sim_time.c 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel_stat.h>
#include <linux/sched.h>
#include <linux/spinlock.h>

#include <asm/mipsregs.h>
#include <asm/ptrace.h>
#include <asm/hardirq.h>
#include <asm/div64.h>
#include <asm/cpu.h>
#include <asm/time.h>

#include <linux/interrupt.h>
#include <linux/mc146818rtc.h>
#include <linux/timex.h>
#include <asm/mipsregs.h>
#include <asm/hardirq.h>
#include <asm/irq.h>
#include <asm/div64.h>
#include <asm/cpu.h>
#include <asm/time.h>
#include <asm/mc146818-time.h>
#include <asm/msc01_ic.h>

#include <asm/mips-boards/generic.h>
#include <asm/mips-boards/prom.h>
#include <asm/mips-boards/simint.h>
#include <asm/mc146818-time.h>
#include <asm/smp.h>


unsigned long cpu_khz;

35
irqreturn_t sim_timer_interrupt(int irq, void *dev_id)
36 37 38 39 40 41 42 43 44 45
{
#ifdef CONFIG_SMP
	int cpu = smp_processor_id();

	/*
	 * CPU 0 handles the global timer interrupt job
	 * resets count/compare registers to trigger next timer int.
	 */
#ifndef CONFIG_MIPS_MT_SMTC
	if (cpu == 0) {
46
		timer_interrupt(irq, dev_id);
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
	}
	else {
		/* Everyone else needs to reset the timer int here as
		   ll_local_timer_interrupt doesn't */
		/*
		 * FIXME: need to cope with counter underflow.
		 * More support needs to be added to kernel/time for
		 * counter/timer interrupts on multiple CPU's
		 */
		write_c0_compare (read_c0_count() + ( mips_hpt_frequency/HZ));
	}
#else /* SMTC */
	/*
	 *  In SMTC system, one Count/Compare set exists per VPE.
	 *  Which TC within a VPE gets the interrupt is essentially
	 *  random - we only know that it shouldn't be one with
	 *  IXMT set. Whichever TC gets the interrupt needs to
	 *  send special interprocessor interrupts to the other
	 *  TCs to make sure that they schedule, etc.
	 *
	 *  That code is specific to the SMTC kernel, not to
	 *  the simulation platform, so it's invoked from
	 *  the general MIPS timer_interrupt routine.
	 *
	 * We have a problem in that the interrupt vector code
	 * had to turn off the timer IM bit to avoid redundant
	 * entries, but we may never get to mips_cpu_irq_end
	 * to turn it back on again if the scheduler gets
	 * involved.  So we clear the pending timer here,
	 * and re-enable the mask...
	 */

	int vpflags = dvpe();
	write_c0_compare (read_c0_count() - 1);
	clear_c0_cause(0x100 << MIPSCPU_INT_CPUCTR);
	set_c0_status(0x100 << MIPSCPU_INT_CPUCTR);
	irq_enable_hazard();
	evpe(vpflags);

86
	if(cpu_data[cpu].vpe_id == 0) timer_interrupt(irq, dev_id);
87 88 89 90 91 92 93 94
	else write_c0_compare (read_c0_count() + ( mips_hpt_frequency/HZ));
	smtc_timer_broadcast(cpu_data[cpu].vpe_id);

#endif /* CONFIG_MIPS_MT_SMTC */

	/*
	 * every CPU should do profiling and process accounting
	 */
95
 	local_timer_interrupt (irq, dev_id);
96 97
	return IRQ_HANDLED;
#else
98
	return timer_interrupt (irq, dev_id);
99 100 101 102 103 104
#endif
}



/*
105
 * Estimate CPU frequency.  Sets mips_hpt_frequency as a side-effect
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
 */
static unsigned int __init estimate_cpu_frequency(void)
{
	unsigned int prid = read_c0_prid() & 0xffff00;
	unsigned int count;

#if 1
	/*
	 * hardwire the board frequency to 12MHz.
	 */

	if ((prid == (PRID_COMP_MIPS | PRID_IMP_20KC)) ||
	    (prid == (PRID_COMP_MIPS | PRID_IMP_25KF)))
		count = 12000000;
	else
		count =  6000000;
#else
	unsigned int flags;

	local_irq_save(flags);

	/* Start counter exactly on falling edge of update flag */
	while (CMOS_READ(RTC_REG_A) & RTC_UIP);
	while (!(CMOS_READ(RTC_REG_A) & RTC_UIP));

	/* Start r4k counter. */
	write_c0_count(0);

	/* Read counter exactly on falling edge of update flag */
	while (CMOS_READ(RTC_REG_A) & RTC_UIP);
	while (!(CMOS_READ(RTC_REG_A) & RTC_UIP));

	count = read_c0_count();

	/* restore interrupts */
	local_irq_restore(flags);
#endif

	mips_hpt_frequency = count;

	if ((prid != (PRID_COMP_MIPS | PRID_IMP_20KC)) &&
	    (prid != (PRID_COMP_MIPS | PRID_IMP_25KF)))
		count *= 2;

	count += 5000;    /* round */
	count -= count%10000;

	return count;
}

void __init sim_time_init(void)
{
	unsigned int est_freq, flags;

	local_irq_save(flags);


        /* Set Data mode - binary. */
	CMOS_WRITE(CMOS_READ(RTC_CONTROL) | RTC_DM_BINARY, RTC_CONTROL);


	est_freq = estimate_cpu_frequency ();

	printk("CPU frequency %d.%02d MHz\n", est_freq/1000000,
	       (est_freq%1000000)*100/1000000);

        cpu_khz = est_freq / 1000;

	local_irq_restore(flags);
}

static int mips_cpu_timer_irq;

179
static void mips_timer_dispatch(void)
180
{
181
	do_IRQ(mips_cpu_timer_irq);
182 183 184
}


185
void __init plat_timer_setup(struct irqaction *irq)
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
{
	if (cpu_has_veic) {
		set_vi_handler(MSC01E_INT_CPUCTR, mips_timer_dispatch);
		mips_cpu_timer_irq = MSC01E_INT_BASE + MSC01E_INT_CPUCTR;
	}
	else {
		if (cpu_has_vint)
			set_vi_handler(MIPSCPU_INT_CPUCTR, mips_timer_dispatch);
		mips_cpu_timer_irq = MIPSCPU_INT_BASE + MIPSCPU_INT_CPUCTR;
	}

	/* we are using the cpu counter for timer interrupts */
	irq->handler = sim_timer_interrupt;
	setup_irq(mips_cpu_timer_irq, irq);

#ifdef CONFIG_SMP
	/* irq_desc(riptor) is a global resource, when the interrupt overlaps
	   on seperate cpu's the first one tries to handle the second interrupt.
	   The effect is that the int remains disabled on the second cpu.
	   Mark the interrupt with IRQ_PER_CPU to avoid any confusion */
	irq_desc[mips_cpu_timer_irq].status |= IRQ_PER_CPU;
#endif

	/* to generate the first timer interrupt */
	write_c0_compare(read_c0_count() + (mips_hpt_frequency/HZ));
}