traps.c 32.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 *
 *  Modified by Cort Dougan (cort@cs.nmt.edu)
 *  and Paul Mackerras (paulus@samba.org)
 */

/*
 * This file handles the architecture-dependent parts of hardware exceptions
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
P
Paul Mackerras 已提交
23
#include <linux/ptrace.h>
24 25 26 27 28
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/module.h>
P
Paul Mackerras 已提交
29
#include <linux/prctl.h>
30 31
#include <linux/delay.h>
#include <linux/kprobes.h>
32
#include <linux/kexec.h>
33
#include <linux/backlight.h>
34
#include <linux/bug.h>
35
#include <linux/kdebug.h>
36 37 38 39 40

#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/io.h>
41 42
#include <asm/machdep.h>
#include <asm/rtas.h>
43
#include <asm/pmc.h>
44
#ifdef CONFIG_PPC32
45
#include <asm/reg.h>
46
#endif
47 48 49
#ifdef CONFIG_PMAC_BACKLIGHT
#include <asm/backlight.h>
#endif
50
#ifdef CONFIG_PPC64
51
#include <asm/firmware.h>
52 53
#include <asm/processor.h>
#endif
54
#include <asm/kexec.h>
55
#include <asm/ppc-opcode.h>
56

57
#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
int (*__debugger)(struct pt_regs *regs);
int (*__debugger_ipi)(struct pt_regs *regs);
int (*__debugger_bpt)(struct pt_regs *regs);
int (*__debugger_sstep)(struct pt_regs *regs);
int (*__debugger_iabr_match)(struct pt_regs *regs);
int (*__debugger_dabr_match)(struct pt_regs *regs);
int (*__debugger_fault_handler)(struct pt_regs *regs);

EXPORT_SYMBOL(__debugger);
EXPORT_SYMBOL(__debugger_ipi);
EXPORT_SYMBOL(__debugger_bpt);
EXPORT_SYMBOL(__debugger_sstep);
EXPORT_SYMBOL(__debugger_iabr_match);
EXPORT_SYMBOL(__debugger_dabr_match);
EXPORT_SYMBOL(__debugger_fault_handler);
#endif

/*
 * Trap & Exception support
 */

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
#ifdef CONFIG_PMAC_BACKLIGHT
static void pmac_backlight_unblank(void)
{
	mutex_lock(&pmac_backlight_mutex);
	if (pmac_backlight) {
		struct backlight_properties *props;

		props = &pmac_backlight->props;
		props->brightness = props->max_brightness;
		props->power = FB_BLANK_UNBLANK;
		backlight_update_status(pmac_backlight);
	}
	mutex_unlock(&pmac_backlight_mutex);
}
#else
static inline void pmac_backlight_unblank(void) { }
#endif

97 98
int die(const char *str, struct pt_regs *regs, long err)
{
99 100 101 102 103 104 105 106 107
	static struct {
		spinlock_t lock;
		u32 lock_owner;
		int lock_owner_depth;
	} die = {
		.lock =			__SPIN_LOCK_UNLOCKED(die.lock),
		.lock_owner =		-1,
		.lock_owner_depth =	0
	};
108
	static int die_counter;
109
	unsigned long flags;
110 111 112 113

	if (debugger(regs))
		return 1;

114 115
	oops_enter();

116 117 118 119 120 121 122 123 124 125 126
	if (die.lock_owner != raw_smp_processor_id()) {
		console_verbose();
		spin_lock_irqsave(&die.lock, flags);
		die.lock_owner = smp_processor_id();
		die.lock_owner_depth = 0;
		bust_spinlocks(1);
		if (machine_is(powermac))
			pmac_backlight_unblank();
	} else {
		local_save_flags(flags);
	}
127

128 129
	if (++die.lock_owner_depth < 3) {
		printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
130
#ifdef CONFIG_PREEMPT
131
		printk("PREEMPT ");
132 133
#endif
#ifdef CONFIG_SMP
134
		printk("SMP NR_CPUS=%d ", NR_CPUS);
135 136
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
137
		printk("DEBUG_PAGEALLOC ");
138 139
#endif
#ifdef CONFIG_NUMA
140
		printk("NUMA ");
141
#endif
142
		printk("%s\n", ppc_md.name ? ppc_md.name : "");
143 144 145 146 147 148

		print_modules();
		show_regs(regs);
	} else {
		printk("Recursive die() failure, output suppressed\n");
	}
149

150
	bust_spinlocks(0);
151
	die.lock_owner = -1;
152
	add_taint(TAINT_DIE);
153
	spin_unlock_irqrestore(&die.lock, flags);
154

155 156
	if (kexec_should_crash(current) ||
		kexec_sr_activated(smp_processor_id()))
157
		crash_kexec(regs);
158
	crash_kexec_secondary(regs);
159 160 161 162

	if (in_interrupt())
		panic("Fatal exception in interrupt");

H
Horms 已提交
163
	if (panic_on_oops)
164
		panic("Fatal exception");
H
Horms 已提交
165

166
	oops_exit();
167 168 169 170 171 172 173 174
	do_exit(err);

	return 0;
}

void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
{
	siginfo_t info;
175 176 177 178
	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
			"at %08lx nip %08lx lr %08lx code %x\n";
	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
			"at %016lx nip %016lx lr %016lx code %x\n";
179 180 181 182

	if (!user_mode(regs)) {
		if (die("Exception in kernel mode", regs, signr))
			return;
183 184 185 186 187 188 189
	} else if (show_unhandled_signals &&
		    unhandled_signal(current, signr) &&
		    printk_ratelimit()) {
			printk(regs->msr & MSR_SF ? fmt64 : fmt32,
				current->comm, current->pid, signr,
				addr, regs->nip, regs->link, code);
		}
190 191 192 193 194 195 196 197 198 199 200 201 202 203

	memset(&info, 0, sizeof(info));
	info.si_signo = signr;
	info.si_code = code;
	info.si_addr = (void __user *) addr;
	force_sig_info(signr, &info, current);

	/*
	 * Init gets no signals that it doesn't have a handler for.
	 * That's all very well, but if it has caused a synchronous
	 * exception and we ignore the resulting signal, it will just
	 * generate the same exception over and over again and we get
	 * nowhere.  Better to kill it and let the kernel panic.
	 */
204
	if (is_global_init(current)) {
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
		__sighandler_t handler;

		spin_lock_irq(&current->sighand->siglock);
		handler = current->sighand->action[signr-1].sa.sa_handler;
		spin_unlock_irq(&current->sighand->siglock);
		if (handler == SIG_DFL) {
			/* init has generated a synchronous exception
			   and it doesn't have a handler for the signal */
			printk(KERN_CRIT "init has generated signal %d "
			       "but has no handler for it\n", signr);
			do_exit(signr);
		}
	}
}

#ifdef CONFIG_PPC64
void system_reset_exception(struct pt_regs *regs)
{
	/* See if any machine dependent calls */
224 225 226 227
	if (ppc_md.system_reset_exception) {
		if (ppc_md.system_reset_exception(regs))
			return;
	}
228

229 230 231 232
#ifdef CONFIG_KEXEC
	cpu_set(smp_processor_id(), cpus_in_sr);
#endif

P
Paul Mackerras 已提交
233
	die("System Reset", regs, SIGABRT);
234

235 236 237 238 239 240 241 242 243 244 245 246 247
	/*
	 * Some CPUs when released from the debugger will execute this path.
	 * These CPUs entered the debugger via a soft-reset. If the CPU was
	 * hung before entering the debugger it will return to the hung
	 * state when exiting this function.  This causes a problem in
	 * kdump since the hung CPU(s) will not respond to the IPI sent
	 * from kdump. To prevent the problem we call crash_kexec_secondary()
	 * here. If a kdump had not been initiated or we exit the debugger
	 * with the "exit and recover" command (x) crash_kexec_secondary()
	 * will return after 5ms and the CPU returns to its previous state.
	 */
	crash_kexec_secondary(regs);

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
	/* Must die if the interrupt is not recoverable */
	if (!(regs->msr & MSR_RI))
		panic("Unrecoverable System Reset");

	/* What should we do here? We could issue a shutdown or hard reset. */
}
#endif

/*
 * I/O accesses can cause machine checks on powermacs.
 * Check if the NIP corresponds to the address of a sync
 * instruction for which there is an entry in the exception
 * table.
 * Note that the 601 only takes a machine check on TEA
 * (transfer error ack) signal assertion, and does not
 * set any of the top 16 bits of SRR1.
 *  -- paulus.
 */
static inline int check_io_access(struct pt_regs *regs)
{
268
#ifdef CONFIG_PPC32
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	unsigned long msr = regs->msr;
	const struct exception_table_entry *entry;
	unsigned int *nip = (unsigned int *)regs->nip;

	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
	    && (entry = search_exception_tables(regs->nip)) != NULL) {
		/*
		 * Check that it's a sync instruction, or somewhere
		 * in the twi; isync; nop sequence that inb/inw/inl uses.
		 * As the address is in the exception table
		 * we should be able to read the instr there.
		 * For the debug message, we look at the preceding
		 * load or store.
		 */
		if (*nip == 0x60000000)		/* nop */
			nip -= 2;
		else if (*nip == 0x4c00012c)	/* isync */
			--nip;
		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
			/* sync or twi */
			unsigned int rb;

			--nip;
			rb = (*nip >> 11) & 0x1f;
			printk(KERN_DEBUG "%s bad port %lx at %p\n",
			       (*nip & 0x100)? "OUT to": "IN from",
			       regs->gpr[rb] - _IO_BASE, nip);
			regs->msr |= MSR_RI;
			regs->nip = entry->fixup;
			return 1;
		}
	}
301
#endif /* CONFIG_PPC32 */
302 303 304 305 306 307 308 309 310 311
	return 0;
}

#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
/* On 4xx, the reason for the machine check or program exception
   is in the ESR. */
#define get_reason(regs)	((regs)->dsisr)
#ifndef CONFIG_FSL_BOOKE
#define get_mc_reason(regs)	((regs)->dsisr)
#else
312
#define get_mc_reason(regs)	(mfspr(SPRN_MCSR) & MCSR_MASK)
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
#endif
#define REASON_FP		ESR_FP
#define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
#define REASON_PRIVILEGED	ESR_PPR
#define REASON_TRAP		ESR_PTR

/* single-step stuff */
#define single_stepping(regs)	(current->thread.dbcr0 & DBCR0_IC)
#define clear_single_step(regs)	(current->thread.dbcr0 &= ~DBCR0_IC)

#else
/* On non-4xx, the reason for the machine check or program
   exception is in the MSR. */
#define get_reason(regs)	((regs)->msr)
#define get_mc_reason(regs)	((regs)->msr)
#define REASON_FP		0x100000
#define REASON_ILLEGAL		0x80000
#define REASON_PRIVILEGED	0x40000
#define REASON_TRAP		0x20000

#define single_stepping(regs)	((regs)->msr & MSR_SE)
#define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
#endif

337 338
#if defined(CONFIG_4xx)
int machine_check_4xx(struct pt_regs *regs)
339
{
340
	unsigned long reason = get_mc_reason(regs);
341 342 343 344 345 346 347

	if (reason & ESR_IMCP) {
		printk("Instruction");
		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
	} else
		printk("Data");
	printk(" machine check in kernel mode.\n");
348 349 350 351 352 353 354 355

	return 0;
}

int machine_check_440A(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
	printk("Machine check in kernel mode.\n");
	if (reason & ESR_IMCP){
		printk("Instruction Synchronous Machine Check exception\n");
		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
	}
	else {
		u32 mcsr = mfspr(SPRN_MCSR);
		if (mcsr & MCSR_IB)
			printk("Instruction Read PLB Error\n");
		if (mcsr & MCSR_DRB)
			printk("Data Read PLB Error\n");
		if (mcsr & MCSR_DWB)
			printk("Data Write PLB Error\n");
		if (mcsr & MCSR_TLBP)
			printk("TLB Parity Error\n");
		if (mcsr & MCSR_ICP){
			flush_instruction_cache();
			printk("I-Cache Parity Error\n");
		}
		if (mcsr & MCSR_DCSP)
			printk("D-Cache Search Parity Error\n");
		if (mcsr & MCSR_DCFP)
			printk("D-Cache Flush Parity Error\n");
		if (mcsr & MCSR_IMPE)
			printk("Machine Check exception is imprecise\n");

		/* Clear MCSR */
		mtspr(SPRN_MCSR, mcsr);
	}
385 386 387 388 389 390 391
	return 0;
}
#elif defined(CONFIG_E500)
int machine_check_e500(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from MCSR=%lx): ", reason);

	if (reason & MCSR_MCP)
		printk("Machine Check Signal\n");
	if (reason & MCSR_ICPERR)
		printk("Instruction Cache Parity Error\n");
	if (reason & MCSR_DCP_PERR)
		printk("Data Cache Push Parity Error\n");
	if (reason & MCSR_DCPERR)
		printk("Data Cache Parity Error\n");
	if (reason & MCSR_BUS_IAERR)
		printk("Bus - Instruction Address Error\n");
	if (reason & MCSR_BUS_RAERR)
		printk("Bus - Read Address Error\n");
	if (reason & MCSR_BUS_WAERR)
		printk("Bus - Write Address Error\n");
	if (reason & MCSR_BUS_IBERR)
		printk("Bus - Instruction Data Error\n");
	if (reason & MCSR_BUS_RBERR)
		printk("Bus - Read Data Bus Error\n");
	if (reason & MCSR_BUS_WBERR)
		printk("Bus - Read Data Bus Error\n");
	if (reason & MCSR_BUS_IPERR)
		printk("Bus - Instruction Parity Error\n");
	if (reason & MCSR_BUS_RPERR)
		printk("Bus - Read Parity Error\n");
419 420 421 422 423 424 425 426

	return 0;
}
#elif defined(CONFIG_E200)
int machine_check_e200(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from MCSR=%lx): ", reason);

	if (reason & MCSR_MCP)
		printk("Machine Check Signal\n");
	if (reason & MCSR_CP_PERR)
		printk("Cache Push Parity Error\n");
	if (reason & MCSR_CPERR)
		printk("Cache Parity Error\n");
	if (reason & MCSR_EXCP_ERR)
		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
	if (reason & MCSR_BUS_IRERR)
		printk("Bus - Read Bus Error on instruction fetch\n");
	if (reason & MCSR_BUS_DRERR)
		printk("Bus - Read Bus Error on data load\n");
	if (reason & MCSR_BUS_WRERR)
		printk("Bus - Write Bus Error on buffered store or cache line push\n");
444 445 446 447 448 449 450 451

	return 0;
}
#else
int machine_check_generic(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from SRR1=%lx): ", reason);
	switch (reason & 0x601F0000) {
	case 0x80000:
		printk("Machine check signal\n");
		break;
	case 0:		/* for 601 */
	case 0x40000:
	case 0x140000:	/* 7450 MSS error and TEA */
		printk("Transfer error ack signal\n");
		break;
	case 0x20000:
		printk("Data parity error signal\n");
		break;
	case 0x10000:
		printk("Address parity error signal\n");
		break;
	case 0x20000000:
		printk("L1 Data Cache error\n");
		break;
	case 0x40000000:
		printk("L1 Instruction Cache error\n");
		break;
	case 0x00100000:
		printk("L2 data cache parity error\n");
		break;
	default:
		printk("Unknown values in msr\n");
	}
481 482
	return 0;
}
483
#endif /* everything else */
484 485 486 487 488

void machine_check_exception(struct pt_regs *regs)
{
	int recover = 0;

489 490 491 492 493 494
	/* See if any machine dependent calls. In theory, we would want
	 * to call the CPU first, and call the ppc_md. one if the CPU
	 * one returns a positive number. However there is existing code
	 * that assumes the board gets a first chance, so let's keep it
	 * that way for now and fix things later. --BenH.
	 */
495 496
	if (ppc_md.machine_check_exception)
		recover = ppc_md.machine_check_exception(regs);
497 498
	else if (cur_cpu_spec->machine_check)
		recover = cur_cpu_spec->machine_check(regs);
499

500
	if (recover > 0)
501 502 503 504 505 506 507 508 509
		return;

	if (user_mode(regs)) {
		regs->msr |= MSR_RI;
		_exception(SIGBUS, regs, BUS_ADRERR, regs->nip);
		return;
	}

#if defined(CONFIG_8xx) && defined(CONFIG_PCI)
510 511 512 513 514 515
	/* the qspan pci read routines can cause machine checks -- Cort
	 *
	 * yuck !!! that totally needs to go away ! There are better ways
	 * to deal with that than having a wart in the mcheck handler.
	 * -- BenH
	 */
516 517 518 519 520 521 522 523 524 525 526 527
	bad_page_fault(regs, regs->dar, SIGBUS);
	return;
#endif

	if (debugger_fault_handler(regs)) {
		regs->msr |= MSR_RI;
		return;
	}

	if (check_io_access(regs))
		return;

528 529
	if (debugger_fault_handler(regs))
		return;
P
Paul Mackerras 已提交
530
	die("Machine check", regs, SIGBUS);
531 532 533 534 535 536 537 538 539 540 541

	/* Must die if the interrupt is not recoverable */
	if (!(regs->msr & MSR_RI))
		panic("Unrecoverable Machine check");
}

void SMIException(struct pt_regs *regs)
{
	die("System Management Interrupt", regs, SIGABRT);
}

542
void unknown_exception(struct pt_regs *regs)
543 544 545 546 547 548 549
{
	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
	       regs->nip, regs->msr, regs->trap);

	_exception(SIGTRAP, regs, 0, 0);
}

550
void instruction_breakpoint_exception(struct pt_regs *regs)
551 552 553 554 555 556 557 558 559 560 561 562 563 564
{
	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
					5, SIGTRAP) == NOTIFY_STOP)
		return;
	if (debugger_iabr_match(regs))
		return;
	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
}

void RunModeException(struct pt_regs *regs)
{
	_exception(SIGTRAP, regs, 0, 0);
}

P
Paul Mackerras 已提交
565
void __kprobes single_step_exception(struct pt_regs *regs)
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
{
	regs->msr &= ~(MSR_SE | MSR_BE);  /* Turn off 'trace' bits */

	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
					5, SIGTRAP) == NOTIFY_STOP)
		return;
	if (debugger_sstep(regs))
		return;

	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
}

/*
 * After we have successfully emulated an instruction, we have to
 * check if the instruction was being single-stepped, and if so,
 * pretend we got a single-step exception.  This was pointed out
 * by Kumar Gala.  -- paulus
 */
P
Paul Mackerras 已提交
584
static void emulate_single_step(struct pt_regs *regs)
585 586 587 588 589 590 591
{
	if (single_stepping(regs)) {
		clear_single_step(regs);
		_exception(SIGTRAP, regs, TRAP_TRACE, 0);
	}
}

592
static inline int __parse_fpscr(unsigned long fpscr)
593
{
594
	int ret = 0;
595 596 597

	/* Invalid operation */
	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
598
		ret = FPE_FLTINV;
599 600 601

	/* Overflow */
	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
602
		ret = FPE_FLTOVF;
603 604 605

	/* Underflow */
	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
606
		ret = FPE_FLTUND;
607 608 609

	/* Divide by zero */
	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
610
		ret = FPE_FLTDIV;
611 612 613

	/* Inexact result */
	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
614 615 616 617 618 619 620 621 622 623 624 625
		ret = FPE_FLTRES;

	return ret;
}

static void parse_fpe(struct pt_regs *regs)
{
	int code = 0;

	flush_fp_to_thread(current);

	code = __parse_fpscr(current->thread.fpscr.val);
626 627 628 629 630 631

	_exception(SIGFPE, regs, code, regs->nip);
}

/*
 * Illegal instruction emulation support.  Originally written to
632 633 634 635 636 637 638
 * provide the PVR to user applications using the mfspr rd, PVR.
 * Return non-zero if we can't emulate, or -EFAULT if the associated
 * memory access caused an access fault.  Return zero on success.
 *
 * There are a couple of ways to do this, either "decode" the instruction
 * or directly match lots of bits.  In this case, matching lots of
 * bits is faster and easier.
639
 *
640 641 642 643 644 645 646 647 648 649 650
 */
static int emulate_string_inst(struct pt_regs *regs, u32 instword)
{
	u8 rT = (instword >> 21) & 0x1f;
	u8 rA = (instword >> 16) & 0x1f;
	u8 NB_RB = (instword >> 11) & 0x1f;
	u32 num_bytes;
	unsigned long EA;
	int pos = 0;

	/* Early out if we are an invalid form of lswx */
651
	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
652 653 654 655 656
		if ((rT == rA) || (rT == NB_RB))
			return -EINVAL;

	EA = (rA == 0) ? 0 : regs->gpr[rA];

657 658 659
	switch (instword & PPC_INST_STRING_MASK) {
		case PPC_INST_LSWX:
		case PPC_INST_STSWX:
660 661 662
			EA += NB_RB;
			num_bytes = regs->xer & 0x7f;
			break;
663 664
		case PPC_INST_LSWI:
		case PPC_INST_STSWI:
665 666 667 668 669 670 671 672 673 674 675
			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
			break;
		default:
			return -EINVAL;
	}

	while (num_bytes != 0)
	{
		u8 val;
		u32 shift = 8 * (3 - (pos & 0x3));

676 677 678
		switch ((instword & PPC_INST_STRING_MASK)) {
			case PPC_INST_LSWX:
			case PPC_INST_LSWI:
679 680 681 682 683 684 685 686
				if (get_user(val, (u8 __user *)EA))
					return -EFAULT;
				/* first time updating this reg,
				 * zero it out */
				if (pos == 0)
					regs->gpr[rT] = 0;
				regs->gpr[rT] |= val << shift;
				break;
687 688
			case PPC_INST_STSWI:
			case PPC_INST_STSWX:
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
				val = regs->gpr[rT] >> shift;
				if (put_user(val, (u8 __user *)EA))
					return -EFAULT;
				break;
		}
		/* move EA to next address */
		EA += 1;
		num_bytes--;

		/* manage our position within the register */
		if (++pos == 4) {
			pos = 0;
			if (++rT == 32)
				rT = 0;
		}
	}

	return 0;
}

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
{
	u32 ra,rs;
	unsigned long tmp;

	ra = (instword >> 16) & 0x1f;
	rs = (instword >> 21) & 0x1f;

	tmp = regs->gpr[rs];
	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
	regs->gpr[ra] = tmp;

	return 0;
}

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
static int emulate_isel(struct pt_regs *regs, u32 instword)
{
	u8 rT = (instword >> 21) & 0x1f;
	u8 rA = (instword >> 16) & 0x1f;
	u8 rB = (instword >> 11) & 0x1f;
	u8 BC = (instword >> 6) & 0x1f;
	u8 bit;
	unsigned long tmp;

	tmp = (rA == 0) ? 0 : regs->gpr[rA];
	bit = (regs->ccr >> (31 - BC)) & 0x1;

	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];

	return 0;
}

743 744 745 746 747
static int emulate_instruction(struct pt_regs *regs)
{
	u32 instword;
	u32 rd;

748
	if (!user_mode(regs) || (regs->msr & MSR_LE))
749 750 751 752 753 754 755
		return -EINVAL;
	CHECK_FULL_REGS(regs);

	if (get_user(instword, (u32 __user *)(regs->nip)))
		return -EFAULT;

	/* Emulate the mfspr rD, PVR. */
756
	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
757 758 759 760 761 762
		rd = (instword >> 21) & 0x1f;
		regs->gpr[rd] = mfspr(SPRN_PVR);
		return 0;
	}

	/* Emulating the dcba insn is just a no-op.  */
763
	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA)
764 765 766
		return 0;

	/* Emulate the mcrxr insn.  */
767
	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
768
		int shift = (instword >> 21) & 0x1c;
769 770 771 772 773 774 775 776
		unsigned long msk = 0xf0000000UL >> shift;

		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
		regs->xer &= ~0xf0000000UL;
		return 0;
	}

	/* Emulate load/store string insn. */
777
	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING)
778 779
		return emulate_string_inst(regs, instword);

780
	/* Emulate the popcntb (Population Count Bytes) instruction. */
781
	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
782 783 784
		return emulate_popcntb_inst(regs, instword);
	}

785
	/* Emulate isel (Integer Select) instruction */
786
	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
787 788 789
		return emulate_isel(regs, instword);
	}

790 791 792
	return -EINVAL;
}

793
int is_valid_bugaddr(unsigned long addr)
794
{
795
	return is_kernel_addr(addr);
796 797
}

P
Paul Mackerras 已提交
798
void __kprobes program_check_exception(struct pt_regs *regs)
799 800 801 802
{
	unsigned int reason = get_reason(regs);
	extern int do_mathemu(struct pt_regs *regs);

803
	/* We can now get here via a FP Unavailable exception if the core
804
	 * has no FPU, in that case the reason flags will be 0 */
805

806 807 808
	if (reason & REASON_FP) {
		/* IEEE FP exception */
		parse_fpe(regs);
P
Paul Mackerras 已提交
809 810 811
		return;
	}
	if (reason & REASON_TRAP) {
812
		/* trap exception */
813 814 815
		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
				== NOTIFY_STOP)
			return;
816 817
		if (debugger_bpt(regs))
			return;
818 819

		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
820
		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
821 822 823
			regs->nip += 4;
			return;
		}
P
Paul Mackerras 已提交
824 825 826 827
		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
		return;
	}

828 829
	local_irq_enable();

830 831 832 833 834 835 836 837
#ifdef CONFIG_MATH_EMULATION
	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
	 * but there seems to be a hardware bug on the 405GP (RevD)
	 * that means ESR is sometimes set incorrectly - either to
	 * ESR_DST (!?) or 0.  In the process of chasing this with the
	 * hardware people - not sure if it can happen on any illegal
	 * instruction or only on FP instructions, whether there is a
	 * pattern to occurences etc. -dgibson 31/Mar/2003 */
838 839
	switch (do_mathemu(regs)) {
	case 0:
840 841
		emulate_single_step(regs);
		return;
842 843 844 845 846 847 848 849 850
	case 1: {
			int code = 0;
			code = __parse_fpscr(current->thread.fpscr.val);
			_exception(SIGFPE, regs, code, regs->nip);
			return;
		}
	case -EFAULT:
		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
		return;
851
	}
852
	/* fall through on any other errors */
853 854
#endif /* CONFIG_MATH_EMULATION */

P
Paul Mackerras 已提交
855 856
	/* Try to emulate it if we should. */
	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
857 858 859 860
		switch (emulate_instruction(regs)) {
		case 0:
			regs->nip += 4;
			emulate_single_step(regs);
P
Paul Mackerras 已提交
861
			return;
862 863
		case -EFAULT:
			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
P
Paul Mackerras 已提交
864
			return;
865 866
		}
	}
P
Paul Mackerras 已提交
867 868 869 870 871

	if (reason & REASON_PRIVILEGED)
		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
	else
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
872 873
}

874
void alignment_exception(struct pt_regs *regs)
875
{
876
	int sig, code, fixed = 0;
877

878 879 880
	/* we don't implement logging of alignment exceptions */
	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
		fixed = fix_alignment(regs);
881 882 883 884 885 886 887

	if (fixed == 1) {
		regs->nip += 4;	/* skip over emulated instruction */
		emulate_single_step(regs);
		return;
	}

888
	/* Operand address was bad */
889
	if (fixed == -EFAULT) {
890 891 892 893 894
		sig = SIGSEGV;
		code = SEGV_ACCERR;
	} else {
		sig = SIGBUS;
		code = BUS_ADRALN;
895
	}
896 897 898 899
	if (user_mode(regs))
		_exception(sig, regs, code, regs->dar);
	else
		bad_page_fault(regs, regs->dar, sig);
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
}

void StackOverflow(struct pt_regs *regs)
{
	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
	       current, regs->gpr[1]);
	debugger(regs);
	show_regs(regs);
	panic("kernel stack overflow");
}

void nonrecoverable_exception(struct pt_regs *regs)
{
	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
	       regs->nip, regs->msr);
	debugger(regs);
	die("nonrecoverable exception", regs, SIGKILL);
}

void trace_syscall(struct pt_regs *regs)
{
	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
922
	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
923 924
	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
}
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940

void kernel_fp_unavailable_exception(struct pt_regs *regs)
{
	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
			  "%lx at %lx\n", regs->trap, regs->nip);
	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
}

void altivec_unavailable_exception(struct pt_regs *regs)
{
	if (user_mode(regs)) {
		/* A user program has executed an altivec instruction,
		   but this kernel doesn't support altivec. */
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
		return;
	}
941

942 943 944 945 946
	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
			"%lx at %lx\n", regs->trap, regs->nip);
	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
}

947 948 949 950 951 952 953 954 955 956 957 958 959 960
void vsx_unavailable_exception(struct pt_regs *regs)
{
	if (user_mode(regs)) {
		/* A user program has executed an vsx instruction,
		   but this kernel doesn't support vsx. */
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
		return;
	}

	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
			"%lx at %lx\n", regs->trap, regs->nip);
	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
}

961 962 963 964 965
void performance_monitor_exception(struct pt_regs *regs)
{
	perf_irq(regs);
}

P
Paul Mackerras 已提交
966
#ifdef CONFIG_8xx
967 968 969 970
void SoftwareEmulation(struct pt_regs *regs)
{
	extern int do_mathemu(struct pt_regs *);
	extern int Soft_emulate_8xx(struct pt_regs *);
971
#if defined(CONFIG_MATH_EMULATION) || defined(CONFIG_8XX_MINIMAL_FPEMU)
972
	int errcode;
973
#endif
974 975 976 977 978 979 980 981 982 983

	CHECK_FULL_REGS(regs);

	if (!user_mode(regs)) {
		debugger(regs);
		die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
	}

#ifdef CONFIG_MATH_EMULATION
	errcode = do_mathemu(regs);
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002

	switch (errcode) {
	case 0:
		emulate_single_step(regs);
		return;
	case 1: {
			int code = 0;
			code = __parse_fpscr(current->thread.fpscr.val);
			_exception(SIGFPE, regs, code, regs->nip);
			return;
		}
	case -EFAULT:
		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
		return;
	default:
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
		return;
	}

1003
#elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1004
	errcode = Soft_emulate_8xx(regs);
1005 1006
	switch (errcode) {
	case 0:
1007
		emulate_single_step(regs);
1008 1009 1010 1011 1012 1013 1014 1015
		return;
	case 1:
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
		return;
	case -EFAULT:
		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
		return;
	}
1016 1017
#else
	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1018
#endif
1019
}
P
Paul Mackerras 已提交
1020
#endif /* CONFIG_8xx */
1021 1022 1023

#if defined(CONFIG_40x) || defined(CONFIG_BOOKE)

1024
void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1025 1026 1027
{
	if (debug_status & DBSR_IC) {	/* instruction completion */
		regs->msr &= ~MSR_DE;
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

		/* Disable instruction completion */
		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
		/* Clear the instruction completion event */
		mtspr(SPRN_DBSR, DBSR_IC);

		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
			       5, SIGTRAP) == NOTIFY_STOP) {
			return;
		}

		if (debugger_sstep(regs))
			return;

1042 1043 1044
		if (user_mode(regs)) {
			current->thread.dbcr0 &= ~DBCR0_IC;
		}
1045 1046

		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	} else if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
		regs->msr &= ~MSR_DE;

		if (user_mode(regs)) {
			current->thread.dbcr0 &= ~(DBSR_DAC1R | DBSR_DAC1W |
								DBCR0_IDM);
		} else {
			/* Disable DAC interupts */
			mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~(DBSR_DAC1R |
						DBSR_DAC1W | DBCR0_IDM));

			/* Clear the DAC event */
			mtspr(SPRN_DBSR, (DBSR_DAC1R | DBSR_DAC1W));
		}
		/* Setup and send the trap to the handler */
		do_dabr(regs, mfspr(SPRN_DAC1), debug_status);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	}
}
#endif /* CONFIG_4xx || CONFIG_BOOKE */

#if !defined(CONFIG_TAU_INT)
void TAUException(struct pt_regs *regs)
{
	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
	       regs->nip, regs->msr, regs->trap, print_tainted());
}
#endif /* CONFIG_INT_TAU */

#ifdef CONFIG_ALTIVEC
1076
void altivec_assist_exception(struct pt_regs *regs)
1077 1078 1079 1080 1081 1082
{
	int err;

	if (!user_mode(regs)) {
		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
		       " at %lx\n", regs->nip);
P
Paul Mackerras 已提交
1083
		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1084 1085
	}

1086 1087
	flush_altivec_to_thread(current);

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	err = emulate_altivec(regs);
	if (err == 0) {
		regs->nip += 4;		/* skip emulated instruction */
		emulate_single_step(regs);
		return;
	}

	if (err == -EFAULT) {
		/* got an error reading the instruction */
		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
	} else {
		/* didn't recognize the instruction */
		/* XXX quick hack for now: set the non-Java bit in the VSCR */
		if (printk_ratelimit())
			printk(KERN_ERR "Unrecognized altivec instruction "
			       "in %s at %lx\n", current->comm, regs->nip);
		current->thread.vscr.u[3] |= 0x10000;
	}
}
#endif /* CONFIG_ALTIVEC */

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
#ifdef CONFIG_VSX
void vsx_assist_exception(struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		printk(KERN_EMERG "VSX assist exception in kernel mode"
		       " at %lx\n", regs->nip);
		die("Kernel VSX assist exception", regs, SIGILL);
	}

	flush_vsx_to_thread(current);
	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
}
#endif /* CONFIG_VSX */

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
#ifdef CONFIG_FSL_BOOKE
void CacheLockingException(struct pt_regs *regs, unsigned long address,
			   unsigned long error_code)
{
	/* We treat cache locking instructions from the user
	 * as priv ops, in the future we could try to do
	 * something smarter
	 */
	if (error_code & (ESR_DLK|ESR_ILK))
		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
	return;
}
#endif /* CONFIG_FSL_BOOKE */

#ifdef CONFIG_SPE
void SPEFloatingPointException(struct pt_regs *regs)
{
1141
	extern int do_spe_mathemu(struct pt_regs *regs);
1142 1143 1144
	unsigned long spefscr;
	int fpexc_mode;
	int code = 0;
1145 1146 1147 1148 1149 1150
	int err;

	preempt_disable();
	if (regs->msr & MSR_SPE)
		giveup_spe(current);
	preempt_enable();
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

	spefscr = current->thread.spefscr;
	fpexc_mode = current->thread.fpexc_mode;

	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
		code = FPE_FLTOVF;
	}
	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
		code = FPE_FLTUND;
	}
	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
		code = FPE_FLTDIV;
	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
		code = FPE_FLTINV;
	}
	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
		code = FPE_FLTRES;

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	err = do_spe_mathemu(regs);
	if (err == 0) {
		regs->nip += 4;		/* skip emulated instruction */
		emulate_single_step(regs);
		return;
	}

	if (err == -EFAULT) {
		/* got an error reading the instruction */
		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
	} else if (err == -EINVAL) {
		/* didn't recognize the instruction */
		printk(KERN_ERR "unrecognized spe instruction "
		       "in %s at %lx\n", current->comm, regs->nip);
	} else {
		_exception(SIGFPE, regs, code, regs->nip);
	}
1186 1187 1188

	return;
}
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

void SPEFloatingPointRoundException(struct pt_regs *regs)
{
	extern int speround_handler(struct pt_regs *regs);
	int err;

	preempt_disable();
	if (regs->msr & MSR_SPE)
		giveup_spe(current);
	preempt_enable();

	regs->nip -= 4;
	err = speround_handler(regs);
	if (err == 0) {
		regs->nip += 4;		/* skip emulated instruction */
		emulate_single_step(regs);
		return;
	}

	if (err == -EFAULT) {
		/* got an error reading the instruction */
		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
	} else if (err == -EINVAL) {
		/* didn't recognize the instruction */
		printk(KERN_ERR "unrecognized spe instruction "
		       "in %s at %lx\n", current->comm, regs->nip);
	} else {
		_exception(SIGFPE, regs, 0, regs->nip);
		return;
	}
}
1220 1221
#endif

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
/*
 * We enter here if we get an unrecoverable exception, that is, one
 * that happened at a point where the RI (recoverable interrupt) bit
 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
 * we therefore lost state by taking this exception.
 */
void unrecoverable_exception(struct pt_regs *regs)
{
	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
	       regs->trap, regs->nip);
	die("Unrecoverable exception", regs, SIGABRT);
}

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
#ifdef CONFIG_BOOKE_WDT
/*
 * Default handler for a Watchdog exception,
 * spins until a reboot occurs
 */
void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
{
	/* Generic WatchdogHandler, implement your own */
	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
	return;
}

void WatchdogException(struct pt_regs *regs)
{
	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
	WatchdogHandler(regs);
}
#endif
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

/*
 * We enter here if we discover during exception entry that we are
 * running in supervisor mode with a userspace value in the stack pointer.
 */
void kernel_bad_stack(struct pt_regs *regs)
{
	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
	       regs->gpr[1], regs->nip);
	die("Bad kernel stack pointer", regs, SIGABRT);
}
1264 1265 1266 1267

void __init trap_init(void)
{
}