knav_qmss_queue.c 44.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
/*
 * Keystone Queue Manager subsystem driver
 *
 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
 * Authors:	Sandeep Nair <sandeep_n@ti.com>
 *		Cyril Chemparathy <cyril@ti.com>
 *		Santosh Shilimkar <santosh.shilimkar@ti.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/pm_runtime.h>
#include <linux/firmware.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/string.h>
#include <linux/soc/ti/knav_qmss.h>

#include "knav_qmss.h"

static struct knav_device *kdev;
static DEFINE_MUTEX(knav_dev_lock);

/* Queue manager register indices in DTS */
#define KNAV_QUEUE_PEEK_REG_INDEX	0
#define KNAV_QUEUE_STATUS_REG_INDEX	1
#define KNAV_QUEUE_CONFIG_REG_INDEX	2
#define KNAV_QUEUE_REGION_REG_INDEX	3
#define KNAV_QUEUE_PUSH_REG_INDEX	4
#define KNAV_QUEUE_POP_REG_INDEX	5

/* PDSP register indices in DTS */
#define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
#define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
#define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
#define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3

#define knav_queue_idx_to_inst(kdev, idx)			\
	(kdev->instances + (idx << kdev->inst_shift))

#define for_each_handle_rcu(qh, inst)			\
	list_for_each_entry_rcu(qh, &inst->handles, list)

#define for_each_instance(idx, inst, kdev)		\
	for (idx = 0, inst = kdev->instances;		\
	     idx < (kdev)->num_queues_in_use;			\
	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))

/**
 * knav_queue_notify: qmss queue notfier call
 *
 * @inst:		qmss queue instance like accumulator
 */
void knav_queue_notify(struct knav_queue_inst *inst)
{
	struct knav_queue *qh;

	if (!inst)
		return;

	rcu_read_lock();
	for_each_handle_rcu(qh, inst) {
		if (atomic_read(&qh->notifier_enabled) <= 0)
			continue;
		if (WARN_ON(!qh->notifier_fn))
			continue;
		atomic_inc(&qh->stats.notifies);
		qh->notifier_fn(qh->notifier_fn_arg);
	}
	rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(knav_queue_notify);

static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
{
	struct knav_queue_inst *inst = _instdata;

	knav_queue_notify(inst);
	return IRQ_HANDLED;
}

static int knav_queue_setup_irq(struct knav_range_info *range,
			  struct knav_queue_inst *inst)
{
	unsigned queue = inst->id - range->queue_base;
	unsigned long cpu_map;
	int ret = 0, irq;

	if (range->flags & RANGE_HAS_IRQ) {
		irq = range->irqs[queue].irq;
		cpu_map = range->irqs[queue].cpu_map;
		ret = request_irq(irq, knav_queue_int_handler, 0,
					inst->irq_name, inst);
		if (ret)
			return ret;
		disable_irq(irq);
		if (cpu_map) {
			ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
			if (ret) {
				dev_warn(range->kdev->dev,
					 "Failed to set IRQ affinity\n");
				return ret;
			}
		}
	}
	return ret;
}

static void knav_queue_free_irq(struct knav_queue_inst *inst)
{
	struct knav_range_info *range = inst->range;
	unsigned queue = inst->id - inst->range->queue_base;
	int irq;

	if (range->flags & RANGE_HAS_IRQ) {
		irq = range->irqs[queue].irq;
		irq_set_affinity_hint(irq, NULL);
		free_irq(irq, inst);
	}
}

static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
{
	return !list_empty(&inst->handles);
}

static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
{
	return inst->range->flags & RANGE_RESERVED;
}

static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
{
	struct knav_queue *tmp;

	rcu_read_lock();
	for_each_handle_rcu(tmp, inst) {
		if (tmp->flags & KNAV_QUEUE_SHARED) {
			rcu_read_unlock();
			return true;
		}
	}
	rcu_read_unlock();
	return false;
}

static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
						unsigned type)
{
	if ((type == KNAV_QUEUE_QPEND) &&
	    (inst->range->flags & RANGE_HAS_IRQ)) {
		return true;
	} else if ((type == KNAV_QUEUE_ACC) &&
		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
		return true;
	} else if ((type == KNAV_QUEUE_GP) &&
		!(inst->range->flags &
			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
		return true;
	}
	return false;
}

static inline struct knav_queue_inst *
knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
{
	struct knav_queue_inst *inst;
	int idx;

	for_each_instance(idx, inst, kdev) {
		if (inst->id == id)
			return inst;
	}
	return NULL;
}

static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
{
	if (kdev->base_id <= id &&
	    kdev->base_id + kdev->num_queues > id) {
		id -= kdev->base_id;
		return knav_queue_match_id_to_inst(kdev, id);
	}
	return NULL;
}

static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
				      const char *name, unsigned flags)
{
	struct knav_queue *qh;
	unsigned id;
	int ret = 0;

	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
	if (!qh)
		return ERR_PTR(-ENOMEM);

	qh->flags = flags;
	qh->inst = inst;
	id = inst->id - inst->qmgr->start_queue;
	qh->reg_push = &inst->qmgr->reg_push[id];
	qh->reg_pop = &inst->qmgr->reg_pop[id];
	qh->reg_peek = &inst->qmgr->reg_peek[id];

	/* first opener? */
	if (!knav_queue_is_busy(inst)) {
		struct knav_range_info *range = inst->range;

		inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
		if (range->ops && range->ops->open_queue)
			ret = range->ops->open_queue(range, inst, flags);

		if (ret) {
			devm_kfree(inst->kdev->dev, qh);
			return ERR_PTR(ret);
		}
	}
	list_add_tail_rcu(&qh->list, &inst->handles);
	return qh;
}

static struct knav_queue *
knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
{
	struct knav_queue_inst *inst;
	struct knav_queue *qh;

	mutex_lock(&knav_dev_lock);

	qh = ERR_PTR(-ENODEV);
	inst = knav_queue_find_by_id(id);
	if (!inst)
		goto unlock_ret;

	qh = ERR_PTR(-EEXIST);
	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
		goto unlock_ret;

	qh = ERR_PTR(-EBUSY);
	if ((flags & KNAV_QUEUE_SHARED) &&
	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
		goto unlock_ret;

	qh = __knav_queue_open(inst, name, flags);

unlock_ret:
	mutex_unlock(&knav_dev_lock);

	return qh;
}

static struct knav_queue *knav_queue_open_by_type(const char *name,
						unsigned type, unsigned flags)
{
	struct knav_queue_inst *inst;
	struct knav_queue *qh = ERR_PTR(-EINVAL);
	int idx;

	mutex_lock(&knav_dev_lock);

	for_each_instance(idx, inst, kdev) {
		if (knav_queue_is_reserved(inst))
			continue;
		if (!knav_queue_match_type(inst, type))
			continue;
		if (knav_queue_is_busy(inst))
			continue;
		qh = __knav_queue_open(inst, name, flags);
		goto unlock_ret;
	}

unlock_ret:
	mutex_unlock(&knav_dev_lock);
	return qh;
}

static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
{
	struct knav_range_info *range = inst->range;

	if (range->ops && range->ops->set_notify)
		range->ops->set_notify(range, inst, enabled);
}

static int knav_queue_enable_notifier(struct knav_queue *qh)
{
	struct knav_queue_inst *inst = qh->inst;
	bool first;

	if (WARN_ON(!qh->notifier_fn))
		return -EINVAL;

	/* Adjust the per handle notifier count */
	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
	if (!first)
		return 0; /* nothing to do */

	/* Now adjust the per instance notifier count */
	first = (atomic_inc_return(&inst->num_notifiers) == 1);
	if (first)
		knav_queue_set_notify(inst, true);

	return 0;
}

static int knav_queue_disable_notifier(struct knav_queue *qh)
{
	struct knav_queue_inst *inst = qh->inst;
	bool last;

	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
	if (!last)
		return 0; /* nothing to do */

	last = (atomic_dec_return(&inst->num_notifiers) == 0);
	if (last)
		knav_queue_set_notify(inst, false);

	return 0;
}

static int knav_queue_set_notifier(struct knav_queue *qh,
				struct knav_queue_notify_config *cfg)
{
	knav_queue_notify_fn old_fn = qh->notifier_fn;

	if (!cfg)
		return -EINVAL;

	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
		return -ENOTSUPP;

	if (!cfg->fn && old_fn)
		knav_queue_disable_notifier(qh);

	qh->notifier_fn = cfg->fn;
	qh->notifier_fn_arg = cfg->fn_arg;

	if (cfg->fn && !old_fn)
		knav_queue_enable_notifier(qh);

	return 0;
}

static int knav_gp_set_notify(struct knav_range_info *range,
			       struct knav_queue_inst *inst,
			       bool enabled)
{
	unsigned queue;

	if (range->flags & RANGE_HAS_IRQ) {
		queue = inst->id - range->queue_base;
		if (enabled)
			enable_irq(range->irqs[queue].irq);
		else
			disable_irq_nosync(range->irqs[queue].irq);
	}
	return 0;
}

static int knav_gp_open_queue(struct knav_range_info *range,
				struct knav_queue_inst *inst, unsigned flags)
{
	return knav_queue_setup_irq(range, inst);
}

static int knav_gp_close_queue(struct knav_range_info *range,
				struct knav_queue_inst *inst)
{
	knav_queue_free_irq(inst);
	return 0;
}

struct knav_range_ops knav_gp_range_ops = {
	.set_notify	= knav_gp_set_notify,
	.open_queue	= knav_gp_open_queue,
	.close_queue	= knav_gp_close_queue,
};


static int knav_queue_get_count(void *qhandle)
{
	struct knav_queue *qh = qhandle;
	struct knav_queue_inst *inst = qh->inst;

	return readl_relaxed(&qh->reg_peek[0].entry_count) +
		atomic_read(&inst->desc_count);
}

static void knav_queue_debug_show_instance(struct seq_file *s,
					struct knav_queue_inst *inst)
{
	struct knav_device *kdev = inst->kdev;
	struct knav_queue *qh;

	if (!knav_queue_is_busy(inst))
		return;

	seq_printf(s, "\tqueue id %d (%s)\n",
		   kdev->base_id + inst->id, inst->name);
	for_each_handle_rcu(qh, inst) {
		seq_printf(s, "\t\thandle %p: ", qh);
		seq_printf(s, "pushes %8d, ",
			   atomic_read(&qh->stats.pushes));
		seq_printf(s, "pops %8d, ",
			   atomic_read(&qh->stats.pops));
		seq_printf(s, "count %8d, ",
			   knav_queue_get_count(qh));
		seq_printf(s, "notifies %8d, ",
			   atomic_read(&qh->stats.notifies));
		seq_printf(s, "push errors %8d, ",
			   atomic_read(&qh->stats.push_errors));
		seq_printf(s, "pop errors %8d\n",
			   atomic_read(&qh->stats.pop_errors));
	}
}

static int knav_queue_debug_show(struct seq_file *s, void *v)
{
	struct knav_queue_inst *inst;
	int idx;

	mutex_lock(&knav_dev_lock);
	seq_printf(s, "%s: %u-%u\n",
		   dev_name(kdev->dev), kdev->base_id,
		   kdev->base_id + kdev->num_queues - 1);
	for_each_instance(idx, inst, kdev)
		knav_queue_debug_show_instance(s, inst);
	mutex_unlock(&knav_dev_lock);

	return 0;
}

static int knav_queue_debug_open(struct inode *inode, struct file *file)
{
	return single_open(file, knav_queue_debug_show, NULL);
}

static const struct file_operations knav_queue_debug_ops = {
	.open		= knav_queue_debug_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
					u32 flags)
{
	unsigned long end;
	u32 val = 0;

	end = jiffies + msecs_to_jiffies(timeout);
	while (time_after(end, jiffies)) {
		val = readl_relaxed(addr);
		if (flags)
			val &= flags;
		if (!val)
			break;
		cpu_relax();
	}
	return val ? -ETIMEDOUT : 0;
}


static int knav_queue_flush(struct knav_queue *qh)
{
	struct knav_queue_inst *inst = qh->inst;
	unsigned id = inst->id - inst->qmgr->start_queue;

	atomic_set(&inst->desc_count, 0);
	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
	return 0;
}

/**
 * knav_queue_open()	- open a hardware queue
 * @name		- name to give the queue handle
 * @id			- desired queue number if any or specifes the type
 *			  of queue
 * @flags		- the following flags are applicable to queues:
 *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
 *			     exclusive by default.
 *			     Subsequent attempts to open a shared queue should
 *			     also have this flag.
 *
 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
 * to check the returned value for error codes.
 */
void *knav_queue_open(const char *name, unsigned id,
					unsigned flags)
{
	struct knav_queue *qh = ERR_PTR(-EINVAL);

	switch (id) {
	case KNAV_QUEUE_QPEND:
	case KNAV_QUEUE_ACC:
	case KNAV_QUEUE_GP:
		qh = knav_queue_open_by_type(name, id, flags);
		break;

	default:
		qh = knav_queue_open_by_id(name, id, flags);
		break;
	}
	return qh;
}
EXPORT_SYMBOL_GPL(knav_queue_open);

/**
 * knav_queue_close()	- close a hardware queue handle
 * @qh			- handle to close
 */
void knav_queue_close(void *qhandle)
{
	struct knav_queue *qh = qhandle;
	struct knav_queue_inst *inst = qh->inst;

	while (atomic_read(&qh->notifier_enabled) > 0)
		knav_queue_disable_notifier(qh);

	mutex_lock(&knav_dev_lock);
	list_del_rcu(&qh->list);
	mutex_unlock(&knav_dev_lock);
	synchronize_rcu();
	if (!knav_queue_is_busy(inst)) {
		struct knav_range_info *range = inst->range;

		if (range->ops && range->ops->close_queue)
			range->ops->close_queue(range, inst);
	}
	devm_kfree(inst->kdev->dev, qh);
}
EXPORT_SYMBOL_GPL(knav_queue_close);

/**
 * knav_queue_device_control()	- Perform control operations on a queue
 * @qh				- queue handle
 * @cmd				- control commands
 * @arg				- command argument
 *
 * Returns 0 on success, errno otherwise.
 */
int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
				unsigned long arg)
{
	struct knav_queue *qh = qhandle;
	struct knav_queue_notify_config *cfg;
	int ret;

	switch ((int)cmd) {
	case KNAV_QUEUE_GET_ID:
		ret = qh->inst->kdev->base_id + qh->inst->id;
		break;

	case KNAV_QUEUE_FLUSH:
		ret = knav_queue_flush(qh);
		break;

	case KNAV_QUEUE_SET_NOTIFIER:
		cfg = (void *)arg;
		ret = knav_queue_set_notifier(qh, cfg);
		break;

	case KNAV_QUEUE_ENABLE_NOTIFY:
		ret = knav_queue_enable_notifier(qh);
		break;

	case KNAV_QUEUE_DISABLE_NOTIFY:
		ret = knav_queue_disable_notifier(qh);
		break;

	case KNAV_QUEUE_GET_COUNT:
		ret = knav_queue_get_count(qh);
		break;

	default:
		ret = -ENOTSUPP;
		break;
	}
	return ret;
}
EXPORT_SYMBOL_GPL(knav_queue_device_control);



/**
 * knav_queue_push()	- push data (or descriptor) to the tail of a queue
 * @qh			- hardware queue handle
 * @data		- data to push
 * @size		- size of data to push
 * @flags		- can be used to pass additional information
 *
 * Returns 0 on success, errno otherwise.
 */
int knav_queue_push(void *qhandle, dma_addr_t dma,
					unsigned size, unsigned flags)
{
	struct knav_queue *qh = qhandle;
	u32 val;

	val = (u32)dma | ((size / 16) - 1);
	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);

	atomic_inc(&qh->stats.pushes);
	return 0;
}
629
EXPORT_SYMBOL_GPL(knav_queue_push);
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666

/**
 * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
 * @qh			- hardware queue handle
 * @size		- (optional) size of the data pop'ed.
 *
 * Returns a DMA address on success, 0 on failure.
 */
dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
{
	struct knav_queue *qh = qhandle;
	struct knav_queue_inst *inst = qh->inst;
	dma_addr_t dma;
	u32 val, idx;

	/* are we accumulated? */
	if (inst->descs) {
		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
			atomic_inc(&inst->desc_count);
			return 0;
		}
		idx  = atomic_inc_return(&inst->desc_head);
		idx &= ACC_DESCS_MASK;
		val = inst->descs[idx];
	} else {
		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
		if (unlikely(!val))
			return 0;
	}

	dma = val & DESC_PTR_MASK;
	if (size)
		*size = ((val & DESC_SIZE_MASK) + 1) * 16;

	atomic_inc(&qh->stats.pops);
	return dma;
}
667
EXPORT_SYMBOL_GPL(knav_queue_pop);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721

/* carve out descriptors and push into queue */
static void kdesc_fill_pool(struct knav_pool *pool)
{
	struct knav_region *region;
	int i;

	region = pool->region;
	pool->desc_size = region->desc_size;
	for (i = 0; i < pool->num_desc; i++) {
		int index = pool->region_offset + i;
		dma_addr_t dma_addr;
		unsigned dma_size;
		dma_addr = region->dma_start + (region->desc_size * index);
		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
					   DMA_TO_DEVICE);
		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
	}
}

/* pop out descriptors and close the queue */
static void kdesc_empty_pool(struct knav_pool *pool)
{
	dma_addr_t dma;
	unsigned size;
	void *desc;
	int i;

	if (!pool->queue)
		return;

	for (i = 0;; i++) {
		dma = knav_queue_pop(pool->queue, &size);
		if (!dma)
			break;
		desc = knav_pool_desc_dma_to_virt(pool, dma);
		if (!desc) {
			dev_dbg(pool->kdev->dev,
				"couldn't unmap desc, continuing\n");
			continue;
		}
	}
	WARN_ON(i != pool->num_desc);
	knav_queue_close(pool->queue);
}


/* Get the DMA address of a descriptor */
dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
{
	struct knav_pool *pool = ph;
	return pool->region->dma_start + (virt - pool->region->virt_start);
}
722
EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
723 724 725 726 727 728

void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
{
	struct knav_pool *pool = ph;
	return pool->region->virt_start + (dma - pool->region->dma_start);
}
729
EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

/**
 * knav_pool_create()	- Create a pool of descriptors
 * @name		- name to give the pool handle
 * @num_desc		- numbers of descriptors in the pool
 * @region_id		- QMSS region id from which the descriptors are to be
 *			  allocated.
 *
 * Returns a pool handle on success.
 * Use IS_ERR_OR_NULL() to identify error values on return.
 */
void *knav_pool_create(const char *name,
					int num_desc, int region_id)
{
	struct knav_region *reg_itr, *region = NULL;
	struct knav_pool *pool, *pi;
	struct list_head *node;
	unsigned last_offset;
	bool slot_found;
	int ret;

	if (!kdev->dev)
		return ERR_PTR(-ENODEV);

	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
	if (!pool) {
		dev_err(kdev->dev, "out of memory allocating pool\n");
		return ERR_PTR(-ENOMEM);
	}

	for_each_region(kdev, reg_itr) {
		if (reg_itr->id != region_id)
			continue;
		region = reg_itr;
		break;
	}

	if (!region) {
		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
		ret = -EINVAL;
		goto err;
	}

	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
	if (IS_ERR_OR_NULL(pool->queue)) {
		dev_err(kdev->dev,
			"failed to open queue for pool(%s), error %ld\n",
			name, PTR_ERR(pool->queue));
		ret = PTR_ERR(pool->queue);
		goto err;
	}

	pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
	pool->kdev = kdev;
	pool->dev = kdev->dev;

	mutex_lock(&knav_dev_lock);

	if (num_desc > (region->num_desc - region->used_desc)) {
		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
			region_id, name);
		ret = -ENOMEM;
792
		goto err_unlock;
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	}

	/* Region maintains a sorted (by region offset) list of pools
	 * use the first free slot which is large enough to accomodate
	 * the request
	 */
	last_offset = 0;
	slot_found = false;
	node = &region->pools;
	list_for_each_entry(pi, &region->pools, region_inst) {
		if ((pi->region_offset - last_offset) >= num_desc) {
			slot_found = true;
			break;
		}
		last_offset = pi->region_offset + pi->num_desc;
	}
	node = &pi->region_inst;

	if (slot_found) {
		pool->region = region;
		pool->num_desc = num_desc;
		pool->region_offset = last_offset;
		region->used_desc += num_desc;
		list_add_tail(&pool->list, &kdev->pools);
		list_add_tail(&pool->region_inst, node);
	} else {
		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
			name, region_id);
		ret = -ENOMEM;
822
		goto err_unlock;
823 824 825 826 827 828
	}

	mutex_unlock(&knav_dev_lock);
	kdesc_fill_pool(pool);
	return pool;

829
err_unlock:
830
	mutex_unlock(&knav_dev_lock);
831
err:
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	kfree(pool->name);
	devm_kfree(kdev->dev, pool);
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(knav_pool_create);

/**
 * knav_pool_destroy()	- Free a pool of descriptors
 * @pool		- pool handle
 */
void knav_pool_destroy(void *ph)
{
	struct knav_pool *pool = ph;

	if (!pool)
		return;

	if (!pool->region)
		return;

	kdesc_empty_pool(pool);
	mutex_lock(&knav_dev_lock);

	pool->region->used_desc -= pool->num_desc;
	list_del(&pool->region_inst);
	list_del(&pool->list);

	mutex_unlock(&knav_dev_lock);
	kfree(pool->name);
	devm_kfree(kdev->dev, pool);
}
EXPORT_SYMBOL_GPL(knav_pool_destroy);


/**
 * knav_pool_desc_get()	- Get a descriptor from the pool
 * @pool			- pool handle
 *
 * Returns descriptor from the pool.
 */
void *knav_pool_desc_get(void *ph)
{
	struct knav_pool *pool = ph;
	dma_addr_t dma;
	unsigned size;
	void *data;

	dma = knav_queue_pop(pool->queue, &size);
	if (unlikely(!dma))
		return ERR_PTR(-ENOMEM);
	data = knav_pool_desc_dma_to_virt(pool, dma);
	return data;
}
885
EXPORT_SYMBOL_GPL(knav_pool_desc_get);
886 887 888 889 890 891 892 893 894 895 896 897

/**
 * knav_pool_desc_put()	- return a descriptor to the pool
 * @pool			- pool handle
 */
void knav_pool_desc_put(void *ph, void *desc)
{
	struct knav_pool *pool = ph;
	dma_addr_t dma;
	dma = knav_pool_desc_virt_to_dma(pool, desc);
	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
}
898
EXPORT_SYMBOL_GPL(knav_pool_desc_put);
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924

/**
 * knav_pool_desc_map()	- Map descriptor for DMA transfer
 * @pool			- pool handle
 * @desc			- address of descriptor to map
 * @size			- size of descriptor to map
 * @dma				- DMA address return pointer
 * @dma_sz			- adjusted return pointer
 *
 * Returns 0 on success, errno otherwise.
 */
int knav_pool_desc_map(void *ph, void *desc, unsigned size,
					dma_addr_t *dma, unsigned *dma_sz)
{
	struct knav_pool *pool = ph;
	*dma = knav_pool_desc_virt_to_dma(pool, desc);
	size = min(size, pool->region->desc_size);
	size = ALIGN(size, SMP_CACHE_BYTES);
	*dma_sz = size;
	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);

	/* Ensure the descriptor reaches to the memory */
	__iowmb();

	return 0;
}
925
EXPORT_SYMBOL_GPL(knav_pool_desc_map);
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947

/**
 * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
 * @pool			- pool handle
 * @dma				- DMA address of descriptor to unmap
 * @dma_sz			- size of descriptor to unmap
 *
 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
 * error values on return.
 */
void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
{
	struct knav_pool *pool = ph;
	unsigned desc_sz;
	void *desc;

	desc_sz = min(dma_sz, pool->region->desc_size);
	desc = knav_pool_desc_dma_to_virt(pool, dma);
	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
	prefetch(desc);
	return desc;
}
948
EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
949 950 951 952 953 954 955 956 957 958 959

/**
 * knav_pool_count()	- Get the number of descriptors in pool.
 * @pool		- pool handle
 * Returns number of elements in the pool.
 */
int knav_pool_count(void *ph)
{
	struct knav_pool *pool = ph;
	return knav_queue_get_count(pool->queue);
}
960
EXPORT_SYMBOL_GPL(knav_pool_count);
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

static void knav_queue_setup_region(struct knav_device *kdev,
					struct knav_region *region)
{
	unsigned hw_num_desc, hw_desc_size, size;
	struct knav_reg_region __iomem  *regs;
	struct knav_qmgr_info *qmgr;
	struct knav_pool *pool;
	int id = region->id;
	struct page *page;

	/* unused region? */
	if (!region->num_desc) {
		dev_warn(kdev->dev, "unused region %s\n", region->name);
		return;
	}

	/* get hardware descriptor value */
	hw_num_desc = ilog2(region->num_desc - 1) + 1;

	/* did we force fit ourselves into nothingness? */
	if (region->num_desc < 32) {
		region->num_desc = 0;
		dev_warn(kdev->dev, "too few descriptors in region %s\n",
			 region->name);
		return;
	}

	size = region->num_desc * region->desc_size;
	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
						GFP_DMA32);
	if (!region->virt_start) {
		region->num_desc = 0;
		dev_err(kdev->dev, "memory alloc failed for region %s\n",
			region->name);
		return;
	}
	region->virt_end = region->virt_start + size;
	page = virt_to_page(region->virt_start);

	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
					 DMA_BIDIRECTIONAL);
	if (dma_mapping_error(kdev->dev, region->dma_start)) {
		dev_err(kdev->dev, "dma map failed for region %s\n",
			region->name);
		goto fail;
	}
	region->dma_end = region->dma_start + size;

	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
	if (!pool) {
		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
		goto fail;
	}
	pool->num_desc = 0;
	pool->region_offset = region->num_desc;
	list_add(&pool->region_inst, &region->pools);

	dev_dbg(kdev->dev,
		"region %s (%d): size:%d, link:%d@%d, phys:%08x-%08x, virt:%p-%p\n",
		region->name, id, region->desc_size, region->num_desc,
		region->link_index, region->dma_start, region->dma_end,
		region->virt_start, region->virt_end);

	hw_desc_size = (region->desc_size / 16) - 1;
	hw_num_desc -= 5;

	for_each_qmgr(kdev, qmgr) {
		regs = qmgr->reg_region + id;
		writel_relaxed(region->dma_start, &regs->base);
		writel_relaxed(region->link_index, &regs->start_index);
		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
			       &regs->size_count);
	}
	return;

fail:
	if (region->dma_start)
		dma_unmap_page(kdev->dev, region->dma_start, size,
				DMA_BIDIRECTIONAL);
	if (region->virt_start)
		free_pages_exact(region->virt_start, size);
	region->num_desc = 0;
	return;
}

static const char *knav_queue_find_name(struct device_node *node)
{
	const char *name;

	if (of_property_read_string(node, "label", &name) < 0)
		name = node->name;
	if (!name)
		name = "unknown";
	return name;
}

static int knav_queue_setup_regions(struct knav_device *kdev,
					struct device_node *regions)
{
	struct device *dev = kdev->dev;
	struct knav_region *region;
	struct device_node *child;
	u32 temp[2];
	int ret;

	for_each_child_of_node(regions, child) {
		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
		if (!region) {
			dev_err(dev, "out of memory allocating region\n");
			return -ENOMEM;
		}

		region->name = knav_queue_find_name(child);
		of_property_read_u32(child, "id", &region->id);
		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
		if (!ret) {
			region->num_desc  = temp[0];
			region->desc_size = temp[1];
		} else {
			dev_err(dev, "invalid region info %s\n", region->name);
			devm_kfree(dev, region);
			continue;
		}

		if (!of_get_property(child, "link-index", NULL)) {
			dev_err(dev, "No link info for %s\n", region->name);
			devm_kfree(dev, region);
			continue;
		}
		ret = of_property_read_u32(child, "link-index",
					   &region->link_index);
		if (ret) {
			dev_err(dev, "link index not found for %s\n",
				region->name);
			devm_kfree(dev, region);
			continue;
		}

		INIT_LIST_HEAD(&region->pools);
		list_add_tail(&region->list, &kdev->regions);
	}
	if (list_empty(&kdev->regions)) {
		dev_err(dev, "no valid region information found\n");
		return -ENODEV;
	}

	/* Next, we run through the regions and set things up */
	for_each_region(kdev, region)
		knav_queue_setup_region(kdev, region);

	return 0;
}

static int knav_get_link_ram(struct knav_device *kdev,
				       const char *name,
				       struct knav_link_ram_block *block)
{
	struct platform_device *pdev = to_platform_device(kdev->dev);
	struct device_node *node = pdev->dev.of_node;
	u32 temp[2];

	/*
	 * Note: link ram resources are specified in "entry" sized units. In
	 * reality, although entries are ~40bits in hardware, we treat them as
	 * 64-bit entities here.
	 *
	 * For example, to specify the internal link ram for Keystone-I class
	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
	 *
	 * This gets a bit weird when other link rams are used.  For example,
	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
	 * which accounts for 64-bits per entry, for 16K entries.
	 */
	if (!of_property_read_u32_array(node, name , temp, 2)) {
		if (temp[0]) {
			/*
			 * queue_base specified => using internal or onchip
			 * link ram WARNING - we do not "reserve" this block
			 */
			block->phys = (dma_addr_t)temp[0];
			block->virt = NULL;
			block->size = temp[1];
		} else {
			block->size = temp[1];
			/* queue_base not specific => allocate requested size */
			block->virt = dmam_alloc_coherent(kdev->dev,
						  8 * block->size, &block->phys,
						  GFP_KERNEL);
			if (!block->virt) {
				dev_err(kdev->dev, "failed to alloc linkram\n");
				return -ENOMEM;
			}
		}
	} else {
		return -ENODEV;
	}
	return 0;
}

static int knav_queue_setup_link_ram(struct knav_device *kdev)
{
	struct knav_link_ram_block *block;
	struct knav_qmgr_info *qmgr;

	for_each_qmgr(kdev, qmgr) {
		block = &kdev->link_rams[0];
		dev_dbg(kdev->dev, "linkram0: phys:%x, virt:%p, size:%x\n",
			block->phys, block->virt, block->size);
		writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base0);
		writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);

		block++;
		if (!block->size)
			return 0;

		dev_dbg(kdev->dev, "linkram1: phys:%x, virt:%p, size:%x\n",
			block->phys, block->virt, block->size);
		writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base1);
	}

	return 0;
}

static int knav_setup_queue_range(struct knav_device *kdev,
					struct device_node *node)
{
	struct device *dev = kdev->dev;
	struct knav_range_info *range;
	struct knav_qmgr_info *qmgr;
	u32 temp[2], start, end, id, index;
	int ret, i;

	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
	if (!range) {
		dev_err(dev, "out of memory allocating range\n");
		return -ENOMEM;
	}

	range->kdev = kdev;
	range->name = knav_queue_find_name(node);
	ret = of_property_read_u32_array(node, "qrange", temp, 2);
	if (!ret) {
		range->queue_base = temp[0] - kdev->base_id;
		range->num_queues = temp[1];
	} else {
		dev_err(dev, "invalid queue range %s\n", range->name);
		devm_kfree(dev, range);
		return -EINVAL;
	}

	for (i = 0; i < RANGE_MAX_IRQS; i++) {
		struct of_phandle_args oirq;

		if (of_irq_parse_one(node, i, &oirq))
			break;

		range->irqs[i].irq = irq_create_of_mapping(&oirq);
		if (range->irqs[i].irq == IRQ_NONE)
			break;

		range->num_irqs++;

		if (oirq.args_count == 3)
			range->irqs[i].cpu_map =
				(oirq.args[2] & 0x0000ff00) >> 8;
	}

	range->num_irqs = min(range->num_irqs, range->num_queues);
	if (range->num_irqs)
		range->flags |= RANGE_HAS_IRQ;

	if (of_get_property(node, "qalloc-by-id", NULL))
		range->flags |= RANGE_RESERVED;

	if (of_get_property(node, "accumulator", NULL)) {
		ret = knav_init_acc_range(kdev, node, range);
		if (ret < 0) {
			devm_kfree(dev, range);
			return ret;
		}
	} else {
		range->ops = &knav_gp_range_ops;
	}

	/* set threshold to 1, and flush out the queues */
	for_each_qmgr(kdev, qmgr) {
		start = max(qmgr->start_queue, range->queue_base);
		end   = min(qmgr->start_queue + qmgr->num_queues,
			    range->queue_base + range->num_queues);
		for (id = start; id < end; id++) {
			index = id - qmgr->start_queue;
			writel_relaxed(THRESH_GTE | 1,
				       &qmgr->reg_peek[index].ptr_size_thresh);
			writel_relaxed(0,
				       &qmgr->reg_push[index].ptr_size_thresh);
		}
	}

	list_add_tail(&range->list, &kdev->queue_ranges);
	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
		range->name, range->queue_base,
		range->queue_base + range->num_queues - 1,
		range->num_irqs,
		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
	kdev->num_queues_in_use += range->num_queues;
	return 0;
}

static int knav_setup_queue_pools(struct knav_device *kdev,
				   struct device_node *queue_pools)
{
	struct device_node *type, *range;
	int ret;

	for_each_child_of_node(queue_pools, type) {
		for_each_child_of_node(type, range) {
			ret = knav_setup_queue_range(kdev, range);
			/* return value ignored, we init the rest... */
		}
	}

	/* ... and barf if they all failed! */
	if (list_empty(&kdev->queue_ranges)) {
		dev_err(kdev->dev, "no valid queue range found\n");
		return -ENODEV;
	}
	return 0;
}

static void knav_free_queue_range(struct knav_device *kdev,
				  struct knav_range_info *range)
{
	if (range->ops && range->ops->free_range)
		range->ops->free_range(range);
	list_del(&range->list);
	devm_kfree(kdev->dev, range);
}

static void knav_free_queue_ranges(struct knav_device *kdev)
{
	struct knav_range_info *range;

	for (;;) {
		range = first_queue_range(kdev);
		if (!range)
			break;
		knav_free_queue_range(kdev, range);
	}
}

static void knav_queue_free_regions(struct knav_device *kdev)
{
	struct knav_region *region;
1318
	struct knav_pool *pool, *tmp;
1319 1320 1321 1322 1323 1324
	unsigned size;

	for (;;) {
		region = first_region(kdev);
		if (!region)
			break;
1325
		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
			knav_pool_destroy(pool);

		size = region->virt_end - region->virt_start;
		if (size)
			free_pages_exact(region->virt_start, size);
		list_del(&region->list);
		devm_kfree(kdev->dev, region);
	}
}

static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
					struct device_node *node, int index)
{
	struct resource res;
	void __iomem *regs;
	int ret;

	ret = of_address_to_resource(node, index, &res);
	if (ret) {
		dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
			node->name, index);
		return ERR_PTR(ret);
	}

	regs = devm_ioremap_resource(kdev->dev, &res);
	if (IS_ERR(regs))
		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
			index, node->name);
	return regs;
}

static int knav_queue_init_qmgrs(struct knav_device *kdev,
					struct device_node *qmgrs)
{
	struct device *dev = kdev->dev;
	struct knav_qmgr_info *qmgr;
	struct device_node *child;
	u32 temp[2];
	int ret;

	for_each_child_of_node(qmgrs, child) {
		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
		if (!qmgr) {
			dev_err(dev, "out of memory allocating qmgr\n");
			return -ENOMEM;
		}

		ret = of_property_read_u32_array(child, "managed-queues",
						 temp, 2);
		if (!ret) {
			qmgr->start_queue = temp[0];
			qmgr->num_queues = temp[1];
		} else {
			dev_err(dev, "invalid qmgr queue range\n");
			devm_kfree(dev, qmgr);
			continue;
		}

		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
			 qmgr->start_queue, qmgr->num_queues);

		qmgr->reg_peek =
			knav_queue_map_reg(kdev, child,
					   KNAV_QUEUE_PEEK_REG_INDEX);
		qmgr->reg_status =
			knav_queue_map_reg(kdev, child,
					   KNAV_QUEUE_STATUS_REG_INDEX);
		qmgr->reg_config =
			knav_queue_map_reg(kdev, child,
					   KNAV_QUEUE_CONFIG_REG_INDEX);
		qmgr->reg_region =
			knav_queue_map_reg(kdev, child,
					   KNAV_QUEUE_REGION_REG_INDEX);
		qmgr->reg_push =
			knav_queue_map_reg(kdev, child,
					   KNAV_QUEUE_PUSH_REG_INDEX);
		qmgr->reg_pop =
			knav_queue_map_reg(kdev, child,
					   KNAV_QUEUE_POP_REG_INDEX);

		if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
		    IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
			dev_err(dev, "failed to map qmgr regs\n");
			if (!IS_ERR(qmgr->reg_peek))
				devm_iounmap(dev, qmgr->reg_peek);
			if (!IS_ERR(qmgr->reg_status))
				devm_iounmap(dev, qmgr->reg_status);
			if (!IS_ERR(qmgr->reg_config))
				devm_iounmap(dev, qmgr->reg_config);
			if (!IS_ERR(qmgr->reg_region))
				devm_iounmap(dev, qmgr->reg_region);
			if (!IS_ERR(qmgr->reg_push))
				devm_iounmap(dev, qmgr->reg_push);
			if (!IS_ERR(qmgr->reg_pop))
				devm_iounmap(dev, qmgr->reg_pop);
			devm_kfree(dev, qmgr);
			continue;
		}

		list_add_tail(&qmgr->list, &kdev->qmgrs);
		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
			 qmgr->start_queue, qmgr->num_queues,
			 qmgr->reg_peek, qmgr->reg_status,
			 qmgr->reg_config, qmgr->reg_region,
			 qmgr->reg_push, qmgr->reg_pop);
	}
	return 0;
}

static int knav_queue_init_pdsps(struct knav_device *kdev,
					struct device_node *pdsps)
{
	struct device *dev = kdev->dev;
	struct knav_pdsp_info *pdsp;
	struct device_node *child;
	int ret;

	for_each_child_of_node(pdsps, child) {
		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
		if (!pdsp) {
			dev_err(dev, "out of memory allocating pdsp\n");
			return -ENOMEM;
		}
		pdsp->name = knav_queue_find_name(child);
		ret = of_property_read_string(child, "firmware",
					      &pdsp->firmware);
		if (ret < 0 || !pdsp->firmware) {
			dev_err(dev, "unknown firmware for pdsp %s\n",
				pdsp->name);
			devm_kfree(dev, pdsp);
			continue;
		}
		dev_dbg(dev, "pdsp name %s fw name :%s\n", pdsp->name,
			pdsp->firmware);

		pdsp->iram =
			knav_queue_map_reg(kdev, child,
					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
		pdsp->regs =
			knav_queue_map_reg(kdev, child,
					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
		pdsp->intd =
			knav_queue_map_reg(kdev, child,
					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
		pdsp->command =
			knav_queue_map_reg(kdev, child,
					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);

		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
			dev_err(dev, "failed to map pdsp %s regs\n",
				pdsp->name);
			if (!IS_ERR(pdsp->command))
				devm_iounmap(dev, pdsp->command);
			if (!IS_ERR(pdsp->iram))
				devm_iounmap(dev, pdsp->iram);
			if (!IS_ERR(pdsp->regs))
				devm_iounmap(dev, pdsp->regs);
			if (!IS_ERR(pdsp->intd))
				devm_iounmap(dev, pdsp->intd);
			devm_kfree(dev, pdsp);
			continue;
		}
		of_property_read_u32(child, "id", &pdsp->id);
		list_add_tail(&pdsp->list, &kdev->pdsps);
		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p, firmware %s\n",
			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
			pdsp->intd, pdsp->firmware);
	}
	return 0;
}

static int knav_queue_stop_pdsp(struct knav_device *kdev,
			  struct knav_pdsp_info *pdsp)
{
	u32 val, timeout = 1000;
	int ret;

	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
	writel_relaxed(val, &pdsp->regs->control);
	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
					PDSP_CTRL_RUNNING);
	if (ret < 0) {
		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
		return ret;
	}
	return 0;
}

static int knav_queue_load_pdsp(struct knav_device *kdev,
			  struct knav_pdsp_info *pdsp)
{
	int i, ret, fwlen;
	const struct firmware *fw;
	u32 *fwdata;

	ret = request_firmware(&fw, pdsp->firmware, kdev->dev);
	if (ret) {
		dev_err(kdev->dev, "failed to get firmware %s for pdsp %s\n",
			pdsp->firmware, pdsp->name);
		return ret;
	}
	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
	/* download the firmware */
	fwdata = (u32 *)fw->data;
	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
	for (i = 0; i < fwlen; i++)
		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);

	release_firmware(fw);
	return 0;
}

static int knav_queue_start_pdsp(struct knav_device *kdev,
			   struct knav_pdsp_info *pdsp)
{
	u32 val, timeout = 1000;
	int ret;

	/* write a command for sync */
	writel_relaxed(0xffffffff, pdsp->command);
	while (readl_relaxed(pdsp->command) != 0xffffffff)
		cpu_relax();

	/* soft reset the PDSP */
	val  = readl_relaxed(&pdsp->regs->control);
	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
	writel_relaxed(val, &pdsp->regs->control);

	/* enable pdsp */
	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
	writel_relaxed(val, &pdsp->regs->control);

	/* wait for command register to clear */
	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
	if (ret < 0) {
		dev_err(kdev->dev,
			"timed out on pdsp %s command register wait\n",
			pdsp->name);
		return ret;
	}
	return 0;
}

static void knav_queue_stop_pdsps(struct knav_device *kdev)
{
	struct knav_pdsp_info *pdsp;

	/* disable all pdsps */
	for_each_pdsp(kdev, pdsp)
		knav_queue_stop_pdsp(kdev, pdsp);
}

static int knav_queue_start_pdsps(struct knav_device *kdev)
{
	struct knav_pdsp_info *pdsp;
	int ret;

	knav_queue_stop_pdsps(kdev);
	/* now load them all */
	for_each_pdsp(kdev, pdsp) {
		ret = knav_queue_load_pdsp(kdev, pdsp);
		if (ret < 0)
			return ret;
	}

	for_each_pdsp(kdev, pdsp) {
		ret = knav_queue_start_pdsp(kdev, pdsp);
		WARN_ON(ret);
	}
	return 0;
}

static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
{
	struct knav_qmgr_info *qmgr;

	for_each_qmgr(kdev, qmgr) {
		if ((id >= qmgr->start_queue) &&
		    (id < qmgr->start_queue + qmgr->num_queues))
			return qmgr;
	}
	return NULL;
}

static int knav_queue_init_queue(struct knav_device *kdev,
					struct knav_range_info *range,
					struct knav_queue_inst *inst,
					unsigned id)
{
	char irq_name[KNAV_NAME_SIZE];
	inst->qmgr = knav_find_qmgr(id);
	if (!inst->qmgr)
		return -1;

	INIT_LIST_HEAD(&inst->handles);
	inst->kdev = kdev;
	inst->range = range;
	inst->irq_num = -1;
	inst->id = id;
	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);

	if (range->ops && range->ops->init_queue)
		return range->ops->init_queue(range, inst);
	else
		return 0;
}

static int knav_queue_init_queues(struct knav_device *kdev)
{
	struct knav_range_info *range;
	int size, id, base_idx;
	int idx = 0, ret = 0;

	/* how much do we need for instance data? */
	size = sizeof(struct knav_queue_inst);

	/* round this up to a power of 2, keep the index to instance
	 * arithmetic fast.
	 * */
	kdev->inst_shift = order_base_2(size);
	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
	if (!kdev->instances)
1652
		return -ENOMEM;
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825

	for_each_queue_range(kdev, range) {
		if (range->ops && range->ops->init_range)
			range->ops->init_range(range);
		base_idx = idx;
		for (id = range->queue_base;
		     id < range->queue_base + range->num_queues; id++, idx++) {
			ret = knav_queue_init_queue(kdev, range,
					knav_queue_idx_to_inst(kdev, idx), id);
			if (ret < 0)
				return ret;
		}
		range->queue_base_inst =
			knav_queue_idx_to_inst(kdev, base_idx);
	}
	return 0;
}

static int knav_queue_probe(struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
	struct device *dev = &pdev->dev;
	u32 temp[2];
	int ret;

	if (!node) {
		dev_err(dev, "device tree info unavailable\n");
		return -ENODEV;
	}

	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
	if (!kdev) {
		dev_err(dev, "memory allocation failed\n");
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, kdev);
	kdev->dev = dev;
	INIT_LIST_HEAD(&kdev->queue_ranges);
	INIT_LIST_HEAD(&kdev->qmgrs);
	INIT_LIST_HEAD(&kdev->pools);
	INIT_LIST_HEAD(&kdev->regions);
	INIT_LIST_HEAD(&kdev->pdsps);

	pm_runtime_enable(&pdev->dev);
	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		dev_err(dev, "Failed to enable QMSS\n");
		return ret;
	}

	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
		dev_err(dev, "queue-range not specified\n");
		ret = -ENODEV;
		goto err;
	}
	kdev->base_id    = temp[0];
	kdev->num_queues = temp[1];

	/* Initialize queue managers using device tree configuration */
	qmgrs =  of_get_child_by_name(node, "qmgrs");
	if (!qmgrs) {
		dev_err(dev, "queue manager info not specified\n");
		ret = -ENODEV;
		goto err;
	}
	ret = knav_queue_init_qmgrs(kdev, qmgrs);
	of_node_put(qmgrs);
	if (ret)
		goto err;

	/* get pdsp configuration values from device tree */
	pdsps =  of_get_child_by_name(node, "pdsps");
	if (pdsps) {
		ret = knav_queue_init_pdsps(kdev, pdsps);
		if (ret)
			goto err;

		ret = knav_queue_start_pdsps(kdev);
		if (ret)
			goto err;
	}
	of_node_put(pdsps);

	/* get usable queue range values from device tree */
	queue_pools = of_get_child_by_name(node, "queue-pools");
	if (!queue_pools) {
		dev_err(dev, "queue-pools not specified\n");
		ret = -ENODEV;
		goto err;
	}
	ret = knav_setup_queue_pools(kdev, queue_pools);
	of_node_put(queue_pools);
	if (ret)
		goto err;

	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
	if (ret) {
		dev_err(kdev->dev, "could not setup linking ram\n");
		goto err;
	}

	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
	if (ret) {
		/*
		 * nothing really, we have one linking ram already, so we just
		 * live within our means
		 */
	}

	ret = knav_queue_setup_link_ram(kdev);
	if (ret)
		goto err;

	regions =  of_get_child_by_name(node, "descriptor-regions");
	if (!regions) {
		dev_err(dev, "descriptor-regions not specified\n");
		goto err;
	}
	ret = knav_queue_setup_regions(kdev, regions);
	of_node_put(regions);
	if (ret)
		goto err;

	ret = knav_queue_init_queues(kdev);
	if (ret < 0) {
		dev_err(dev, "hwqueue initialization failed\n");
		goto err;
	}

	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
			    &knav_queue_debug_ops);
	return 0;

err:
	knav_queue_stop_pdsps(kdev);
	knav_queue_free_regions(kdev);
	knav_free_queue_ranges(kdev);
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
	return ret;
}

static int knav_queue_remove(struct platform_device *pdev)
{
	/* TODO: Free resources */
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
	return 0;
}

/* Match table for of_platform binding */
static struct of_device_id keystone_qmss_of_match[] = {
	{ .compatible = "ti,keystone-navigator-qmss", },
	{},
};
MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);

static struct platform_driver keystone_qmss_driver = {
	.probe		= knav_queue_probe,
	.remove		= knav_queue_remove,
	.driver		= {
		.name	= "keystone-navigator-qmss",
		.of_match_table = keystone_qmss_of_match,
	},
};
module_platform_driver(keystone_qmss_driver);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");