lguest.c 54.7 KB
Newer Older
1 2 3
/*P:100 This is the Launcher code, a simple program which lays out the
 * "physical" memory for the new Guest by mapping the kernel image and the
 * virtual devices, then reads repeatedly from /dev/lguest to run the Guest.
4
:*/
5 6 7 8 9 10 11 12 13 14
#define _LARGEFILE64_SOURCE
#define _GNU_SOURCE
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <err.h>
#include <stdint.h>
#include <stdlib.h>
#include <elf.h>
#include <sys/mman.h>
15
#include <sys/param.h>
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <stdbool.h>
#include <errno.h>
#include <ctype.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <time.h>
#include <netinet/in.h>
#include <net/if.h>
#include <linux/sockios.h>
#include <linux/if_tun.h>
#include <sys/uio.h>
#include <termios.h>
#include <getopt.h>
#include <zlib.h>
R
Rusty Russell 已提交
35 36 37
#include <assert.h>
#include <sched.h>
/*L:110 We can ignore the 30 include files we need for this program, but I do
38 39 40 41 42 43
 * want to draw attention to the use of kernel-style types.
 *
 * As Linus said, "C is a Spartan language, and so should your naming be."  I
 * like these abbreviations and the header we need uses them, so we define them
 * here.
 */
44 45 46 47
typedef unsigned long long u64;
typedef uint32_t u32;
typedef uint16_t u16;
typedef uint8_t u8;
48
#include "linux/lguest_launcher.h"
R
Rusty Russell 已提交
49 50 51 52 53 54
#include "linux/pci_ids.h"
#include "linux/virtio_config.h"
#include "linux/virtio_net.h"
#include "linux/virtio_blk.h"
#include "linux/virtio_console.h"
#include "linux/virtio_ring.h"
55
#include "asm-x86/e820.h"
56
/*:*/
57 58 59 60 61 62 63

#define PAGE_PRESENT 0x7 	/* Present, RW, Execute */
#define NET_PEERNUM 1
#define BRIDGE_PFX "bridge:"
#ifndef SIOCBRADDIF
#define SIOCBRADDIF	0x89a2		/* add interface to bridge      */
#endif
64 65
/* We can have up to 256 pages for devices. */
#define DEVICE_PAGES 256
R
Rusty Russell 已提交
66 67
/* This fits nicely in a single 4096-byte page. */
#define VIRTQUEUE_NUM 127
68

69 70
/*L:120 verbose is both a global flag and a macro.  The C preprocessor allows
 * this, and although I wouldn't recommend it, it works quite nicely here. */
71 72 73
static bool verbose;
#define verbose(args...) \
	do { if (verbose) printf(args); } while(0)
74 75 76
/*:*/

/* The pipe to send commands to the waker process */
77
static int waker_fd;
78 79 80 81
/* The pointer to the start of guest memory. */
static void *guest_base;
/* The maximum guest physical address allowed, and maximum possible. */
static unsigned long guest_limit, guest_max;
82

83
/* This is our list of devices. */
84 85
struct device_list
{
86 87
	/* Summary information about the devices in our list: ready to pass to
	 * select() to ask which need servicing.*/
88 89 90
	fd_set infds;
	int max_infd;

R
Rusty Russell 已提交
91 92 93 94 95 96
	/* Counter to assign interrupt numbers. */
	unsigned int next_irq;

	/* Counter to print out convenient device numbers. */
	unsigned int device_num;

97
	/* The descriptor page for the devices. */
R
Rusty Russell 已提交
98 99 100 101
	u8 *descpage;

	/* The tail of the last descriptor. */
	unsigned int desc_used;
102 103

	/* A single linked list of devices. */
104
	struct device *dev;
105
	/* ... And an end pointer so we can easily append new devices */
106 107 108
	struct device **lastdev;
};

R
Rusty Russell 已提交
109 110 111
/* The list of Guest devices, based on command line arguments. */
static struct device_list devices;

112
/* The device structure describes a single device. */
113 114
struct device
{
115
	/* The linked-list pointer. */
116
	struct device *next;
R
Rusty Russell 已提交
117 118

	/* The this device's descriptor, as mapped into the Guest. */
119
	struct lguest_device_desc *desc;
R
Rusty Russell 已提交
120 121 122

	/* The name of this device, for --verbose. */
	const char *name;
123

124 125
	/* If handle_input is set, it wants to be called when this file
	 * descriptor is ready. */
126 127 128
	int fd;
	bool (*handle_input)(int fd, struct device *me);

R
Rusty Russell 已提交
129 130
	/* Any queues attached to this device */
	struct virtqueue *vq;
131 132 133 134 135

	/* Device-specific data. */
	void *priv;
};

R
Rusty Russell 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/* The virtqueue structure describes a queue attached to a device. */
struct virtqueue
{
	struct virtqueue *next;

	/* Which device owns me. */
	struct device *dev;

	/* The configuration for this queue. */
	struct lguest_vqconfig config;

	/* The actual ring of buffers. */
	struct vring vring;

	/* Last available index we saw. */
	u16 last_avail_idx;

	/* The routine to call when the Guest pings us. */
	void (*handle_output)(int fd, struct virtqueue *me);
};

/* Since guest is UP and we don't run at the same time, we don't need barriers.
 * But I include them in the code in case others copy it. */
#define wmb()

/* Convert an iovec element to the given type.
 *
 * This is a fairly ugly trick: we need to know the size of the type and
 * alignment requirement to check the pointer is kosher.  It's also nice to
 * have the name of the type in case we report failure.
 *
 * Typing those three things all the time is cumbersome and error prone, so we
 * have a macro which sets them all up and passes to the real function. */
#define convert(iov, type) \
	((type *)_convert((iov), sizeof(type), __alignof__(type), #type))

static void *_convert(struct iovec *iov, size_t size, size_t align,
		      const char *name)
{
	if (iov->iov_len != size)
		errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
	if ((unsigned long)iov->iov_base % align != 0)
		errx(1, "Bad alignment %p for %s", iov->iov_base, name);
	return iov->iov_base;
}

/* The virtio configuration space is defined to be little-endian.  x86 is
 * little-endian too, but it's nice to be explicit so we have these helpers. */
#define cpu_to_le16(v16) (v16)
#define cpu_to_le32(v32) (v32)
#define cpu_to_le64(v64) (v64)
#define le16_to_cpu(v16) (v16)
#define le32_to_cpu(v32) (v32)
#define le64_to_cpu(v32) (v64)

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/*L:100 The Launcher code itself takes us out into userspace, that scary place
 * where pointers run wild and free!  Unfortunately, like most userspace
 * programs, it's quite boring (which is why everyone likes to hack on the
 * kernel!).  Perhaps if you make up an Lguest Drinking Game at this point, it
 * will get you through this section.  Or, maybe not.
 *
 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
 * memory and stores it in "guest_base".  In other words, Guest physical ==
 * Launcher virtual with an offset.
 *
 * This can be tough to get your head around, but usually it just means that we
 * use these trivial conversion functions when the Guest gives us it's
 * "physical" addresses: */
static void *from_guest_phys(unsigned long addr)
{
	return guest_base + addr;
}

static unsigned long to_guest_phys(const void *addr)
{
	return (addr - guest_base);
}

214 215 216 217 218
/*L:130
 * Loading the Kernel.
 *
 * We start with couple of simple helper routines.  open_or_die() avoids
 * error-checking code cluttering the callers: */
219 220 221 222 223 224 225 226
static int open_or_die(const char *name, int flags)
{
	int fd = open(name, flags);
	if (fd < 0)
		err(1, "Failed to open %s", name);
	return fd;
}

227 228
/* map_zeroed_pages() takes a number of pages. */
static void *map_zeroed_pages(unsigned int num)
229
{
230 231
	int fd = open_or_die("/dev/zero", O_RDONLY);
	void *addr;
232

233
	/* We use a private mapping (ie. if we write to the page, it will be
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
	 * copied). */
	addr = mmap(NULL, getpagesize() * num,
		    PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
	if (addr == MAP_FAILED)
		err(1, "Mmaping %u pages of /dev/zero", num);

	return addr;
}

/* Get some more pages for a device. */
static void *get_pages(unsigned int num)
{
	void *addr = from_guest_phys(guest_limit);

	guest_limit += num * getpagesize();
	if (guest_limit > guest_max)
		errx(1, "Not enough memory for devices");
	return addr;
252 253
}

254 255 256
/* To find out where to start we look for the magic Guest string, which marks
 * the code we see in lguest_asm.S.  This is a hack which we are currently
 * plotting to replace with the normal Linux entry point. */
257
static unsigned long entry_point(const void *start, const void *end)
258
{
259
	const void *p;
260

261 262 263
	/* The scan gives us the physical starting address.  We boot with
	 * pagetables set up with virtual and physical the same, so that's
	 * OK. */
264 265
	for (p = start; p < end; p++)
		if (memcmp(p, "GenuineLguest", strlen("GenuineLguest")) == 0)
266
			return to_guest_phys(p + strlen("GenuineLguest"));
267

268
	errx(1, "Is this image a genuine lguest?");
269 270
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
/* This routine is used to load the kernel or initrd.  It tries mmap, but if
 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
 * it falls back to reading the memory in. */
static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
{
	ssize_t r;

	/* We map writable even though for some segments are marked read-only.
	 * The kernel really wants to be writable: it patches its own
	 * instructions.
	 *
	 * MAP_PRIVATE means that the page won't be copied until a write is
	 * done to it.  This allows us to share untouched memory between
	 * Guests. */
	if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
		 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
		return;

	/* pread does a seek and a read in one shot: saves a few lines. */
	r = pread(fd, addr, len, offset);
	if (r != len)
		err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
}

295 296 297 298 299
/* This routine takes an open vmlinux image, which is in ELF, and maps it into
 * the Guest memory.  ELF = Embedded Linking Format, which is the format used
 * by all modern binaries on Linux including the kernel.
 *
 * The ELF headers give *two* addresses: a physical address, and a virtual
300 301
 * address.  We use the physical address; the Guest will map itself to the
 * virtual address.
302 303
 *
 * We return the starting address. */
304
static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
305
{
306
	void *start = (void *)-1, *end = NULL;
307 308 309
	Elf32_Phdr phdr[ehdr->e_phnum];
	unsigned int i;

310 311
	/* Sanity checks on the main ELF header: an x86 executable with a
	 * reasonable number of correctly-sized program headers. */
312 313 314 315 316 317
	if (ehdr->e_type != ET_EXEC
	    || ehdr->e_machine != EM_386
	    || ehdr->e_phentsize != sizeof(Elf32_Phdr)
	    || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
		errx(1, "Malformed elf header");

318 319 320 321 322
	/* An ELF executable contains an ELF header and a number of "program"
	 * headers which indicate which parts ("segments") of the program to
	 * load where. */

	/* We read in all the program headers at once: */
323 324 325 326 327
	if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
		err(1, "Seeking to program headers");
	if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
		err(1, "Reading program headers");

328 329
	/* Try all the headers: there are usually only three.  A read-only one,
	 * a read-write one, and a "note" section which isn't loadable. */
330
	for (i = 0; i < ehdr->e_phnum; i++) {
331
		/* If this isn't a loadable segment, we ignore it */
332 333 334 335 336 337
		if (phdr[i].p_type != PT_LOAD)
			continue;

		verbose("Section %i: size %i addr %p\n",
			i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);

338 339
		/* We track the first and last address we mapped, so we can
		 * tell entry_point() where to scan. */
340 341 342 343
		if (from_guest_phys(phdr[i].p_paddr) < start)
			start = from_guest_phys(phdr[i].p_paddr);
		if (from_guest_phys(phdr[i].p_paddr) + phdr[i].p_filesz > end)
			end=from_guest_phys(phdr[i].p_paddr)+phdr[i].p_filesz;
344

345
		/* We map this section of the file at its physical address. */
346
		map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
347
		       phdr[i].p_offset, phdr[i].p_filesz);
348 349
	}

350
	return entry_point(start, end);
351 352
}

353 354 355
/*L:160 Unfortunately the entire ELF image isn't compressed: the segments
 * which need loading are extracted and compressed raw.  This denies us the
 * information we need to make a fully-general loader. */
356
static unsigned long unpack_bzimage(int fd)
357 358 359
{
	gzFile f;
	int ret, len = 0;
360 361 362 363
	/* A bzImage always gets loaded at physical address 1M.  This is
	 * actually configurable as CONFIG_PHYSICAL_START, but as the comment
	 * there says, "Don't change this unless you know what you are doing".
	 * Indeed. */
364
	void *img = from_guest_phys(0x100000);
365

366 367
	/* gzdopen takes our file descriptor (carefully placed at the start of
	 * the GZIP header we found) and returns a gzFile. */
368
	f = gzdopen(fd, "rb");
369
	/* We read it into memory in 64k chunks until we hit the end. */
370 371 372 373 374 375
	while ((ret = gzread(f, img + len, 65536)) > 0)
		len += ret;
	if (ret < 0)
		err(1, "reading image from bzImage");

	verbose("Unpacked size %i addr %p\n", len, img);
376

377
	return entry_point(img, img + len);
378 379
}

380 381 382 383 384 385 386 387
/*L:150 A bzImage, unlike an ELF file, is not meant to be loaded.  You're
 * supposed to jump into it and it will unpack itself.  We can't do that
 * because the Guest can't run the unpacking code, and adding features to
 * lguest kills puppies, so we don't want to.
 *
 * The bzImage is formed by putting the decompressing code in front of the
 * compressed kernel code.  So we can simple scan through it looking for the
 * first "gzip" header, and start decompressing from there. */
388
static unsigned long load_bzimage(int fd)
389 390 391 392
{
	unsigned char c;
	int state = 0;

393
	/* GZIP header is 0x1F 0x8B <method> <flags>... <compressed-by>. */
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	while (read(fd, &c, 1) == 1) {
		switch (state) {
		case 0:
			if (c == 0x1F)
				state++;
			break;
		case 1:
			if (c == 0x8B)
				state++;
			else
				state = 0;
			break;
		case 2 ... 8:
			state++;
			break;
		case 9:
410
			/* Seek back to the start of the gzip header. */
411
			lseek(fd, -10, SEEK_CUR);
412 413
			/* One final check: "compressed under UNIX". */
			if (c != 0x03)
414 415
				state = -1;
			else
416
				return unpack_bzimage(fd);
417 418 419 420 421
		}
	}
	errx(1, "Could not find kernel in bzImage");
}

422 423 424
/*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
 * come wrapped up in the self-decompressing "bzImage" format.  With some funky
 * coding, we can load those, too. */
425
static unsigned long load_kernel(int fd)
426 427 428
{
	Elf32_Ehdr hdr;

429
	/* Read in the first few bytes. */
430 431 432
	if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
		err(1, "Reading kernel");

433
	/* If it's an ELF file, it starts with "\177ELF" */
434
	if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
435
		return map_elf(fd, &hdr);
436

437
	/* Otherwise we assume it's a bzImage, and try to unpack it */
438
	return load_bzimage(fd);
439 440
}

441 442 443 444 445
/* This is a trivial little helper to align pages.  Andi Kleen hated it because
 * it calls getpagesize() twice: "it's dumb code."
 *
 * Kernel guys get really het up about optimization, even when it's not
 * necessary.  I leave this code as a reaction against that. */
446 447
static inline unsigned long page_align(unsigned long addr)
{
448
	/* Add upwards and truncate downwards. */
449 450 451
	return ((addr + getpagesize()-1) & ~(getpagesize()-1));
}

452 453 454 455 456 457 458
/*L:180 An "initial ram disk" is a disk image loaded into memory along with
 * the kernel which the kernel can use to boot from without needing any
 * drivers.  Most distributions now use this as standard: the initrd contains
 * the code to load the appropriate driver modules for the current machine.
 *
 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
 * kernels.  He sent me this (and tells me when I break it). */
459 460 461 462 463 464 465
static unsigned long load_initrd(const char *name, unsigned long mem)
{
	int ifd;
	struct stat st;
	unsigned long len;

	ifd = open_or_die(name, O_RDONLY);
466
	/* fstat() is needed to get the file size. */
467 468 469
	if (fstat(ifd, &st) < 0)
		err(1, "fstat() on initrd '%s'", name);

470 471
	/* We map the initrd at the top of memory, but mmap wants it to be
	 * page-aligned, so we round the size up for that. */
472
	len = page_align(st.st_size);
473
	map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
474 475
	/* Once a file is mapped, you can close the file descriptor.  It's a
	 * little odd, but quite useful. */
476
	close(ifd);
477
	verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
478 479

	/* We return the initrd size. */
480 481 482
	return len;
}

483 484
/* Once we know how much memory we have, we can construct simple linear page
 * tables which set virtual == physical which will get the Guest far enough
485
 * into the boot to create its own.
486 487 488
 *
 * We lay them out of the way, just below the initrd (which is why we need to
 * know its size). */
489
static unsigned long setup_pagetables(unsigned long mem,
490
				      unsigned long initrd_size)
491
{
492
	unsigned long *pgdir, *linear;
493
	unsigned int mapped_pages, i, linear_pages;
494
	unsigned int ptes_per_page = getpagesize()/sizeof(void *);
495

496
	mapped_pages = mem/getpagesize();
497

498
	/* Each PTE page can map ptes_per_page pages: how many do we need? */
499 500
	linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;

501
	/* We put the toplevel page directory page at the top of memory. */
502
	pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
503 504

	/* Now we use the next linear_pages pages as pte pages */
505 506
	linear = (void *)pgdir - linear_pages*getpagesize();

507 508 509
	/* Linear mapping is easy: put every page's address into the mapping in
	 * order.  PAGE_PRESENT contains the flags Present, Writable and
	 * Executable. */
510 511 512
	for (i = 0; i < mapped_pages; i++)
		linear[i] = ((i * getpagesize()) | PAGE_PRESENT);

513
	/* The top level points to the linear page table pages above. */
514
	for (i = 0; i < mapped_pages; i += ptes_per_page) {
515
		pgdir[i/ptes_per_page]
516
			= ((to_guest_phys(linear) + i*sizeof(void *))
517
			   | PAGE_PRESENT);
518 519
	}

520 521
	verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
		mapped_pages, linear_pages, to_guest_phys(linear));
522

523 524
	/* We return the top level (guest-physical) address: the kernel needs
	 * to know where it is. */
525
	return to_guest_phys(pgdir);
526 527
}

528 529
/* Simple routine to roll all the commandline arguments together with spaces
 * between them. */
530 531 532 533 534 535 536 537 538 539 540 541 542
static void concat(char *dst, char *args[])
{
	unsigned int i, len = 0;

	for (i = 0; args[i]; i++) {
		strcpy(dst+len, args[i]);
		strcat(dst+len, " ");
		len += strlen(args[i]) + 1;
	}
	/* In case it's empty. */
	dst[len] = '\0';
}

543 544
/* This is where we actually tell the kernel to initialize the Guest.  We saw
 * the arguments it expects when we looked at initialize() in lguest_user.c:
545
 * the base of guest "physical" memory, the top physical page to allow, the
546 547
 * top level pagetable and the entry point for the Guest. */
static int tell_kernel(unsigned long pgdir, unsigned long start)
548
{
549 550
	unsigned long args[] = { LHREQ_INITIALIZE,
				 (unsigned long)guest_base,
551
				 guest_limit / getpagesize(), pgdir, start };
552 553
	int fd;

554 555
	verbose("Guest: %p - %p (%#lx)\n",
		guest_base, guest_base + guest_limit, guest_limit);
556 557 558
	fd = open_or_die("/dev/lguest", O_RDWR);
	if (write(fd, args, sizeof(args)) < 0)
		err(1, "Writing to /dev/lguest");
559 560

	/* We return the /dev/lguest file descriptor to control this Guest */
561 562
	return fd;
}
563
/*:*/
564

R
Rusty Russell 已提交
565
static void add_device_fd(int fd)
566
{
R
Rusty Russell 已提交
567 568 569
	FD_SET(fd, &devices.infds);
	if (fd > devices.max_infd)
		devices.max_infd = fd;
570 571
}

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
/*L:200
 * The Waker.
 *
 * With a console and network devices, we can have lots of input which we need
 * to process.  We could try to tell the kernel what file descriptors to watch,
 * but handing a file descriptor mask through to the kernel is fairly icky.
 *
 * Instead, we fork off a process which watches the file descriptors and writes
 * the LHREQ_BREAK command to the /dev/lguest filedescriptor to tell the Host
 * loop to stop running the Guest.  This causes it to return from the
 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
 * the LHREQ_BREAK and wake us up again.
 *
 * This, of course, is merely a different *kind* of icky.
 */
R
Rusty Russell 已提交
587
static void wake_parent(int pipefd, int lguest_fd)
588
{
589 590
	/* Add the pipe from the Launcher to the fdset in the device_list, so
	 * we watch it, too. */
R
Rusty Russell 已提交
591
	add_device_fd(pipefd);
592 593

	for (;;) {
R
Rusty Russell 已提交
594
		fd_set rfds = devices.infds;
595
		unsigned long args[] = { LHREQ_BREAK, 1 };
596

597
		/* Wait until input is ready from one of the devices. */
R
Rusty Russell 已提交
598
		select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
599
		/* Is it a message from the Launcher? */
600 601
		if (FD_ISSET(pipefd, &rfds)) {
			int ignorefd;
602 603
			/* If read() returns 0, it means the Launcher has
			 * exited.  We silently follow. */
604 605
			if (read(pipefd, &ignorefd, sizeof(ignorefd)) == 0)
				exit(0);
606 607 608
			/* Otherwise it's telling us there's a problem with one
			 * of the devices, and we should ignore that file
			 * descriptor from now on. */
R
Rusty Russell 已提交
609
			FD_CLR(ignorefd, &devices.infds);
610
		} else /* Send LHREQ_BREAK command. */
611 612 613 614
			write(lguest_fd, args, sizeof(args));
	}
}

615
/* This routine just sets up a pipe to the Waker process. */
R
Rusty Russell 已提交
616
static int setup_waker(int lguest_fd)
617 618 619
{
	int pipefd[2], child;

620 621
	/* We create a pipe to talk to the waker, and also so it knows when the
	 * Launcher dies (and closes pipe). */
622 623 624 625 626 627
	pipe(pipefd);
	child = fork();
	if (child == -1)
		err(1, "forking");

	if (child == 0) {
628
		/* Close the "writing" end of our copy of the pipe */
629
		close(pipefd[1]);
R
Rusty Russell 已提交
630
		wake_parent(pipefd[0], lguest_fd);
631
	}
632
	/* Close the reading end of our copy of the pipe. */
633 634
	close(pipefd[0]);

635
	/* Here is the fd used to talk to the waker. */
636 637 638
	return pipefd[1];
}

639 640 641 642 643 644 645 646
/*L:210
 * Device Handling.
 *
 * When the Guest sends DMA to us, it sends us an array of addresses and sizes.
 * We need to make sure it's not trying to reach into the Launcher itself, so
 * we have a convenient routine which check it and exits with an error message
 * if something funny is going on:
 */
647 648 649
static void *_check_pointer(unsigned long addr, unsigned int size,
			    unsigned int line)
{
650 651
	/* We have to separately check addr and addr+size, because size could
	 * be huge and addr + size might wrap around. */
652
	if (addr >= guest_limit || addr + size >= guest_limit)
R
Rusty Russell 已提交
653
		errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
654 655
	/* We return a pointer for the caller's convenience, now we know it's
	 * safe to use. */
656
	return from_guest_phys(addr);
657
}
658
/* A macro which transparently hands the line number to the real function. */
659 660
#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)

R
Rusty Russell 已提交
661 662 663 664 665
/* This simply sets up an iovec array where we can put data to be discarded.
 * This happens when the Guest doesn't want or can't handle the input: we have
 * to get rid of it somewhere, and if we bury it in the ceiling space it will
 * start to smell after a week. */
static void discard_iovec(struct iovec *iov, unsigned int *num)
666
{
R
Rusty Russell 已提交
667 668 669 670 671
	static char discard_buf[1024];
	*num = 1;
	iov->iov_base = discard_buf;
	iov->iov_len = sizeof(discard_buf);
}
672

R
Rusty Russell 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
/* This function returns the next descriptor in the chain, or vq->vring.num. */
static unsigned next_desc(struct virtqueue *vq, unsigned int i)
{
	unsigned int next;

	/* If this descriptor says it doesn't chain, we're done. */
	if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
		return vq->vring.num;

	/* Check they're not leading us off end of descriptors. */
	next = vq->vring.desc[i].next;
	/* Make sure compiler knows to grab that: we don't want it changing! */
	wmb();

	if (next >= vq->vring.num)
		errx(1, "Desc next is %u", next);

	return next;
}

/* This looks in the virtqueue and for the first available buffer, and converts
 * it to an iovec for convenient access.  Since descriptors consist of some
 * number of output then some number of input descriptors, it's actually two
 * iovecs, but we pack them into one and note how many of each there were.
 *
 * This function returns the descriptor number found, or vq->vring.num (which
 * is never a valid descriptor number) if none was found. */
static unsigned get_vq_desc(struct virtqueue *vq,
			    struct iovec iov[],
			    unsigned int *out_num, unsigned int *in_num)
{
	unsigned int i, head;

	/* Check it isn't doing very strange things with descriptor numbers. */
	if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num)
		errx(1, "Guest moved used index from %u to %u",
		     vq->last_avail_idx, vq->vring.avail->idx);

	/* If there's nothing new since last we looked, return invalid. */
	if (vq->vring.avail->idx == vq->last_avail_idx)
		return vq->vring.num;

	/* Grab the next descriptor number they're advertising, and increment
	 * the index we've seen. */
	head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num];

	/* If their number is silly, that's a fatal mistake. */
	if (head >= vq->vring.num)
		errx(1, "Guest says index %u is available", head);

	/* When we start there are none of either input nor output. */
	*out_num = *in_num = 0;

	i = head;
	do {
		/* Grab the first descriptor, and check it's OK. */
		iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
		iov[*out_num + *in_num].iov_base
			= check_pointer(vq->vring.desc[i].addr,
					vq->vring.desc[i].len);
		/* If this is an input descriptor, increment that count. */
		if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
			(*in_num)++;
		else {
			/* If it's an output descriptor, they're all supposed
			 * to come before any input descriptors. */
			if (*in_num)
				errx(1, "Descriptor has out after in");
			(*out_num)++;
		}

		/* If we've got too many, that implies a descriptor loop. */
		if (*out_num + *in_num > vq->vring.num)
			errx(1, "Looped descriptor");
	} while ((i = next_desc(vq, i)) != vq->vring.num);
748

R
Rusty Russell 已提交
749
	return head;
750 751
}

R
Rusty Russell 已提交
752 753 754
/* Once we've used one of their buffers, we tell them about it.  We'll then
 * want to send them an interrupt, using trigger_irq(). */
static void add_used(struct virtqueue *vq, unsigned int head, int len)
755
{
R
Rusty Russell 已提交
756 757 758 759 760 761 762 763 764
	struct vring_used_elem *used;

	/* Get a pointer to the next entry in the used ring. */
	used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
	used->id = head;
	used->len = len;
	/* Make sure buffer is written before we update index. */
	wmb();
	vq->vring.used->idx++;
765 766
}

R
Rusty Russell 已提交
767 768
/* This actually sends the interrupt for this virtqueue */
static void trigger_irq(int fd, struct virtqueue *vq)
769
{
R
Rusty Russell 已提交
770 771 772 773 774 775
	unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };

	if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
		return;

	/* Send the Guest an interrupt tell them we used something up. */
776
	if (write(fd, buf, sizeof(buf)) != 0)
R
Rusty Russell 已提交
777
		err(1, "Triggering irq %i", vq->config.irq);
778 779
}

R
Rusty Russell 已提交
780 781 782
/* And here's the combo meal deal.  Supersize me! */
static void add_used_and_trigger(int fd, struct virtqueue *vq,
				 unsigned int head, int len)
783
{
R
Rusty Russell 已提交
784 785
	add_used(vq, head, len);
	trigger_irq(fd, vq);
786 787
}

788 789
/* Here is the input terminal setting we save, and the routine to restore them
 * on exit so the user can see what they type next. */
790 791 792 793 794 795
static struct termios orig_term;
static void restore_term(void)
{
	tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
}

796
/* We associate some data with the console for our exit hack. */
797 798
struct console_abort
{
799
	/* How many times have they hit ^C? */
800
	int count;
801
	/* When did they start? */
802 803 804
	struct timeval start;
};

805
/* This is the routine which handles console input (ie. stdin). */
806 807 808
static bool handle_console_input(int fd, struct device *dev)
{
	int len;
R
Rusty Russell 已提交
809 810
	unsigned int head, in_num, out_num;
	struct iovec iov[dev->vq->vring.num];
811 812
	struct console_abort *abort = dev->priv;

R
Rusty Russell 已提交
813 814 815 816 817 818 819 820 821
	/* First we need a console buffer from the Guests's input virtqueue. */
	head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
	if (head == dev->vq->vring.num) {
		/* If they're not ready for input, we warn and set up to
		 * discard. */
		warnx("console: no dma buffer!");
		discard_iovec(iov, &in_num);
	} else if (out_num)
		errx(1, "Output buffers in console in queue?");
822

823 824
	/* This is why we convert to iovecs: the readv() call uses them, and so
	 * it reads straight into the Guest's buffer. */
R
Rusty Russell 已提交
825
	len = readv(dev->fd, iov, in_num);
826
	if (len <= 0) {
827
		/* This implies that the console is closed, is /dev/null, or
R
Rusty Russell 已提交
828
		 * something went terribly wrong. */
829
		warnx("Failed to get console input, ignoring console.");
R
Rusty Russell 已提交
830 831 832 833
		/* Put the input terminal back and return failure (meaning,
		 * don't call us again). */
		restore_term();
		return false;
834 835
	}

R
Rusty Russell 已提交
836 837 838
	/* If we actually read the data into the Guest, tell them about it. */
	if (head != dev->vq->vring.num)
		add_used_and_trigger(fd, dev->vq, head, len);
839

840 841 842 843 844
	/* Three ^C within one second?  Exit.
	 *
	 * This is such a hack, but works surprisingly well.  Each ^C has to be
	 * in a buffer by itself, so they can't be too fast.  But we check that
	 * we get three within about a second, so they can't be too slow. */
845 846 847 848 849 850 851
	if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
		if (!abort->count++)
			gettimeofday(&abort->start, NULL);
		else if (abort->count == 3) {
			struct timeval now;
			gettimeofday(&now, NULL);
			if (now.tv_sec <= abort->start.tv_sec+1) {
852
				unsigned long args[] = { LHREQ_BREAK, 0 };
853 854
				/* Close the fd so Waker will know it has to
				 * exit. */
855
				close(waker_fd);
856 857
				/* Just in case waker is blocked in BREAK, send
				 * unbreak now. */
858 859 860 861 862 863
				write(fd, args, sizeof(args));
				exit(2);
			}
			abort->count = 0;
		}
	} else
864
		/* Any other key resets the abort counter. */
865 866
		abort->count = 0;

867
	/* Everything went OK! */
868 869 870
	return true;
}

R
Rusty Russell 已提交
871 872 873
/* Handling output for console is simple: we just get all the output buffers
 * and write them to stdout. */
static void handle_console_output(int fd, struct virtqueue *vq)
874
{
R
Rusty Russell 已提交
875 876 877 878 879 880 881 882 883 884 885
	unsigned int head, out, in;
	int len;
	struct iovec iov[vq->vring.num];

	/* Keep getting output buffers from the Guest until we run out. */
	while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
		if (in)
			errx(1, "Input buffers in output queue?");
		len = writev(STDOUT_FILENO, iov, out);
		add_used_and_trigger(fd, vq, head, len);
	}
886 887
}

R
Rusty Russell 已提交
888 889 890 891
/* Handling output for network is also simple: we get all the output buffers
 * and write them (ignoring the first element) to this device's file descriptor
 * (stdout). */
static void handle_net_output(int fd, struct virtqueue *vq)
892
{
R
Rusty Russell 已提交
893 894 895 896 897 898 899 900 901 902 903 904 905 906
	unsigned int head, out, in;
	int len;
	struct iovec iov[vq->vring.num];

	/* Keep getting output buffers from the Guest until we run out. */
	while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
		if (in)
			errx(1, "Input buffers in output queue?");
		/* Check header, but otherwise ignore it (we said we supported
		 * no features). */
		(void)convert(&iov[0], struct virtio_net_hdr);
		len = writev(vq->dev->fd, iov+1, out-1);
		add_used_and_trigger(fd, vq, head, len);
	}
907 908
}

R
Rusty Russell 已提交
909 910
/* This is where we handle a packet coming in from the tun device to our
 * Guest. */
911 912
static bool handle_tun_input(int fd, struct device *dev)
{
R
Rusty Russell 已提交
913
	unsigned int head, in_num, out_num;
914
	int len;
R
Rusty Russell 已提交
915 916
	struct iovec iov[dev->vq->vring.num];
	struct virtio_net_hdr *hdr;
917

R
Rusty Russell 已提交
918 919 920
	/* First we need a network buffer from the Guests's recv virtqueue. */
	head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
	if (head == dev->vq->vring.num) {
921
		/* Now, it's expected that if we try to send a packet too
R
Rusty Russell 已提交
922 923 924 925
		 * early, the Guest won't be ready yet.  Wait until the device
		 * status says it's ready. */
		/* FIXME: Actually want DRIVER_ACTIVE here. */
		if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
926
			warn("network: no dma buffer!");
R
Rusty Russell 已提交
927 928 929 930 931 932 933 934
		discard_iovec(iov, &in_num);
	} else if (out_num)
		errx(1, "Output buffers in network recv queue?");

	/* First element is the header: we set it to 0 (no features). */
	hdr = convert(&iov[0], struct virtio_net_hdr);
	hdr->flags = 0;
	hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
935

936
	/* Read the packet from the device directly into the Guest's buffer. */
R
Rusty Russell 已提交
937
	len = readv(dev->fd, iov+1, in_num-1);
938 939
	if (len <= 0)
		err(1, "reading network");
940

R
Rusty Russell 已提交
941 942 943 944
	/* If we actually read the data into the Guest, tell them about it. */
	if (head != dev->vq->vring.num)
		add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);

945
	verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
R
Rusty Russell 已提交
946 947 948
		((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
		head != dev->vq->vring.num ? "sent" : "discarded");

949
	/* All good. */
950 951 952
	return true;
}

R
Rusty Russell 已提交
953 954
/* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
static void handle_output(int fd, unsigned long addr)
955 956
{
	struct device *i;
R
Rusty Russell 已提交
957 958 959 960 961 962 963 964 965 966 967
	struct virtqueue *vq;

	/* Check each virtqueue. */
	for (i = devices.dev; i; i = i->next) {
		for (vq = i->vq; vq; vq = vq->next) {
			if (vq->config.pfn == addr/getpagesize()
			    && vq->handle_output) {
				verbose("Output to %s\n", vq->dev->name);
				vq->handle_output(fd, vq);
				return;
			}
968 969
		}
	}
970

R
Rusty Russell 已提交
971 972 973 974 975 976 977
	/* Early console write is done using notify on a nul-terminated string
	 * in Guest memory. */
	if (addr >= guest_limit)
		errx(1, "Bad NOTIFY %#lx", addr);

	write(STDOUT_FILENO, from_guest_phys(addr),
	      strnlen(from_guest_phys(addr), guest_limit - addr));
978 979
}

980 981
/* This is called when the waker wakes us up: check for incoming file
 * descriptors. */
R
Rusty Russell 已提交
982
static void handle_input(int fd)
983
{
984
	/* select() wants a zeroed timeval to mean "don't wait". */
985 986 987 988
	struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };

	for (;;) {
		struct device *i;
R
Rusty Russell 已提交
989
		fd_set fds = devices.infds;
990

991
		/* If nothing is ready, we're done. */
R
Rusty Russell 已提交
992
		if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
993 994
			break;

995 996
		/* Otherwise, call the device(s) which have readable
		 * file descriptors and a method of handling them.  */
R
Rusty Russell 已提交
997
		for (i = devices.dev; i; i = i->next) {
998
			if (i->handle_input && FD_ISSET(i->fd, &fds)) {
999 1000 1001
				/* If handle_input() returns false, it means we
				 * should no longer service it.
				 * handle_console_input() does this. */
1002
				if (!i->handle_input(fd, i)) {
1003 1004 1005
					/* Clear it from the set of input file
					 * descriptors kept at the head of the
					 * device list. */
R
Rusty Russell 已提交
1006
					FD_CLR(i->fd, &devices.infds);
1007 1008 1009 1010 1011 1012 1013 1014
					/* Tell waker to ignore it too... */
					write(waker_fd, &i->fd, sizeof(i->fd));
				}
			}
		}
	}
}

1015 1016 1017 1018 1019 1020 1021 1022
/*L:190
 * Device Setup
 *
 * All devices need a descriptor so the Guest knows it exists, and a "struct
 * device" so the Launcher can keep track of it.  We have common helper
 * routines to allocate them.
 *
 * This routine allocates a new "struct lguest_device_desc" from descriptor
R
Rusty Russell 已提交
1023 1024 1025
 * table just above the Guest's normal memory.  It returns a pointer to that
 * descriptor. */
static struct lguest_device_desc *new_dev_desc(u16 type)
1026
{
R
Rusty Russell 已提交
1027
	struct lguest_device_desc *d;
1028

R
Rusty Russell 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	/* We only have one page for all the descriptors. */
	if (devices.desc_used + sizeof(*d) > getpagesize())
		errx(1, "Too many devices");

	/* We don't need to set config_len or status: page is 0 already. */
	d = (void *)devices.descpage + devices.desc_used;
	d->type = type;
	devices.desc_used += sizeof(*d);

	return d;
}

/* Each device descriptor is followed by some configuration information.
 * The first byte is a "status" byte for the Guest to report what's happening.
 * After that are fields: u8 type, u8 len, [... len bytes...].
 *
 * This routine adds a new field to an existing device's descriptor.  It only
 * works for the last device, but that's OK because that's how we use it. */
static void add_desc_field(struct device *dev, u8 type, u8 len, const void *c)
{
	/* This is the last descriptor, right? */
	assert(devices.descpage + devices.desc_used
	       == (u8 *)(dev->desc + 1) + dev->desc->config_len);

	/* We only have one page of device descriptions. */
	if (devices.desc_used + 2 + len > getpagesize())
		errx(1, "Too many devices");

	/* Copy in the new config header: type then length. */
	devices.descpage[devices.desc_used++] = type;
	devices.descpage[devices.desc_used++] = len;
	memcpy(devices.descpage + devices.desc_used, c, len);
	devices.desc_used += len;

	/* Update the device descriptor length: two byte head then data. */
	dev->desc->config_len += 2 + len;
}

/* This routine adds a virtqueue to a device.  We specify how many descriptors
 * the virtqueue is to have. */
static void add_virtqueue(struct device *dev, unsigned int num_descs,
			  void (*handle_output)(int fd, struct virtqueue *me))
{
	unsigned int pages;
	struct virtqueue **i, *vq = malloc(sizeof(*vq));
	void *p;

	/* First we need some pages for this virtqueue. */
	pages = (vring_size(num_descs) + getpagesize() - 1) / getpagesize();
	p = get_pages(pages);

	/* Initialize the configuration. */
	vq->config.num = num_descs;
	vq->config.irq = devices.next_irq++;
	vq->config.pfn = to_guest_phys(p) / getpagesize();

	/* Initialize the vring. */
	vring_init(&vq->vring, num_descs, p);

	/* Add the configuration information to this device's descriptor. */
	add_desc_field(dev, VIRTIO_CONFIG_F_VIRTQUEUE,
		       sizeof(vq->config), &vq->config);

	/* Add to tail of list, so dev->vq is first vq, dev->vq->next is
	 * second.  */
	for (i = &dev->vq; *i; i = &(*i)->next);
	*i = vq;

	/* Link virtqueue back to device. */
	vq->dev = dev;

	/* Set up handler. */
	vq->handle_output = handle_output;
	if (!handle_output)
		vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
1104 1105
}

R
Rusty Russell 已提交
1106 1107 1108 1109
/* This routine does all the creation and setup of a new device, including
 * caling new_dev_desc() to allocate the descriptor and device memory. */
static struct device *new_device(const char *name, u16 type, int fd,
				 bool (*handle_input)(int, struct device *))
1110 1111 1112
{
	struct device *dev = malloc(sizeof(*dev));

1113 1114 1115 1116
	/* Append to device list.  Prepending to a single-linked list is
	 * easier, but the user expects the devices to be arranged on the bus
	 * in command-line order.  The first network device on the command line
	 * is eth0, the first block device /dev/lgba, etc. */
R
Rusty Russell 已提交
1117
	*devices.lastdev = dev;
1118
	dev->next = NULL;
R
Rusty Russell 已提交
1119
	devices.lastdev = &dev->next;
1120

1121
	/* Now we populate the fields one at a time. */
1122
	dev->fd = fd;
1123 1124
	/* If we have an input handler for this file descriptor, then we add it
	 * to the device_list's fdset and maxfd. */
1125
	if (handle_input)
R
Rusty Russell 已提交
1126 1127
		add_device_fd(dev->fd);
	dev->desc = new_dev_desc(type);
1128
	dev->handle_input = handle_input;
R
Rusty Russell 已提交
1129
	dev->name = name;
1130 1131 1132
	return dev;
}

1133 1134
/* Our first setup routine is the console.  It's a fairly simple device, but
 * UNIX tty handling makes it uglier than it could be. */
R
Rusty Russell 已提交
1135
static void setup_console(void)
1136 1137 1138
{
	struct device *dev;

1139
	/* If we can save the initial standard input settings... */
1140 1141
	if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
		struct termios term = orig_term;
1142 1143
		/* Then we turn off echo, line buffering and ^C etc.  We want a
		 * raw input stream to the Guest. */
1144 1145
		term.c_lflag &= ~(ISIG|ICANON|ECHO);
		tcsetattr(STDIN_FILENO, TCSANOW, &term);
1146 1147
		/* If we exit gracefully, the original settings will be
		 * restored so the user can see what they're typing. */
1148 1149 1150
		atexit(restore_term);
	}

R
Rusty Russell 已提交
1151 1152
	dev = new_device("console", VIRTIO_ID_CONSOLE,
			 STDIN_FILENO, handle_console_input);
1153
	/* We store the console state in dev->priv, and initialize it. */
1154 1155 1156
	dev->priv = malloc(sizeof(struct console_abort));
	((struct console_abort *)dev->priv)->count = 0;

R
Rusty Russell 已提交
1157 1158 1159 1160 1161 1162 1163 1164
	/* The console needs two virtqueues: the input then the output.  We
	 * don't care when they refill the input queue, since we don't hold
	 * data waiting for them.  That's why the input queue's callback is
	 * NULL.  */
	add_virtqueue(dev, VIRTQUEUE_NUM, NULL);
	add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);

	verbose("device %u: console\n", devices.device_num++);
1165
}
R
Rusty Russell 已提交
1166
/*:*/
1167

R
Rusty Russell 已提交
1168 1169 1170
/*M:010 Inter-guest networking is an interesting area.  Simplest is to have a
 * --sharenet=<name> option which opens or creates a named pipe.  This can be
 * used to send packets to another guest in a 1:1 manner.
1171
 *
R
Rusty Russell 已提交
1172 1173
 * More sopisticated is to use one of the tools developed for project like UML
 * to do networking.
1174
 *
R
Rusty Russell 已提交
1175 1176 1177 1178 1179 1180 1181 1182
 * Faster is to do virtio bonding in kernel.  Doing this 1:1 would be
 * completely generic ("here's my vring, attach to your vring") and would work
 * for any traffic.  Of course, namespace and permissions issues need to be
 * dealt with.  A more sophisticated "multi-channel" virtio_net.c could hide
 * multiple inter-guest channels behind one interface, although it would
 * require some manner of hotplugging new virtio channels.
 *
 * Finally, we could implement a virtio network switch in the kernel. :*/
1183 1184 1185 1186 1187 1188 1189 1190 1191

static u32 str2ip(const char *ipaddr)
{
	unsigned int byte[4];

	sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]);
	return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
}

1192 1193 1194 1195 1196
/* This code is "adapted" from libbridge: it attaches the Host end of the
 * network device to the bridge device specified by the command line.
 *
 * This is yet another James Morris contribution (I'm an IP-level guy, so I
 * dislike bridging), and I just try not to break it. */
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
static void add_to_bridge(int fd, const char *if_name, const char *br_name)
{
	int ifidx;
	struct ifreq ifr;

	if (!*br_name)
		errx(1, "must specify bridge name");

	ifidx = if_nametoindex(if_name);
	if (!ifidx)
		errx(1, "interface %s does not exist!", if_name);

	strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
	ifr.ifr_ifindex = ifidx;
	if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
		err(1, "can't add %s to bridge %s", if_name, br_name);
}

1215 1216
/* This sets up the Host end of the network device with an IP address, brings
 * it up so packets will flow, the copies the MAC address into the hwaddr
R
Rusty Russell 已提交
1217
 * pointer. */
1218 1219 1220 1221 1222 1223
static void configure_device(int fd, const char *devname, u32 ipaddr,
			     unsigned char hwaddr[6])
{
	struct ifreq ifr;
	struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;

1224
	/* Don't read these incantations.  Just cut & paste them like I did! */
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	memset(&ifr, 0, sizeof(ifr));
	strcpy(ifr.ifr_name, devname);
	sin->sin_family = AF_INET;
	sin->sin_addr.s_addr = htonl(ipaddr);
	if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
		err(1, "Setting %s interface address", devname);
	ifr.ifr_flags = IFF_UP;
	if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
		err(1, "Bringing interface %s up", devname);

1235 1236 1237
	/* SIOC stands for Socket I/O Control.  G means Get (vs S for Set
	 * above).  IF means Interface, and HWADDR is hardware address.
	 * Simple! */
1238 1239 1240 1241 1242
	if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
		err(1, "getting hw address for %s", devname);
	memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
}

R
Rusty Russell 已提交
1243 1244 1245 1246 1247
/*L:195 Our network is a Host<->Guest network.  This can either use bridging or
 * routing, but the principle is the same: it uses the "tun" device to inject
 * packets into the Host as if they came in from a normal network card.  We
 * just shunt packets between the Guest and the tun device. */
static void setup_tun_net(const char *arg)
1248 1249 1250 1251 1252 1253
{
	struct device *dev;
	struct ifreq ifr;
	int netfd, ipfd;
	u32 ip;
	const char *br_name = NULL;
R
Rusty Russell 已提交
1254
	u8 hwaddr[6];
1255

1256 1257 1258 1259
	/* We open the /dev/net/tun device and tell it we want a tap device.  A
	 * tap device is like a tun device, only somehow different.  To tell
	 * the truth, I completely blundered my way through this code, but it
	 * works now! */
1260 1261 1262 1263 1264 1265
	netfd = open_or_die("/dev/net/tun", O_RDWR);
	memset(&ifr, 0, sizeof(ifr));
	ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
	strcpy(ifr.ifr_name, "tap%d");
	if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
		err(1, "configuring /dev/net/tun");
1266 1267
	/* We don't need checksums calculated for packets coming in this
	 * device: trust us! */
1268 1269
	ioctl(netfd, TUNSETNOCSUM, 1);

R
Rusty Russell 已提交
1270 1271
	/* First we create a new network device. */
	dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1272

R
Rusty Russell 已提交
1273 1274 1275
	/* Network devices need a receive and a send queue. */
	add_virtqueue(dev, VIRTQUEUE_NUM, NULL);
	add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1276

1277 1278
	/* We need a socket to perform the magic network ioctls to bring up the
	 * tap interface, connect to the bridge etc.  Any socket will do! */
1279 1280 1281 1282
	ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
	if (ipfd < 0)
		err(1, "opening IP socket");

1283
	/* If the command line was --tunnet=bridge:<name> do bridging. */
1284 1285 1286 1287
	if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
		ip = INADDR_ANY;
		br_name = arg + strlen(BRIDGE_PFX);
		add_to_bridge(ipfd, ifr.ifr_name, br_name);
1288
	} else /* It is an IP address to set up the device with */
1289 1290
		ip = str2ip(arg);

R
Rusty Russell 已提交
1291 1292
	/* Set up the tun device, and get the mac address for the interface. */
	configure_device(ipfd, ifr.ifr_name, ip, hwaddr);
1293

R
Rusty Russell 已提交
1294 1295
	/* Tell Guest what MAC address to use. */
	add_desc_field(dev, VIRTIO_CONFIG_NET_MAC_F, sizeof(hwaddr), hwaddr);
1296

R
Rusty Russell 已提交
1297
	/* We don't seed the socket any more; setup is done. */
1298 1299
	close(ipfd);

R
Rusty Russell 已提交
1300 1301 1302
	verbose("device %u: tun net %u.%u.%u.%u\n",
		devices.device_num++,
		(u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip);
1303 1304 1305
	if (br_name)
		verbose("attached to bridge: %s\n", br_name);
}
R
Rusty Russell 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517


/*
 * Block device.
 *
 * Serving a block device is really easy: the Guest asks for a block number and
 * we read or write that position in the file.
 *
 * Unfortunately, this is amazingly slow: the Guest waits until the read is
 * finished before running anything else, even if it could be doing useful
 * work.  We could use async I/O, except it's reputed to suck so hard that
 * characters actually go missing from your code when you try to use it.
 *
 * So we farm the I/O out to thread, and communicate with it via a pipe. */

/* This hangs off device->priv, with the data. */
struct vblk_info
{
	/* The size of the file. */
	off64_t len;

	/* The file descriptor for the file. */
	int fd;

	/* IO thread listens on this file descriptor [0]. */
	int workpipe[2];

	/* IO thread writes to this file descriptor to mark it done, then
	 * Launcher triggers interrupt to Guest. */
	int done_fd;
};

/* This is the core of the I/O thread.  It returns true if it did something. */
static bool service_io(struct device *dev)
{
	struct vblk_info *vblk = dev->priv;
	unsigned int head, out_num, in_num, wlen;
	int ret;
	struct virtio_blk_inhdr *in;
	struct virtio_blk_outhdr *out;
	struct iovec iov[dev->vq->vring.num];
	off64_t off;

	head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
	if (head == dev->vq->vring.num)
		return false;

	if (out_num == 0 || in_num == 0)
		errx(1, "Bad virtblk cmd %u out=%u in=%u",
		     head, out_num, in_num);

	out = convert(&iov[0], struct virtio_blk_outhdr);
	in = convert(&iov[out_num+in_num-1], struct virtio_blk_inhdr);
	off = out->sector * 512;

	/* This is how we implement barriers.  Pretty poor, no? */
	if (out->type & VIRTIO_BLK_T_BARRIER)
		fdatasync(vblk->fd);

	if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
		fprintf(stderr, "Scsi commands unsupported\n");
		in->status = VIRTIO_BLK_S_UNSUPP;
		wlen = sizeof(in);
	} else if (out->type & VIRTIO_BLK_T_OUT) {
		/* Write */

		/* Move to the right location in the block file.  This can fail
		 * if they try to write past end. */
		if (lseek64(vblk->fd, off, SEEK_SET) != off)
			err(1, "Bad seek to sector %llu", out->sector);

		ret = writev(vblk->fd, iov+1, out_num-1);
		verbose("WRITE to sector %llu: %i\n", out->sector, ret);

		/* Grr... Now we know how long the descriptor they sent was, we
		 * make sure they didn't try to write over the end of the block
		 * file (possibly extending it). */
		if (ret > 0 && off + ret > vblk->len) {
			/* Trim it back to the correct length */
			ftruncate64(vblk->fd, vblk->len);
			/* Die, bad Guest, die. */
			errx(1, "Write past end %llu+%u", off, ret);
		}
		wlen = sizeof(in);
		in->status = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
	} else {
		/* Read */

		/* Move to the right location in the block file.  This can fail
		 * if they try to read past end. */
		if (lseek64(vblk->fd, off, SEEK_SET) != off)
			err(1, "Bad seek to sector %llu", out->sector);

		ret = readv(vblk->fd, iov+1, in_num-1);
		verbose("READ from sector %llu: %i\n", out->sector, ret);
		if (ret >= 0) {
			wlen = sizeof(in) + ret;
			in->status = VIRTIO_BLK_S_OK;
		} else {
			wlen = sizeof(in);
			in->status = VIRTIO_BLK_S_IOERR;
		}
	}

	/* We can't trigger an IRQ, because we're not the Launcher.  It does
	 * that when we tell it we're done. */
	add_used(dev->vq, head, wlen);
	return true;
}

/* This is the thread which actually services the I/O. */
static int io_thread(void *_dev)
{
	struct device *dev = _dev;
	struct vblk_info *vblk = dev->priv;
	char c;

	/* Close other side of workpipe so we get 0 read when main dies. */
	close(vblk->workpipe[1]);
	/* Close the other side of the done_fd pipe. */
	close(dev->fd);

	/* When this read fails, it means Launcher died, so we follow. */
	while (read(vblk->workpipe[0], &c, 1) == 1) {
		/* We acknowledge each request immediately, to reduce latency,
		 * rather than waiting until we've done them all.  I haven't
		 * measured to see if it makes any difference. */
		while (service_io(dev))
			write(vblk->done_fd, &c, 1);
	}
	return 0;
}

/* When the thread says some I/O is done, we interrupt the Guest. */
static bool handle_io_finish(int fd, struct device *dev)
{
	char c;

	/* If child died, presumably it printed message. */
	if (read(dev->fd, &c, 1) != 1)
		exit(1);

	/* It did some work, so trigger the irq. */
	trigger_irq(fd, dev->vq);
	return true;
}

/* When the Guest submits some I/O, we wake the I/O thread. */
static void handle_virtblk_output(int fd, struct virtqueue *vq)
{
	struct vblk_info *vblk = vq->dev->priv;
	char c = 0;

	/* Wake up I/O thread and tell it to go to work! */
	if (write(vblk->workpipe[1], &c, 1) != 1)
		/* Presumably it indicated why it died. */
		exit(1);
}

/* This creates a virtual block device. */
static void setup_block_file(const char *filename)
{
	int p[2];
	struct device *dev;
	struct vblk_info *vblk;
	void *stack;
	u64 cap;
	unsigned int val;

	/* This is the pipe the I/O thread will use to tell us I/O is done. */
	pipe(p);

	/* The device responds to return from I/O thread. */
	dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);

	/* The device has a virtqueue. */
	add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);

	/* Allocate the room for our own bookkeeping */
	vblk = dev->priv = malloc(sizeof(*vblk));

	/* First we open the file and store the length. */
	vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
	vblk->len = lseek64(vblk->fd, 0, SEEK_END);

	/* Tell Guest how many sectors this device has. */
	cap = cpu_to_le64(vblk->len / 512);
	add_desc_field(dev, VIRTIO_CONFIG_BLK_F_CAPACITY, sizeof(cap), &cap);

	/* Tell Guest not to put in too many descriptors at once: two are used
	 * for the in and out elements. */
	val = cpu_to_le32(VIRTQUEUE_NUM - 2);
	add_desc_field(dev, VIRTIO_CONFIG_BLK_F_SEG_MAX, sizeof(val), &val);

	/* The I/O thread writes to this end of the pipe when done. */
	vblk->done_fd = p[1];

	/* This is how we tell the I/O thread about more work. */
	pipe(vblk->workpipe);

	/* Create stack for thread and run it */
	stack = malloc(32768);
	if (clone(io_thread, stack + 32768, CLONE_VM, dev) == -1)
		err(1, "Creating clone");

	/* We don't need to keep the I/O thread's end of the pipes open. */
	close(vblk->done_fd);
	close(vblk->workpipe[0]);

	verbose("device %u: virtblock %llu sectors\n",
		devices.device_num, cap);
}
1518
/* That's the end of device setup. */
1519

1520 1521
/*L:220 Finally we reach the core of the Launcher, which runs the Guest, serves
 * its input and output, and finally, lays it to rest. */
R
Rusty Russell 已提交
1522
static void __attribute__((noreturn)) run_guest(int lguest_fd)
1523 1524
{
	for (;;) {
1525
		unsigned long args[] = { LHREQ_BREAK, 0 };
R
Rusty Russell 已提交
1526
		unsigned long notify_addr;
1527 1528 1529
		int readval;

		/* We read from the /dev/lguest device to run the Guest. */
R
Rusty Russell 已提交
1530
		readval = read(lguest_fd, &notify_addr, sizeof(notify_addr));
1531

R
Rusty Russell 已提交
1532 1533 1534 1535
		/* One unsigned long means the Guest did HCALL_NOTIFY */
		if (readval == sizeof(notify_addr)) {
			verbose("Notify on address %#lx\n", notify_addr);
			handle_output(lguest_fd, notify_addr);
1536
			continue;
1537
		/* ENOENT means the Guest died.  Reading tells us why. */
1538 1539 1540 1541
		} else if (errno == ENOENT) {
			char reason[1024] = { 0 };
			read(lguest_fd, reason, sizeof(reason)-1);
			errx(1, "%s", reason);
1542 1543
		/* EAGAIN means the waker wanted us to look at some input.
		 * Anything else means a bug or incompatible change. */
1544 1545
		} else if (errno != EAGAIN)
			err(1, "Running guest failed");
1546 1547 1548

		/* Service input, then unset the BREAK which releases
		 * the Waker. */
R
Rusty Russell 已提交
1549
		handle_input(lguest_fd);
1550 1551 1552 1553
		if (write(lguest_fd, args, sizeof(args)) < 0)
			err(1, "Resetting break");
	}
}
1554 1555 1556 1557 1558 1559
/*
 * This is the end of the Launcher.
 *
 * But wait!  We've seen I/O from the Launcher, and we've seen I/O from the
 * Drivers.  If we were to see the Host kernel I/O code, our understanding
 * would be complete... :*/
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

static struct option opts[] = {
	{ "verbose", 0, NULL, 'v' },
	{ "tunnet", 1, NULL, 't' },
	{ "block", 1, NULL, 'b' },
	{ "initrd", 1, NULL, 'i' },
	{ NULL },
};
static void usage(void)
{
	errx(1, "Usage: lguest [--verbose] "
R
Rusty Russell 已提交
1571
	     "[--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
1572 1573 1574 1575
	     "|--block=<filename>|--initrd=<filename>]...\n"
	     "<mem-in-mb> vmlinux [args...]");
}

1576
/*L:105 The main routine is where the real work begins: */
1577 1578
int main(int argc, char *argv[])
{
1579 1580 1581
	/* Memory, top-level pagetable, code startpoint and size of the
	 * (optional) initrd. */
	unsigned long mem = 0, pgdir, start, initrd_size = 0;
1582
	/* A temporary and the /dev/lguest file descriptor. */
1583
	int i, c, lguest_fd;
1584 1585
	/* The boot information for the Guest. */
	void *boot;
1586
	/* If they specify an initrd file to load. */
1587 1588
	const char *initrd_name = NULL;

1589 1590 1591 1592
	/* First we initialize the device list.  Since console and network
	 * device receive input from a file descriptor, we keep an fdset
	 * (infds) and the maximum fd number (max_infd) with the head of the
	 * list.  We also keep a pointer to the last device, for easy appending
R
Rusty Russell 已提交
1593 1594 1595 1596 1597 1598
	 * to the list.  Finally, we keep the next interrupt number to hand out
	 * (1: remember that 0 is used by the timer). */
	FD_ZERO(&devices.infds);
	devices.max_infd = -1;
	devices.lastdev = &devices.dev;
	devices.next_irq = 1;
1599

1600 1601 1602 1603
	/* We need to know how much memory so we can set up the device
	 * descriptor and memory pages for the devices as we parse the command
	 * line.  So we quickly look through the arguments to find the amount
	 * of memory now. */
1604 1605
	for (i = 1; i < argc; i++) {
		if (argv[i][0] != '-') {
1606 1607 1608 1609 1610 1611 1612 1613 1614
			mem = atoi(argv[i]) * 1024 * 1024;
			/* We start by mapping anonymous pages over all of
			 * guest-physical memory range.  This fills it with 0,
			 * and ensures that the Guest won't be killed when it
			 * tries to access it. */
			guest_base = map_zeroed_pages(mem / getpagesize()
						      + DEVICE_PAGES);
			guest_limit = mem;
			guest_max = mem + DEVICE_PAGES*getpagesize();
R
Rusty Russell 已提交
1615
			devices.descpage = get_pages(1);
1616 1617 1618
			break;
		}
	}
1619 1620

	/* The options are fairly straight-forward */
1621 1622 1623 1624 1625 1626
	while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
		switch (c) {
		case 'v':
			verbose = true;
			break;
		case 't':
R
Rusty Russell 已提交
1627
			setup_tun_net(optarg);
1628 1629
			break;
		case 'b':
R
Rusty Russell 已提交
1630
			setup_block_file(optarg);
1631 1632 1633 1634 1635 1636 1637 1638 1639
			break;
		case 'i':
			initrd_name = optarg;
			break;
		default:
			warnx("Unknown argument %s", argv[optind]);
			usage();
		}
	}
1640 1641
	/* After the other arguments we expect memory and kernel image name,
	 * followed by command line arguments for the kernel. */
1642 1643 1644
	if (optind + 2 > argc)
		usage();

1645 1646
	verbose("Guest base is at %p\n", guest_base);

1647
	/* We always have a console device */
R
Rusty Russell 已提交
1648
	setup_console();
1649 1650

	/* Now we load the kernel */
1651
	start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1652

1653 1654 1655
	/* Boot information is stashed at physical address 0 */
	boot = from_guest_phys(0);

1656
	/* Map the initrd image if requested (at top of physical memory) */
1657 1658
	if (initrd_name) {
		initrd_size = load_initrd(initrd_name, mem);
1659 1660
		/* These are the location in the Linux boot header where the
		 * start and size of the initrd are expected to be found. */
1661 1662
		*(unsigned long *)(boot+0x218) = mem - initrd_size;
		*(unsigned long *)(boot+0x21c) = initrd_size;
1663
		/* The bootloader type 0xFF means "unknown"; that's OK. */
1664 1665 1666
		*(unsigned char *)(boot+0x210) = 0xFF;
	}

1667
	/* Set up the initial linear pagetables, starting below the initrd. */
1668
	pgdir = setup_pagetables(mem, initrd_size);
1669

1670 1671
	/* The Linux boot header contains an "E820" memory map: ours is a
	 * simple, single region. */
1672 1673 1674
	*(char*)(boot+E820NR) = 1;
	*((struct e820entry *)(boot+E820MAP))
		= ((struct e820entry) { 0, mem, E820_RAM });
1675 1676
	/* The boot header contains a command line pointer: we put the command
	 * line after the boot header (at address 4096) */
1677
	*(u32 *)(boot + 0x228) = 4096;
1678
	concat(boot + 4096, argv+optind+2);
1679 1680

	/* The guest type value of "1" tells the Guest it's under lguest. */
1681 1682
	*(int *)(boot + 0x23c) = 1;

1683 1684
	/* We tell the kernel to initialize the Guest: this returns the open
	 * /dev/lguest file descriptor. */
1685
	lguest_fd = tell_kernel(pgdir, start);
1686 1687 1688 1689

	/* We fork off a child process, which wakes the Launcher whenever one
	 * of the input file descriptors needs attention.  Otherwise we would
	 * run the Guest until it tries to output something. */
R
Rusty Russell 已提交
1690
	waker_fd = setup_waker(lguest_fd);
1691

1692
	/* Finally, run the Guest.  This doesn't return. */
R
Rusty Russell 已提交
1693
	run_guest(lguest_fd);
1694
}
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
/*:*/

/*M:999
 * Mastery is done: you now know everything I do.
 *
 * But surely you have seen code, features and bugs in your wanderings which
 * you now yearn to attack?  That is the real game, and I look forward to you
 * patching and forking lguest into the Your-Name-Here-visor.
 *
 * Farewell, and good coding!
 * Rusty Russell.
 */