swiotlb-xen.c 18.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 *  Copyright 2010
 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
 *
 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License v2.0 as published by
 * the Free Software Foundation
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * PV guests under Xen are running in an non-contiguous memory architecture.
 *
 * When PCI pass-through is utilized, this necessitates an IOMMU for
 * translating bus (DMA) to virtual and vice-versa and also providing a
 * mechanism to have contiguous pages for device drivers operations (say DMA
 * operations).
 *
 * Specifically, under Xen the Linux idea of pages is an illusion. It
 * assumes that pages start at zero and go up to the available memory. To
 * help with that, the Linux Xen MMU provides a lookup mechanism to
 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 * memory is not contiguous. Xen hypervisor stitches memory for guests
 * from different pools, which means there is no guarantee that PFN==MFN
 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 * allocated in descending order (high to low), meaning the guest might
 * never get any MFN's under the 4GB mark.
 *
 */

J
Joe Perches 已提交
36 37
#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt

38 39
#include <linux/bootmem.h>
#include <linux/dma-mapping.h>
40
#include <linux/export.h>
41 42 43
#include <xen/swiotlb-xen.h>
#include <xen/page.h>
#include <xen/xen-ops.h>
44
#include <xen/hvc-console.h>
45
#include <asm/dma-mapping.h>
46
#include <asm/xen/page-coherent.h>
47 48 49 50 51 52
/*
 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 * API.
 */

53 54 55 56 57 58 59 60 61 62 63 64 65 66
#ifndef CONFIG_X86
static unsigned long dma_alloc_coherent_mask(struct device *dev,
					    gfp_t gfp)
{
	unsigned long dma_mask = 0;

	dma_mask = dev->coherent_dma_mask;
	if (!dma_mask)
		dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);

	return dma_mask;
}
#endif

67 68 69 70 71 72
static char *xen_io_tlb_start, *xen_io_tlb_end;
static unsigned long xen_io_tlb_nslabs;
/*
 * Quick lookup value of the bus address of the IOTLB.
 */

73
static u64 start_dma_addr;
74

75
static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
76
{
77
	return phys_to_machine(XPADDR(paddr)).maddr;
78 79
}

80
static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
81 82 83 84
{
	return machine_to_phys(XMADDR(baddr)).paddr;
}

85
static inline dma_addr_t xen_virt_to_bus(void *address)
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
{
	return xen_phys_to_bus(virt_to_phys(address));
}

static int check_pages_physically_contiguous(unsigned long pfn,
					     unsigned int offset,
					     size_t length)
{
	unsigned long next_mfn;
	int i;
	int nr_pages;

	next_mfn = pfn_to_mfn(pfn);
	nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;

	for (i = 1; i < nr_pages; i++) {
		if (pfn_to_mfn(++pfn) != ++next_mfn)
			return 0;
	}
	return 1;
}

108
static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
{
	unsigned long pfn = PFN_DOWN(p);
	unsigned int offset = p & ~PAGE_MASK;

	if (offset + size <= PAGE_SIZE)
		return 0;
	if (check_pages_physically_contiguous(pfn, offset, size))
		return 0;
	return 1;
}

static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
{
	unsigned long mfn = PFN_DOWN(dma_addr);
	unsigned long pfn = mfn_to_local_pfn(mfn);
	phys_addr_t paddr;

	/* If the address is outside our domain, it CAN
	 * have the same virtual address as another address
	 * in our domain. Therefore _only_ check address within our domain.
	 */
	if (pfn_valid(pfn)) {
		paddr = PFN_PHYS(pfn);
		return paddr >= virt_to_phys(xen_io_tlb_start) &&
		       paddr < virt_to_phys(xen_io_tlb_end);
	}
	return 0;
}

static int max_dma_bits = 32;

static int
xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
{
	int i, rc;
	int dma_bits;
145
	dma_addr_t dma_handle;
146
	phys_addr_t p = virt_to_phys(buf);
147 148 149 150 151 152 153 154 155

	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;

	i = 0;
	do {
		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);

		do {
			rc = xen_create_contiguous_region(
156
				p + (i << IO_TLB_SHIFT),
157
				get_order(slabs << IO_TLB_SHIFT),
158
				dma_bits, &dma_handle);
159 160 161 162 163 164 165 166
		} while (rc && dma_bits++ < max_dma_bits);
		if (rc)
			return rc;

		i += slabs;
	} while (i < nslabs);
	return 0;
}
167 168 169 170 171 172 173
static unsigned long xen_set_nslabs(unsigned long nr_tbl)
{
	if (!nr_tbl) {
		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
	} else
		xen_io_tlb_nslabs = nr_tbl;
174

175 176
	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
}
177

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
enum xen_swiotlb_err {
	XEN_SWIOTLB_UNKNOWN = 0,
	XEN_SWIOTLB_ENOMEM,
	XEN_SWIOTLB_EFIXUP
};

static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
{
	switch (err) {
	case XEN_SWIOTLB_ENOMEM:
		return "Cannot allocate Xen-SWIOTLB buffer\n";
	case XEN_SWIOTLB_EFIXUP:
		return "Failed to get contiguous memory for DMA from Xen!\n"\
		    "You either: don't have the permissions, do not have"\
		    " enough free memory under 4GB, or the hypervisor memory"\
		    " is too fragmented!";
	default:
		break;
	}
	return "";
}
199
int __ref xen_swiotlb_init(int verbose, bool early)
200
{
201
	unsigned long bytes, order;
202
	int rc = -ENOMEM;
203
	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
204
	unsigned int repeat = 3;
205

206
	xen_io_tlb_nslabs = swiotlb_nr_tbl();
207
retry:
208
	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
209
	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
210 211 212
	/*
	 * Get IO TLB memory from any location.
	 */
213 214 215 216 217 218 219 220 221 222 223 224
	if (early)
		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
	else {
#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
			xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
			if (xen_io_tlb_start)
				break;
			order--;
		}
		if (order != get_order(bytes)) {
J
Joe Perches 已提交
225 226
			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
				(PAGE_SIZE << order) >> 20);
227 228 229 230
			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
		}
	}
231
	if (!xen_io_tlb_start) {
232
		m_ret = XEN_SWIOTLB_ENOMEM;
233 234
		goto error;
	}
235 236 237 238 239 240 241
	xen_io_tlb_end = xen_io_tlb_start + bytes;
	/*
	 * And replace that memory with pages under 4GB.
	 */
	rc = xen_swiotlb_fixup(xen_io_tlb_start,
			       bytes,
			       xen_io_tlb_nslabs);
242
	if (rc) {
243 244 245 246 247 248
		if (early)
			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
		else {
			free_pages((unsigned long)xen_io_tlb_start, order);
			xen_io_tlb_start = NULL;
		}
249
		m_ret = XEN_SWIOTLB_EFIXUP;
250
		goto error;
251
	}
252
	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
253
	if (early) {
254 255 256
		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
			 verbose))
			panic("Cannot allocate SWIOTLB buffer");
257 258
		rc = 0;
	} else
259 260
		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
	return rc;
261
error:
262 263 264
	if (repeat--) {
		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
					(xen_io_tlb_nslabs >> 1));
J
Joe Perches 已提交
265 266
		pr_info("Lowering to %luMB\n",
			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
267 268
		goto retry;
	}
J
Joe Perches 已提交
269
	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
270 271 272 273 274
	if (early)
		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
	else
		free_pages((unsigned long)xen_io_tlb_start, order);
	return rc;
275 276 277
}
void *
xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
278 279
			   dma_addr_t *dma_handle, gfp_t flags,
			   struct dma_attrs *attrs)
280 281 282 283
{
	void *ret;
	int order = get_order(size);
	u64 dma_mask = DMA_BIT_MASK(32);
284 285
	phys_addr_t phys;
	dma_addr_t dev_addr;
286 287 288 289 290 291 292 293 294 295 296 297

	/*
	* Ignore region specifiers - the kernel's ideas of
	* pseudo-phys memory layout has nothing to do with the
	* machine physical layout.  We can't allocate highmem
	* because we can't return a pointer to it.
	*/
	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);

	if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
		return ret;

298 299 300 301 302 303
	/* On ARM this function returns an ioremap'ped virtual address for
	 * which virt_to_phys doesn't return the corresponding physical
	 * address. In fact on ARM virt_to_phys only works for kernel direct
	 * mapped RAM memory. Also see comment below.
	 */
	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
304

305 306 307
	if (!ret)
		return ret;

308
	if (hwdev && hwdev->coherent_dma_mask)
309
		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
310

311 312 313 314 315
	/* At this point dma_handle is the physical address, next we are
	 * going to set it to the machine address.
	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
	 * to *dma_handle. */
	phys = *dma_handle;
316 317 318 319 320
	dev_addr = xen_phys_to_bus(phys);
	if (((dev_addr + size - 1 <= dma_mask)) &&
	    !range_straddles_page_boundary(phys, size))
		*dma_handle = dev_addr;
	else {
321
		if (xen_create_contiguous_region(phys, order,
322
						 fls64(dma_mask), dma_handle) != 0) {
323
			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
324 325 326
			return NULL;
		}
	}
327
	memset(ret, 0, size);
328 329 330 331 332 333
	return ret;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);

void
xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
334
			  dma_addr_t dev_addr, struct dma_attrs *attrs)
335 336
{
	int order = get_order(size);
337 338
	phys_addr_t phys;
	u64 dma_mask = DMA_BIT_MASK(32);
339 340 341 342

	if (dma_release_from_coherent(hwdev, order, vaddr))
		return;

343 344 345
	if (hwdev && hwdev->coherent_dma_mask)
		dma_mask = hwdev->coherent_dma_mask;

346 347 348
	/* do not use virt_to_phys because on ARM it doesn't return you the
	 * physical address */
	phys = xen_bus_to_phys(dev_addr);
349 350 351

	if (((dev_addr + size - 1 > dma_mask)) ||
	    range_straddles_page_boundary(phys, size))
352
		xen_destroy_contiguous_region(phys, order);
353

354
	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
}
EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);


/*
 * Map a single buffer of the indicated size for DMA in streaming mode.  The
 * physical address to use is returned.
 *
 * Once the device is given the dma address, the device owns this memory until
 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
 */
dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
				unsigned long offset, size_t size,
				enum dma_data_direction dir,
				struct dma_attrs *attrs)
{
371
	phys_addr_t map, phys = page_to_phys(page) + offset;
372 373 374 375 376 377 378 379 380
	dma_addr_t dev_addr = xen_phys_to_bus(phys);

	BUG_ON(dir == DMA_NONE);
	/*
	 * If the address happens to be in the device's DMA window,
	 * we can safely return the device addr and not worry about bounce
	 * buffering it.
	 */
	if (dma_capable(dev, dev_addr, size) &&
381 382 383 384 385
	    !range_straddles_page_boundary(phys, size) && !swiotlb_force) {
		/* we are not interested in the dma_addr returned by
		 * xen_dma_map_page, only in the potential cache flushes executed
		 * by the function. */
		xen_dma_map_page(dev, page, offset, size, dir, attrs);
386
		return dev_addr;
387
	}
388 389 390 391 392

	/*
	 * Oh well, have to allocate and map a bounce buffer.
	 */
	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
393
	if (map == SWIOTLB_MAP_ERROR)
394 395
		return DMA_ERROR_CODE;

396 397
	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
					map & ~PAGE_MASK, size, dir, attrs);
398
	dev_addr = xen_phys_to_bus(map);
399 400 401 402

	/*
	 * Ensure that the address returned is DMA'ble
	 */
403
	if (!dma_capable(dev, dev_addr, size)) {
404
		swiotlb_tbl_unmap_single(dev, map, size, dir);
405 406
		dev_addr = 0;
	}
407 408 409 410 411 412 413 414 415 416 417 418 419
	return dev_addr;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);

/*
 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 * match what was provided for in a previous xen_swiotlb_map_page call.  All
 * other usages are undefined.
 *
 * After this call, reads by the cpu to the buffer are guaranteed to see
 * whatever the device wrote there.
 */
static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
420 421
			     size_t size, enum dma_data_direction dir,
				 struct dma_attrs *attrs)
422 423 424 425 426
{
	phys_addr_t paddr = xen_bus_to_phys(dev_addr);

	BUG_ON(dir == DMA_NONE);

427 428
	xen_dma_unmap_page(hwdev, paddr, size, dir, attrs);

429 430
	/* NOTE: We use dev_addr here, not paddr! */
	if (is_xen_swiotlb_buffer(dev_addr)) {
431
		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
		return;
	}

	if (dir != DMA_FROM_DEVICE)
		return;

	/*
	 * phys_to_virt doesn't work with hihgmem page but we could
	 * call dma_mark_clean() with hihgmem page here. However, we
	 * are fine since dma_mark_clean() is null on POWERPC. We can
	 * make dma_mark_clean() take a physical address if necessary.
	 */
	dma_mark_clean(phys_to_virt(paddr), size);
}

void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
			    size_t size, enum dma_data_direction dir,
			    struct dma_attrs *attrs)
{
451
	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
}
EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);

/*
 * Make physical memory consistent for a single streaming mode DMA translation
 * after a transfer.
 *
 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
 * using the cpu, yet do not wish to teardown the dma mapping, you must
 * call this function before doing so.  At the next point you give the dma
 * address back to the card, you must first perform a
 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
 */
static void
xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
			size_t size, enum dma_data_direction dir,
			enum dma_sync_target target)
{
	phys_addr_t paddr = xen_bus_to_phys(dev_addr);

	BUG_ON(dir == DMA_NONE);

474 475 476
	if (target == SYNC_FOR_CPU)
		xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir);

477
	/* NOTE: We use dev_addr here, not paddr! */
478
	if (is_xen_swiotlb_buffer(dev_addr))
479
		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
480 481 482

	if (target == SYNC_FOR_DEVICE)
		xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir);
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538

	if (dir != DMA_FROM_DEVICE)
		return;

	dma_mark_clean(phys_to_virt(paddr), size);
}

void
xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
				size_t size, enum dma_data_direction dir)
{
	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
}
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);

void
xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
				   size_t size, enum dma_data_direction dir)
{
	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
}
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);

/*
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the above xen_swiotlb_map_page
 * interface.  Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}(SG).
 *
 * NOTE: An implementation may be able to use a smaller number of
 *       DMA address/length pairs than there are SG table elements.
 *       (for example via virtual mapping capabilities)
 *       The routine returns the number of addr/length pairs actually
 *       used, at most nents.
 *
 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
 * same here.
 */
int
xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
			 int nelems, enum dma_data_direction dir,
			 struct dma_attrs *attrs)
{
	struct scatterlist *sg;
	int i;

	BUG_ON(dir == DMA_NONE);

	for_each_sg(sgl, sg, nelems, i) {
		phys_addr_t paddr = sg_phys(sg);
		dma_addr_t dev_addr = xen_phys_to_bus(paddr);

		if (swiotlb_force ||
		    !dma_capable(hwdev, dev_addr, sg->length) ||
		    range_straddles_page_boundary(paddr, sg->length)) {
539 540 541 542 543 544
			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
								 start_dma_addr,
								 sg_phys(sg),
								 sg->length,
								 dir);
			if (map == SWIOTLB_MAP_ERROR) {
545
				dev_warn(hwdev, "swiotlb buffer is full\n");
546 547 548 549
				/* Don't panic here, we expect map_sg users
				   to do proper error handling. */
				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
							   attrs);
550
				sg_dma_len(sgl) = 0;
551
				return 0;
552
			}
553
			sg->dma_address = xen_phys_to_bus(map);
554 555 556 557 558 559 560 561 562
		} else {
			/* we are not interested in the dma_addr returned by
			 * xen_dma_map_page, only in the potential cache flushes executed
			 * by the function. */
			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
						paddr & ~PAGE_MASK,
						sg->length,
						dir,
						attrs);
563
			sg->dma_address = dev_addr;
564
		}
565
		sg_dma_len(sg) = sg->length;
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	}
	return nelems;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);

/*
 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 * concerning calls here are the same as for swiotlb_unmap_page() above.
 */
void
xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
			   int nelems, enum dma_data_direction dir,
			   struct dma_attrs *attrs)
{
	struct scatterlist *sg;
	int i;

	BUG_ON(dir == DMA_NONE);

	for_each_sg(sgl, sg, nelems, i)
586
		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607

}
EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);

/*
 * Make physical memory consistent for a set of streaming mode DMA translations
 * after a transfer.
 *
 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
 * and usage.
 */
static void
xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
		    int nelems, enum dma_data_direction dir,
		    enum dma_sync_target target)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sgl, sg, nelems, i)
		xen_swiotlb_sync_single(hwdev, sg->dma_address,
608
					sg_dma_len(sg), dir, target);
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
}

void
xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
			    int nelems, enum dma_data_direction dir)
{
	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
}
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);

void
xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
			       int nelems, enum dma_data_direction dir)
{
	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
}
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);

int
xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
{
	return !dma_addr;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);

/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask to
 * this function.
 */
int
xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
{
	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
646 647 648 649 650 651 652 653 654 655 656 657

int
xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
{
	if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
		return -EIO;

	*dev->dma_mask = dma_mask;

	return 0;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);