet_dma_ring_regs_v123;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
		priv->version = GENET_V3;
	} else if (GENET_IS_V2(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
		genet_dma_ring_regs = genet_dma_ring_regs_v123;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
		priv->version = GENET_V2;
	} else if (GENET_IS_V1(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
		genet_dma_ring_regs = genet_dma_ring_regs_v123;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
		priv->version = GENET_V1;
	}

	/* enum genet_version starts at 1 */
	priv->hw_params = &bcmgenet_hw_params[priv->version];
	params = priv->hw_params;

	/* Read GENET HW version */
	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
	major = (reg >> 24 & 0x0f);
	if (major == 5)
		major = 4;
	else if (major == 0)
		major = 1;
	if (major != priv->version) {
		dev_err(&priv->pdev->dev,
			"GENET version mismatch, got: %d, configured for: %d\n",
			major, priv->version);
	}

	/* Print the GENET core version */
	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3262
		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3263

3264 3265 3266 3267
	/* Store the integrated PHY revision for the MDIO probing function
	 * to pass this information to the PHY driver. The PHY driver expects
	 * to find the PHY major revision in bits 15:8 while the GENET register
	 * stores that information in bits 7:0, account for that.
3268 3269 3270 3271 3272 3273 3274
	 *
	 * On newer chips, starting with PHY revision G0, a new scheme is
	 * deployed similar to the Starfighter 2 switch with GPHY major
	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
	 * is reserved as well as special value 0x01ff, we have a small
	 * heuristic to check for the new GPHY revision and re-arrange things
	 * so the GPHY driver is happy.
3275
	 */
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	gphy_rev = reg & 0xffff;

	/* This is the good old scheme, just GPHY major, no minor nor patch */
	if ((gphy_rev & 0xf0) != 0)
		priv->gphy_rev = gphy_rev << 8;

	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
	else if ((gphy_rev & 0xff00) != 0)
		priv->gphy_rev = gphy_rev;

	/* This is reserved so should require special treatment */
	else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
		return;
	}
3291

3292 3293 3294 3295 3296 3297
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	if (!(params->flags & GENET_HAS_40BITS))
		pr_warn("GENET does not support 40-bits PA\n");
#endif

	pr_debug("Configuration for version: %d\n"
3298
		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3299 3300 3301 3302 3303 3304
		"BP << en: %2d, BP msk: 0x%05x\n"
		"HFB count: %2d, QTAQ msk: 0x%05x\n"
		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
		"RDMA: 0x%05x, TDMA: 0x%05x\n"
		"Words/BD: %d\n",
		priv->version,
3305
		params->tx_queues, params->tx_bds_per_q,
3306
		params->rx_queues, params->rx_bds_per_q,
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
		params->bp_in_en_shift, params->bp_in_mask,
		params->hfb_filter_cnt, params->qtag_mask,
		params->tbuf_offset, params->hfb_offset,
		params->hfb_reg_offset,
		params->rdma_offset, params->tdma_offset,
		params->words_per_bd);
}

static const struct of_device_id bcmgenet_match[] = {
	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
	{ },
};
3322
MODULE_DEVICE_TABLE(of, bcmgenet_match);
3323 3324 3325

static int bcmgenet_probe(struct platform_device *pdev)
{
3326
	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3327
	struct device_node *dn = pdev->dev.of_node;
3328
	const struct of_device_id *of_id = NULL;
3329 3330 3331 3332 3333 3334
	struct bcmgenet_priv *priv;
	struct net_device *dev;
	const void *macaddr;
	struct resource *r;
	int err = -EIO;

3335 3336 3337
	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
				 GENET_MAX_MQ_CNT + 1);
3338 3339 3340 3341 3342
	if (!dev) {
		dev_err(&pdev->dev, "can't allocate net device\n");
		return -ENOMEM;
	}

3343 3344 3345 3346 3347
	if (dn) {
		of_id = of_match_node(bcmgenet_match, dn);
		if (!of_id)
			return -EINVAL;
	}
3348 3349 3350 3351

	priv = netdev_priv(dev);
	priv->irq0 = platform_get_irq(pdev, 0);
	priv->irq1 = platform_get_irq(pdev, 1);
3352
	priv->wol_irq = platform_get_irq(pdev, 2);
3353 3354 3355 3356 3357 3358
	if (!priv->irq0 || !priv->irq1) {
		dev_err(&pdev->dev, "can't find IRQs\n");
		err = -EINVAL;
		goto err;
	}

3359 3360 3361 3362 3363 3364 3365 3366 3367
	if (dn) {
		macaddr = of_get_mac_address(dn);
		if (!macaddr) {
			dev_err(&pdev->dev, "can't find MAC address\n");
			err = -EINVAL;
			goto err;
		}
	} else {
		macaddr = pd->mac_address;
3368 3369 3370
	}

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3371 3372 3373
	priv->base = devm_ioremap_resource(&pdev->dev, r);
	if (IS_ERR(priv->base)) {
		err = PTR_ERR(priv->base);
3374 3375 3376 3377 3378 3379 3380
		goto err;
	}

	SET_NETDEV_DEV(dev, &pdev->dev);
	dev_set_drvdata(&pdev->dev, dev);
	ether_addr_copy(dev->dev_addr, macaddr);
	dev->watchdog_timeo = 2 * HZ;
3381
	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3382 3383 3384 3385 3386 3387 3388 3389
	dev->netdev_ops = &bcmgenet_netdev_ops;

	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);

	/* Set hardware features */
	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;

3390 3391 3392 3393 3394 3395 3396
	/* Request the WOL interrupt and advertise suspend if available */
	priv->wol_irq_disabled = true;
	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
			       dev->name, priv);
	if (!err)
		device_set_wakeup_capable(&pdev->dev, 1);

3397 3398 3399 3400 3401 3402 3403 3404 3405
	/* Set the needed headroom to account for any possible
	 * features enabling/disabling at runtime
	 */
	dev->needed_headroom += 64;

	netdev_boot_setup_check(dev);

	priv->dev = dev;
	priv->pdev = pdev;
3406 3407 3408 3409
	if (of_id)
		priv->version = (enum bcmgenet_version)of_id->data;
	else
		priv->version = pd->genet_version;
3410

3411
	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3412
	if (IS_ERR(priv->clk)) {
3413
		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3414 3415
		priv->clk = NULL;
	}
3416

3417
	clk_prepare_enable(priv->clk);
3418

3419 3420 3421 3422 3423 3424 3425 3426 3427
	bcmgenet_set_hw_params(priv);

	/* Mii wait queue */
	init_waitqueue_head(&priv->wq);
	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
	priv->rx_buf_len = RX_BUF_LENGTH;
	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);

	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3428
	if (IS_ERR(priv->clk_wol)) {
3429
		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3430 3431
		priv->clk_wol = NULL;
	}
3432

F
Florian Fainelli 已提交
3433 3434 3435 3436 3437 3438
	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
	if (IS_ERR(priv->clk_eee)) {
		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
		priv->clk_eee = NULL;
	}

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
	err = reset_umac(priv);
	if (err)
		goto err_clk_disable;

	err = bcmgenet_mii_init(dev);
	if (err)
		goto err_clk_disable;

	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
	 * just the ring 16 descriptor based TX
	 */
	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);

3453 3454 3455
	/* libphy will determine the link state */
	netif_carrier_off(dev);

3456
	/* Turn off the main clock, WOL clock is handled separately */
3457
	clk_disable_unprepare(priv->clk);
3458

3459 3460 3461 3462
	err = register_netdev(dev);
	if (err)
		goto err;

3463 3464 3465
	return err;

err_clk_disable:
3466
	clk_disable_unprepare(priv->clk);
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
err:
	free_netdev(dev);
	return err;
}

static int bcmgenet_remove(struct platform_device *pdev)
{
	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);

	dev_set_drvdata(&pdev->dev, NULL);
	unregister_netdev(priv->dev);
	bcmgenet_mii_exit(priv->dev);
	free_netdev(priv->dev);

	return 0;
}

3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
#ifdef CONFIG_PM_SLEEP
static int bcmgenet_suspend(struct device *d)
{
	struct net_device *dev = dev_get_drvdata(d);
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int ret;

	if (!netif_running(dev))
		return 0;

	bcmgenet_netif_stop(dev);

3496 3497
	phy_suspend(priv->phydev);

3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
	netif_device_detach(dev);

	/* Disable MAC receive */
	umac_enable_set(priv, CMD_RX_EN, false);

	ret = bcmgenet_dma_teardown(priv);
	if (ret)
		return ret;

	/* Disable MAC transmit. TX DMA disabled have to done before this */
	umac_enable_set(priv, CMD_TX_EN, false);

	/* tx reclaim */
	bcmgenet_tx_reclaim_all(dev);
	bcmgenet_fini_dma(priv);

3514 3515
	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
	if (device_may_wakeup(d) && priv->wolopts) {
3516
		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3517
		clk_prepare_enable(priv->clk_wol);
3518
	} else if (priv->internal_phy) {
3519
		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3520 3521
	}

3522 3523 3524
	/* Turn off the clocks */
	clk_disable_unprepare(priv->clk);

3525
	return ret;
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
}

static int bcmgenet_resume(struct device *d)
{
	struct net_device *dev = dev_get_drvdata(d);
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned long dma_ctrl;
	int ret;
	u32 reg;

	if (!netif_running(dev))
		return 0;

	/* Turn on the clock */
	ret = clk_prepare_enable(priv->clk);
	if (ret)
		return ret;

3544 3545 3546
	/* If this is an internal GPHY, power it back on now, before UniMAC is
	 * brought out of reset as absolutely no UniMAC activity is allowed
	 */
3547
	if (priv->internal_phy)
3548 3549
		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);

3550 3551 3552 3553 3554 3555
	bcmgenet_umac_reset(priv);

	ret = init_umac(priv);
	if (ret)
		goto out_clk_disable;

3556 3557 3558 3559 3560 3561
	/* From WOL-enabled suspend, switch to regular clock */
	if (priv->wolopts)
		clk_disable_unprepare(priv->clk_wol);

	phy_init_hw(priv->phydev);
	/* Speed settings must be restored */
3562
	bcmgenet_mii_config(priv->dev);
3563

3564 3565 3566 3567 3568
	/* disable ethernet MAC while updating its registers */
	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);

	bcmgenet_set_hw_addr(priv, dev->dev_addr);

3569
	if (priv->internal_phy) {
3570 3571 3572 3573 3574
		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
		reg |= EXT_ENERGY_DET_MASK;
		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
	}

3575 3576 3577
	if (priv->wolopts)
		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);

3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
	/* Disable RX/TX DMA and flush TX queues */
	dma_ctrl = bcmgenet_dma_disable(priv);

	/* Reinitialize TDMA and RDMA and SW housekeeping */
	ret = bcmgenet_init_dma(priv);
	if (ret) {
		netdev_err(dev, "failed to initialize DMA\n");
		goto out_clk_disable;
	}

	/* Always enable ring 16 - descriptor ring */
	bcmgenet_enable_dma(priv, dma_ctrl);

	netif_device_attach(dev);

3593 3594
	phy_resume(priv->phydev);

F
Florian Fainelli 已提交
3595 3596 3597
	if (priv->eee.eee_enabled)
		bcmgenet_eee_enable_set(dev, true);

3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
	bcmgenet_netif_start(dev);

	return 0;

out_clk_disable:
	clk_disable_unprepare(priv->clk);
	return ret;
}
#endif /* CONFIG_PM_SLEEP */

static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);

3610 3611 3612 3613 3614 3615
static struct platform_driver bcmgenet_driver = {
	.probe	= bcmgenet_probe,
	.remove	= bcmgenet_remove,
	.driver	= {
		.name	= "bcmgenet",
		.of_match_table = bcmgenet_match,
3616
		.pm	= &bcmgenet_pm_ops,
3617 3618 3619 3620 3621 3622 3623 3624
	},
};
module_platform_driver(bcmgenet_driver);

MODULE_AUTHOR("Broadcom Corporation");
MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
MODULE_ALIAS("platform:bcmgenet");
MODULE_LICENSE("GPL");