i7core_edac.c 49.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Intel 7 core  Memory Controller kernel module (Nehalem)
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
 * Copyright (c) 2009 by:
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
30 31
#include <linux/edac_mce.h>
#include <linux/spinlock.h>
32
#include <linux/smp.h>
33
#include <asm/processor.h>
34 35 36

#include "edac_core.h"

37 38 39 40 41 42 43 44 45
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * Alter this version for the module when modifications are made
 */
#define I7CORE_REVISION    " Ver: 1.0.0 " __DATE__
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

65 66 67 68
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90

69 70 71 72 73 74
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

75 76 77 78 79 80 81 82 83 84 85 86
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

87 88 89 90 91 92 93 94 95 96 97 98
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


99 100
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

101 102 103 104 105 106
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

107 108 109 110
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

111 112 113
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

114
#define MC_CHANNEL_ADDR_MATCH	0xf0
115 116 117 118 119 120 121 122 123 124
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
125

126
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
127

128 129 130 131 132 133 134
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
135 136 137 138
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
139
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
140
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
141 142
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
143

144 145
#define MC_RANK_PRESENT		0x7c

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

169 170 171 172 173
/*
 * i7core structs
 */

#define NUM_CHANS 3
174 175 176
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
177 178 179 180 181

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
182
	u32	ch_map;
183 184
};

185 186 187 188 189 190 191 192 193 194 195 196

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

197
struct i7core_channel {
198 199
	u32		ranks;
	u32		dimms;
200 201
};

202
struct pci_id_descr {
203 204 205
	int			dev;
	int			func;
	int 			dev_id;
206 207
};

208 209 210 211 212 213 214
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
	struct mem_ctl_info	*mci;
};

215
struct i7core_pvt {
216 217 218 219 220
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
221

222
	struct i7core_info	info;
223
	struct i7core_inject	inject;
224
	struct i7core_channel	channel[NUM_CHANS];
225

226
	int		channels; /* Number of active channels */
227

228 229
	int		ce_count_available;
	int 		csrow_map[NUM_CHANS][MAX_DIMMS];
230 231

			/* ECC corrected errors counts per udimm */
232 233
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
234
			/* ECC corrected errors counts per rdimm */
235 236
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
237

238
	unsigned int	is_registered;
239

240 241 242 243 244
	/* mcelog glue */
	struct edac_mce		edac_mce;
	struct mce		mce_entry[MCE_LOG_LEN];
	unsigned		mce_count;
	spinlock_t		mce_lock;
245 246
};

247 248 249
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
250
static u8 max_num_sockets;
251

252 253 254 255 256
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

257
struct pci_id_descr pci_dev_descr[] = {
258 259 260
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
261
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS)  }, /* if RDIMM */
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
281 282 283 284 285 286 287 288 289 290

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NOCORE)  },

291
};
292
#define N_DEVS ARRAY_SIZE(pci_dev_descr)
293 294 295 296 297

/*
 *	pci_device_id	table for which devices we are looking for
 */
static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
298
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
299 300 301
	{0,}			/* 0 terminated list. */
};

302 303 304 305 306 307 308
static struct edac_pci_ctl_info *i7core_pci;

/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
309 310
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
311 312

	/* MC_STATUS bits */
313
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
314
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
315 316

	/* MC_MAX_DOD read functions */
317
static inline int numdimms(u32 dimms)
318
{
319
	return (dimms & 0x3) + 1;
320 321
}

322
static inline int numrank(u32 rank)
323 324 325
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

326
	return ranks[rank & 0x3];
327 328
}

329
static inline int numbank(u32 bank)
330 331 332
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

333
	return banks[bank & 0x3];
334 335
}

336
static inline int numrow(u32 row)
337 338 339 340 341 342
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

343
	return rows[row & 0x7];
344 345
}

346
static inline int numcol(u32 col)
347 348 349 350
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
351
	return cols[col & 0x3];
352 353
}

354
static struct i7core_dev *get_i7core_dev(u8 socket)
355 356 357 358 359 360 361 362 363 364 365
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

366 367 368
/****************************************************************************
			Memory check routines
 ****************************************************************************/
369 370
static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
					  unsigned func)
371
{
372
	struct i7core_dev *i7core_dev = get_i7core_dev(socket);
373 374
	int i;

375 376 377
	if (!i7core_dev)
		return NULL;

378
	for (i = 0; i < N_DEVS; i++) {
379
		if (!i7core_dev->pdev[i])
380 381
			continue;

382 383 384
		if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
			return i7core_dev->pdev[i];
385 386 387
		}
	}

388 389 390
	return NULL;
}

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/**
 * i7core_get_active_channels() - gets the number of channels and csrows
 * @socket:	Quick Path Interconnect socket
 * @channels:	Number of channels that will be returned
 * @csrows:	Number of csrows found
 *
 * Since EDAC core needs to know in advance the number of available channels
 * and csrows, in order to allocate memory for csrows/channels, it is needed
 * to run two similar steps. At the first step, implemented on this function,
 * it checks the number of csrows/channels present at one socket.
 * this is used in order to properly allocate the size of mci components.
 *
 * It should be noticed that none of the current available datasheets explain
 * or even mention how csrows are seen by the memory controller. So, we need
 * to add a fake description for csrows.
 * So, this driver is attributing one DIMM memory for one csrow.
 */
408 409
static int i7core_get_active_channels(u8 socket, unsigned *channels,
				      unsigned *csrows)
410 411 412 413 414 415 416 417
{
	struct pci_dev *pdev = NULL;
	int i, j;
	u32 status, control;

	*channels = 0;
	*csrows = 0;

418
	pdev = get_pdev_slot_func(socket, 3, 0);
419
	if (!pdev) {
420 421
		i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
			      socket);
422
		return -ENODEV;
423
	}
424 425 426 427 428 429

	/* Device 3 function 0 reads */
	pci_read_config_dword(pdev, MC_STATUS, &status);
	pci_read_config_dword(pdev, MC_CONTROL, &control);

	for (i = 0; i < NUM_CHANS; i++) {
430
		u32 dimm_dod[3];
431 432 433 434 435
		/* Check if the channel is active */
		if (!(control & (1 << (8 + i))))
			continue;

		/* Check if the channel is disabled */
436
		if (status & (1 << i))
437 438
			continue;

439
		pdev = get_pdev_slot_func(socket, i + 4, 1);
440
		if (!pdev) {
441 442 443
			i7core_printk(KERN_ERR, "Couldn't find socket %d "
						"fn %d.%d!!!\n",
						socket, i + 4, 1);
444 445 446 447 448 449 450 451 452 453
			return -ENODEV;
		}
		/* Devices 4-6 function 1 */
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM2, &dimm_dod[2]);

454
		(*channels)++;
455 456 457 458 459 460

		for (j = 0; j < 3; j++) {
			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;
			(*csrows)++;
		}
461 462
	}

463
	debugf0("Number of active channels on socket %d: %d\n",
464
		socket, *channels);
465

466 467 468
	return 0;
}

469
static int get_dimm_config(struct mem_ctl_info *mci, int *csrow)
470 471
{
	struct i7core_pvt *pvt = mci->pvt_info;
472
	struct csrow_info *csr;
473
	struct pci_dev *pdev;
474
	int i, j;
475
	u8 socket = pvt->i7core_dev->socket;
476
	unsigned long last_page = 0;
477
	enum edac_type mode;
478
	enum mem_type mtype;
479

480
	/* Get data from the MC register, function 0 */
481
	pdev = pvt->pci_mcr[0];
482
	if (!pdev)
483 484
		return -ENODEV;

485
	/* Device 3 function 0 reads */
486 487 488 489
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
490

491 492
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
		socket, pvt->info.mc_control, pvt->info.mc_status,
493
		pvt->info.max_dod, pvt->info.ch_map);
494

495
	if (ECC_ENABLED(pvt)) {
496
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
497 498 499 500 501
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
502
		debugf0("ECC disabled\n");
503 504
		mode = EDAC_NONE;
	}
505 506

	/* FIXME: need to handle the error codes */
507 508
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
509 510
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
511
		numbank(pvt->info.max_dod >> 4),
512 513
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
514

515
	for (i = 0; i < NUM_CHANS; i++) {
516
		u32 data, dimm_dod[3], value[8];
517 518 519 520 521 522 523 524 525 526

		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

527
		/* Devices 4-6 function 0 */
528
		pci_read_config_dword(pvt->pci_ch[i][0],
529 530
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

531
		pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
532
						4 : 2;
533

534 535
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
536
		else
537 538
			mtype = MEM_DDR3;
#if 0
539 540 541 542 543 544
		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].dimms = 3;
		else if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].dimms = 1;
		else
			pvt->channel[i].dimms = 2;
545 546 547
#endif

		/* Devices 4-6 function 1 */
548
		pci_read_config_dword(pvt->pci_ch[i][1],
549
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
550
		pci_read_config_dword(pvt->pci_ch[i][1],
551
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
552
		pci_read_config_dword(pvt->pci_ch[i][1],
553
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
554

555
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
556
			"%d ranks, %cDIMMs\n",
557 558 559
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
560
			pvt->channel[i].ranks,
561
			(data & REGISTERED_DIMM) ? 'R' : 'U');
562 563 564

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
565
			u32 size, npages;
566 567 568 569 570 571 572 573 574

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

575 576 577
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

578
			pvt->channel[i].dimms++;
579

580 581 582
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
583 584 585
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

586 587 588 589 590
#if PAGE_SHIFT > 20
			npages = size >> (PAGE_SHIFT - 20);
#else
			npages = size << (20 - PAGE_SHIFT);
#endif
591

592
			csr = &mci->csrows[*csrow];
593 594 595 596 597
			csr->first_page = last_page + 1;
			last_page += npages;
			csr->last_page = last_page;
			csr->nr_pages = npages;

598
			csr->page_mask = 0;
599
			csr->grain = 8;
600
			csr->csrow_idx = *csrow;
601 602 603 604
			csr->nr_channels = 1;

			csr->channels[0].chan_idx = i;
			csr->channels[0].ce_count = 0;
605

606
			pvt->csrow_map[i][j] = *csrow;
607

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
			switch (banks) {
			case 4:
				csr->dtype = DEV_X4;
				break;
			case 8:
				csr->dtype = DEV_X8;
				break;
			case 16:
				csr->dtype = DEV_X16;
				break;
			default:
				csr->dtype = DEV_UNKNOWN;
			}

			csr->edac_mode = mode;
			csr->mtype = mtype;

625
			(*csrow)++;
626
		}
627

628 629 630 631 632 633 634 635
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
636
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
637
		for (j = 0; j < 8; j++)
638
			debugf1("\t\t%#x\t%#x\t%#x\n",
639 640 641
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
				(value[j] && ((1 << 24) - 1)));
642 643
	}

644 645 646
	return 0;
}

647 648 649 650 651 652 653 654 655 656 657
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
658
static int disable_inject(struct mem_ctl_info *mci)
659 660 661 662 663
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

664
	if (!pvt->pci_ch[pvt->inject.channel][0])
665 666
		return -ENODEV;

667
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
668
				MC_CHANNEL_ERROR_INJECT, 0);
669 670

	return 0;
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
688
		disable_inject(mci);
689 690 691

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
692
		return -EIO;
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
721
		disable_inject(mci);
722 723 724

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
725
		return -EIO;
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
756
		disable_inject(mci);
757 758 759

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
760
		return -EIO;
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_addrmatch_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	char *cmd, *val;
	long value;
	int rc;

	if (pvt->inject.enable)
792
		disable_inject(mci);
793 794 795 796 797 798 799 800 801

	do {
		cmd = strsep((char **) &data, ":");
		if (!cmd)
			break;
		val = strsep((char **) &data, " \n\t");
		if (!val)
			return cmd - data;

802
		if (!strcasecmp(val, "any"))
803 804 805 806 807 808 809
			value = -1;
		else {
			rc = strict_strtol(val, 10, &value);
			if ((rc < 0) || (value < 0))
				return cmd - data;
		}

810
		if (!strcasecmp(cmd, "channel")) {
811 812 813 814
			if (value < 3)
				pvt->inject.channel = value;
			else
				return cmd - data;
815
		} else if (!strcasecmp(cmd, "dimm")) {
816
			if (value < 3)
817 818 819
				pvt->inject.dimm = value;
			else
				return cmd - data;
820
		} else if (!strcasecmp(cmd, "rank")) {
821 822 823 824
			if (value < 4)
				pvt->inject.rank = value;
			else
				return cmd - data;
825
		} else if (!strcasecmp(cmd, "bank")) {
826
			if (value < 32)
827 828 829
				pvt->inject.bank = value;
			else
				return cmd - data;
830
		} else if (!strcasecmp(cmd, "page")) {
831 832 833 834
			if (value <= 0xffff)
				pvt->inject.page = value;
			else
				return cmd - data;
835 836
		} else if (!strcasecmp(cmd, "col") ||
			   !strcasecmp(cmd, "column")) {
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
			if (value <= 0x3fff)
				pvt->inject.col = value;
			else
				return cmd - data;
		}
	} while (1);

	return count;
}

static ssize_t i7core_inject_addrmatch_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	char channel[4], dimm[4], bank[4], rank[4], page[7], col[7];

	if (pvt->inject.channel < 0)
		sprintf(channel, "any");
	else
		sprintf(channel, "%d", pvt->inject.channel);
	if (pvt->inject.dimm < 0)
		sprintf(dimm, "any");
	else
		sprintf(dimm, "%d", pvt->inject.dimm);
	if (pvt->inject.bank < 0)
		sprintf(bank, "any");
	else
		sprintf(bank, "%d", pvt->inject.bank);
	if (pvt->inject.rank < 0)
		sprintf(rank, "any");
	else
		sprintf(rank, "%d", pvt->inject.rank);
	if (pvt->inject.page < 0)
		sprintf(page, "any");
	else
		sprintf(page, "0x%04x", pvt->inject.page);
	if (pvt->inject.col < 0)
		sprintf(col, "any");
	else
		sprintf(col, "0x%04x", pvt->inject.col);

	return sprintf(data, "channel: %s\ndimm: %s\nbank: %s\n"
			     "rank: %s\npage: %s\ncolumn: %s\n",
		       channel, dimm, bank, rank, page, col);
}

883 884 885 886 887
static int write_and_test(struct pci_dev *dev, int where, u32 val)
{
	u32 read;
	int count;

888 889 890 891
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

892 893
	for (count = 0; count < 10; count++) {
		if (count)
894
			msleep(100);
895 896 897 898 899 900 901
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

902 903 904 905
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
906 907 908 909

	return -EINVAL;
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

937
	if (!pvt->pci_ch[pvt->inject.channel][0])
938 939
		return 0;

940 941 942 943 944 945 946 947 948 949 950 951 952
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
953
		mask |= 1L << 41;
954
	else {
955
		if (pvt->channel[pvt->inject.channel].dimms > 2)
956
			mask |= (pvt->inject.dimm & 0x3L) << 35;
957
		else
958
			mask |= (pvt->inject.dimm & 0x1L) << 36;
959 960 961 962
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
963
		mask |= 1L << 40;
964
	else {
965
		if (pvt->channel[pvt->inject.channel].dimms > 2)
966
			mask |= (pvt->inject.rank & 0x1L) << 34;
967
		else
968
			mask |= (pvt->inject.rank & 0x3L) << 34;
969 970 971 972
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
973
		mask |= 1L << 39;
974
	else
975
		mask |= (pvt->inject.bank & 0x15L) << 30;
976 977 978

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
979
		mask |= 1L << 38;
980
	else
981
		mask |= (pvt->inject.page & 0xffffL) << 14;
982 983 984

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
985
		mask |= 1L << 37;
986
	else
987
		mask |= (pvt->inject.col & 0x3fffL);
988

989 990 991 992 993 994 995 996 997 998 999 1000
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
1001
	pci_write_config_dword(pvt->pci_noncore,
1002
			       MC_CFG_CONTROL, 0x2);
1003

1004
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1005
			       MC_CHANNEL_ADDR_MATCH, mask);
1006
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1007 1008
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

1009
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1010 1011
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

1012
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1013
			       MC_CHANNEL_ERROR_INJECT, injectmask);
1014

1015
	/*
1016 1017 1018
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1019
	 */
1020
	pci_write_config_dword(pvt->pci_noncore,
1021
			       MC_CFG_CONTROL, 8);
1022

1023 1024
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
1025 1026
		mask, pvt->inject.eccmask, injectmask);

1027

1028 1029 1030 1031 1032 1033 1034
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
1035 1036
	u32 injectmask;

1037
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1038
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1039 1040 1041 1042 1043 1044

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1045 1046 1047
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1048 1049
static ssize_t i7core_ce_regs_show(struct mem_ctl_info *mci, char *data)
{
1050
	unsigned i, count, total = 0;
1051 1052
	struct i7core_pvt *pvt = mci->pvt_info;

1053 1054 1055
	if (!pvt->ce_count_available) {
		count = sprintf(data, "data unavailable\n");
		return 0;
1056
	}
1057
	if (!pvt->is_registered) {
1058 1059 1060 1061 1062
		count = sprintf(data, "all channels "
				"UDIMM0: %lu UDIMM1: %lu UDIMM2: %lu\n",
				pvt->udimm_ce_count[0],
				pvt->udimm_ce_count[1],
				pvt->udimm_ce_count[2]);
1063 1064 1065
		data  += count;
		total += count;
	} else {
1066 1067 1068 1069 1070 1071 1072
		for (i = 0; i < NUM_CHANS; i++) {
			count = sprintf(data, "channel %d RDIMM0: %lu "
					"RDIMM1: %lu RDIMM2: %lu\n",
					i,
					pvt->rdimm_ce_count[i][0],
					pvt->rdimm_ce_count[i][1],
					pvt->rdimm_ce_count[i][2]);
1073 1074 1075 1076
			data  += count;
			total += count;
		}
	}
1077

1078
	return total;
1079 1080
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
/*
 * Sysfs struct
 */
static struct mcidev_sysfs_attribute i7core_inj_attrs[] = {
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
		.attr = {
			.name = "inject_addrmatch",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_addrmatch_show,
		.store = i7core_inject_addrmatch_store,
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
1120 1121 1122 1123 1124 1125 1126
	}, {
		.attr = {
			.name = "corrected_error_counts",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_ce_regs_show,
		.store = NULL,
1127 1128 1129
	},
};

1130 1131 1132 1133 1134 1135 1136 1137
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	i7core_put_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
1138
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1139
{
1140
	int i;
1141

1142 1143
	for (i = 0; i < N_DEVS; i++)
		pci_dev_put(i7core_dev->pdev[i]);
1144

1145 1146 1147 1148
	list_del(&i7core_dev->list);
	kfree(i7core_dev->pdev);
	kfree(i7core_dev);
}
1149

1150 1151 1152 1153 1154 1155
static void i7core_put_all_devices(void)
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_put_devices(i7core_dev);
1156 1157
}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
static void i7core_xeon_pci_fixup(void)
{
	struct pci_dev *pdev = NULL;
	int i;
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core pci buses
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1168
			      pci_dev_descr[0].dev_id, NULL);
1169
	if (unlikely(!pdev)) {
1170
		for (i = 0; i < MAX_SOCKET_BUSES; i++)
1171 1172 1173 1174
			pcibios_scan_specific_bus(255-i);
	}
}

1175 1176 1177 1178 1179 1180
/*
 *	i7core_get_devices	Find and perform 'get' operation on the MCH's
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1181
int i7core_get_onedevice(struct pci_dev **prev, int devno)
1182
{
1183 1184
	struct i7core_dev *i7core_dev;

1185
	struct pci_dev *pdev = NULL;
1186 1187
	u8 bus = 0;
	u8 socket = 0;
1188

1189
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1190
			      pci_dev_descr[devno].dev_id, *prev);
1191 1192 1193 1194 1195 1196

	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
1197
	if (pci_dev_descr[devno].dev_id == PCI_DEVICE_ID_INTEL_I7_NOCORE && !pdev)
1198 1199
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_I7_NOCORE_ALT, *prev);
1200

1201 1202 1203 1204
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1205 1206
		}

1207
		/*
1208 1209
		 * Dev 3 function 2 only exists on chips with RDIMMs
		 * so, it is ok to not found it
1210
		 */
1211
		if ((pci_dev_descr[devno].dev == 3) && (pci_dev_descr[devno].func == 2)) {
1212 1213 1214
			*prev = pdev;
			return 0;
		}
1215

1216 1217
		i7core_printk(KERN_ERR,
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1218 1219
			pci_dev_descr[devno].dev, pci_dev_descr[devno].func,
			PCI_VENDOR_ID_INTEL, pci_dev_descr[devno].dev_id);
1220

1221 1222 1223 1224
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1225

1226 1227 1228 1229 1230
	if (bus == 0x3f)
		socket = 0;
	else
		socket = 255 - bus;

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
		i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
		if (!i7core_dev)
			return -ENOMEM;
		i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * N_DEVS,
					   GFP_KERNEL);
		if (!i7core_dev->pdev)
			return -ENOMEM;
		i7core_dev->socket = socket;
		list_add_tail(&i7core_dev->list, &i7core_edac_list);
1242
	}
1243

1244
	if (i7core_dev->pdev[devno]) {
1245 1246 1247
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1248 1249
			bus, pci_dev_descr[devno].dev, pci_dev_descr[devno].func,
			PCI_VENDOR_ID_INTEL, pci_dev_descr[devno].dev_id);
1250 1251 1252
		pci_dev_put(pdev);
		return -ENODEV;
	}
1253

1254
	i7core_dev->pdev[devno] = pdev;
1255 1256

	/* Sanity check */
1257 1258
	if (unlikely(PCI_SLOT(pdev->devfn) != pci_dev_descr[devno].dev ||
			PCI_FUNC(pdev->devfn) != pci_dev_descr[devno].func)) {
1259 1260 1261
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1262
			PCI_VENDOR_ID_INTEL, pci_dev_descr[devno].dev_id,
1263
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1264
			bus, pci_dev_descr[devno].dev, pci_dev_descr[devno].func);
1265 1266
		return -ENODEV;
	}
1267

1268 1269 1270 1271 1272
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1273 1274
			bus, pci_dev_descr[devno].dev, pci_dev_descr[devno].func,
			PCI_VENDOR_ID_INTEL, pci_dev_descr[devno].dev_id);
1275 1276
		return -ENODEV;
	}
1277

1278 1279 1280 1281
	debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
		socket, bus, pci_dev_descr[devno].dev,
		pci_dev_descr[devno].func,
		PCI_VENDOR_ID_INTEL, pci_dev_descr[devno].dev_id);
1282

1283
	*prev = pdev;
1284

1285 1286
	return 0;
}
1287

1288
static int i7core_get_devices(void)
1289 1290 1291
{
	int i;
	struct pci_dev *pdev = NULL;
1292

1293 1294 1295 1296
	for (i = 0; i < N_DEVS; i++) {
		pdev = NULL;
		do {
			if (i7core_get_onedevice(&pdev, i) < 0) {
1297
				i7core_put_all_devices();
1298 1299 1300 1301
				return -ENODEV;
			}
		} while (pdev);
	}
1302

1303 1304 1305
	return 0;
}

1306 1307
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1308 1309 1310
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1311
	int i, func, slot;
1312

1313 1314 1315
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;
1316

1317 1318 1319 1320
	pvt->is_registered = 0;
	for (i = 0; i < N_DEVS; i++) {
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1321 1322
			continue;

1323 1324 1325 1326 1327 1328 1329 1330
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1331
				goto error;
1332 1333 1334 1335 1336
			pvt->pci_ch[slot - 4][func] = pdev;
		} else if (!slot && !func)
			pvt->pci_noncore = pdev;
		else
			goto error;
1337

1338 1339 1340
		debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev, i7core_dev->socket);
1341

1342 1343 1344
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
			pvt->is_registered = 1;
1345
	}
1346

1347
	return 0;
1348 1349 1350 1351 1352 1353

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1354 1355
}

1356 1357 1358
/****************************************************************************
			Error check routines
 ****************************************************************************/
1359
static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1360 1361 1362 1363
					 int chan, int dimm, int add)
{
	char *msg;
	struct i7core_pvt *pvt = mci->pvt_info;
1364
	int row = pvt->csrow_map[chan][dimm], i;
1365 1366 1367

	for (i = 0; i < add; i++) {
		msg = kasprintf(GFP_KERNEL, "Corrected error "
1368 1369
				"(Socket=%d channel=%d dimm=%d)",
				pvt->i7core_dev->socket, chan, dimm);
1370 1371 1372 1373 1374 1375 1376

		edac_mc_handle_fbd_ce(mci, row, 0, msg);
		kfree (msg);
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1377
			int chan, int new0, int new1, int new2)
1378 1379 1380 1381
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1382
	if (pvt->ce_count_available) {
1383 1384
		/* Updates CE counters */

1385 1386 1387
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1388 1389 1390

		if (add2 < 0)
			add2 += 0x7fff;
1391
		pvt->rdimm_ce_count[chan][2] += add2;
1392 1393 1394

		if (add1 < 0)
			add1 += 0x7fff;
1395
		pvt->rdimm_ce_count[chan][1] += add1;
1396 1397 1398

		if (add0 < 0)
			add0 += 0x7fff;
1399
		pvt->rdimm_ce_count[chan][0] += add0;
1400
	} else
1401
		pvt->ce_count_available = 1;
1402 1403

	/* Store the new values */
1404 1405 1406
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1407 1408 1409

	/*updated the edac core */
	if (add0 != 0)
1410
		i7core_rdimm_update_csrow(mci, chan, 0, add0);
1411
	if (add1 != 0)
1412
		i7core_rdimm_update_csrow(mci, chan, 1, add1);
1413
	if (add2 != 0)
1414
		i7core_rdimm_update_csrow(mci, chan, 2, add2);
1415 1416 1417

}

1418
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1419 1420 1421 1422 1423 1424
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1425
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1426
								&rcv[0][0]);
1427
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1428
								&rcv[0][1]);
1429
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1430
								&rcv[1][0]);
1431
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1432
								&rcv[1][1]);
1433
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1434
								&rcv[2][0]);
1435
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1436 1437 1438 1439 1440
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
1441
		if (pvt->channel[i].dimms > 2) {
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1453
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1454 1455
	}
}
1456 1457 1458 1459 1460 1461 1462

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1463
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1464 1465 1466 1467 1468
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1469
	if (!pvt->pci_mcr[4]) {
1470
		debugf0("%s MCR registers not found\n", __func__);
1471 1472 1473
		return;
	}

1474
	/* Corrected test errors */
1475 1476
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1477 1478 1479 1480 1481 1482 1483

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1484
	if (pvt->ce_count_available) {
1485 1486 1487
		/* Updates CE counters */
		int add0, add1, add2;

1488 1489 1490
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1491 1492 1493

		if (add2 < 0)
			add2 += 0x7fff;
1494
		pvt->udimm_ce_count[2] += add2;
1495 1496 1497

		if (add1 < 0)
			add1 += 0x7fff;
1498
		pvt->udimm_ce_count[1] += add1;
1499 1500 1501

		if (add0 < 0)
			add0 += 0x7fff;
1502
		pvt->udimm_ce_count[0] += add0;
1503 1504 1505 1506 1507

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1508
	} else
1509
		pvt->ce_count_available = 1;
1510 1511

	/* Store the new values */
1512 1513 1514
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1515 1516
}

1517 1518 1519
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1520 1521 1522
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1523
 *     struct mce field	MCA Register
1524 1525 1526
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1527 1528 1529
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1530 1531 1532
static void i7core_mce_output_error(struct mem_ctl_info *mci,
				    struct mce *m)
{
1533
	struct i7core_pvt *pvt = mci->pvt_info;
1534
	char *type, *optype, *err, *msg;
1535
	unsigned long error = m->status & 0x1ff0000l;
1536
	u32 optypenum = (m->status >> 4) & 0x07;
1537 1538 1539 1540 1541
	u32 core_err_cnt = (m->status >> 38) && 0x7fff;
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);
1542
	int csrow;
1543

1544 1545 1546 1547 1548
	if (m->mcgstatus & 1)
		type = "FATAL";
	else
		type = "NON_FATAL";

1549
	switch (optypenum) {
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1568 1569
	}

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1600 1601
	}

1602
	/* FIXME: should convert addr into bank and rank information */
1603
	msg = kasprintf(GFP_ATOMIC,
1604
		"%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1605
		"syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1606
		type, (long long) m->addr, m->cpu, dimm, channel,
1607 1608
		syndrome, core_err_cnt, (long long)m->status,
		(long long)m->misc, optype, err);
1609 1610

	debugf0("%s", msg);
1611

1612
	csrow = pvt->csrow_map[channel][dimm];
1613

1614
	/* Call the helper to output message */
1615 1616 1617
	if (m->mcgstatus & 1)
		edac_mc_handle_fbd_ue(mci, csrow, 0,
				0 /* FIXME: should be channel here */, msg);
1618
	else if (!pvt->is_registered)
1619 1620
		edac_mc_handle_fbd_ce(mci, csrow,
				0 /* FIXME: should be channel here */, msg);
1621 1622

	kfree(msg);
1623 1624
}

1625 1626 1627 1628 1629 1630
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
	struct mce *m = NULL;
	unsigned long flags;

	/* Copy all mce errors into a temporary buffer */
	spin_lock_irqsave(&pvt->mce_lock, flags);
	if (pvt->mce_count) {
		m = kmalloc(sizeof(*m) * pvt->mce_count, GFP_ATOMIC);
1641

1642 1643 1644 1645 1646 1647
		if (m) {
			count = pvt->mce_count;
			memcpy(m, &pvt->mce_entry, sizeof(*m) * count);
		}
		pvt->mce_count = 0;
	}
1648

1649 1650 1651 1652 1653 1654 1655 1656 1657
	spin_unlock_irqrestore(&pvt->mce_lock, flags);

	/* proccess mcelog errors */
	for (i = 0; i < count; i++)
		i7core_mce_output_error(mci, &m[i]);

	kfree(m);

	/* check memory count errors */
1658 1659 1660 1661
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1662 1663
}

1664 1665 1666 1667 1668 1669 1670 1671
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
 */
static int i7core_mce_check_error(void *priv, struct mce *mce)
{
1672 1673
	struct mem_ctl_info *mci = priv;
	struct i7core_pvt *pvt = mci->pvt_info;
1674 1675
	unsigned long flags;

1676 1677 1678 1679 1680 1681 1682
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
		return 0;

1683 1684 1685 1686
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
		return 0;

1687
	/* Only handle if it is the right mc controller */
1688 1689 1690 1691 1692
	if (cpu_data(mce->cpu).phys_proc_id != pvt->i7core_dev->socket) {
		debugf0("mc%d: ignoring mce log for socket %d. "
			"Another mc should get it.\n",
			pvt->i7core_dev->socket,
			cpu_data(mce->cpu).phys_proc_id);
1693
		return 0;
1694
	}
1695

1696 1697 1698 1699 1700 1701 1702
	spin_lock_irqsave(&pvt->mce_lock, flags);
	if (pvt->mce_count < MCE_LOG_LEN) {
		memcpy(&pvt->mce_entry[pvt->mce_count], mce, sizeof(*mce));
		pvt->mce_count++;
	}
	spin_unlock_irqrestore(&pvt->mce_lock, flags);

1703 1704 1705 1706
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

1707
	/* Advice mcelog that the error were handled */
1708
	return 1;
1709 1710
}

1711 1712
static int i7core_register_mci(struct i7core_dev *i7core_dev,
			       int num_channels, int num_csrows)
1713 1714 1715
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
1716
	int csrow = 0;
1717
	int rc;
1718 1719

	/* allocate a new MC control structure */
1720 1721
	mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels,
			    i7core_dev->socket);
1722 1723
	if (unlikely(!mci))
		return -ENOMEM;
1724 1725 1726

	debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);

1727 1728 1729
	/* record ptr to the generic device */
	mci->dev = &i7core_dev->pdev[0]->dev;

1730
	pvt = mci->pvt_info;
1731
	memset(pvt, 0, sizeof(*pvt));
1732

1733 1734 1735 1736 1737 1738
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
1739 1740 1741 1742
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
1743 1744 1745
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
1746
	mci->ctl_page_to_phys = NULL;
1747
	mci->mc_driver_sysfs_attributes = i7core_inj_attrs;
1748 1749
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
1750

1751
	/* Store pci devices at mci for faster access */
1752
	rc = mci_bind_devs(mci, i7core_dev);
1753
	if (unlikely(rc < 0))
1754
		goto fail;
1755 1756

	/* Get dimm basic config */
1757
	get_dimm_config(mci, &csrow);
1758

1759
	/* add this new MC control structure to EDAC's list of MCs */
1760
	if (unlikely(edac_mc_add_mc(mci))) {
1761 1762 1763 1764 1765
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
1766 1767

		rc = -EINVAL;
1768
		goto fail;
1769 1770 1771
	}

	/* allocating generic PCI control info */
1772 1773
	i7core_pci = edac_pci_create_generic_ctl(&i7core_dev->pdev[0]->dev,
						 EDAC_MOD_STR);
1774
	if (unlikely(!i7core_pci)) {
1775 1776 1777 1778 1779 1780 1781 1782
		printk(KERN_WARNING
			"%s(): Unable to create PCI control\n",
			__func__);
		printk(KERN_WARNING
			"%s(): PCI error report via EDAC not setup\n",
			__func__);
	}

1783
	/* Default error mask is any memory */
1784
	pvt->inject.channel = 0;
1785 1786 1787 1788 1789 1790
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

1791
	/* Registers on edac_mce in order to receive memory errors */
1792
	pvt->edac_mce.priv = mci;
1793 1794 1795 1796
	pvt->edac_mce.check_error = i7core_mce_check_error;
	spin_lock_init(&pvt->mce_lock);

	rc = edac_mce_register(&pvt->edac_mce);
1797
	if (unlikely(rc < 0)) {
1798 1799
		debugf0("MC: " __FILE__
			": %s(): failed edac_mce_register()\n", __func__);
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	}

fail:
	edac_mc_free(mci);
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
	int dev_idx = id->driver_data;
	int rc;
	struct i7core_dev *i7core_dev;

	/*
1822
	 * All memory controllers are allocated at the first pass.
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	 */
	if (unlikely(dev_idx >= 1))
		return -EINVAL;

	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);
	rc = i7core_get_devices();
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		int channels;
		int csrows;

		/* Check the number of active and not disabled channels */
		rc = i7core_get_active_channels(i7core_dev->socket,
						&channels, &csrows);
		if (unlikely(rc < 0))
			goto fail1;

1843 1844 1845
		rc = i7core_register_mci(i7core_dev, channels, csrows);
		if (unlikely(rc < 0))
			goto fail1;
1846 1847
	}

1848
	i7core_printk(KERN_INFO, "Driver loaded.\n");
1849

1850
	mutex_unlock(&i7core_edac_lock);
1851 1852
	return 0;

1853
fail1:
1854
	i7core_put_all_devices();
1855 1856
fail0:
	mutex_unlock(&i7core_edac_lock);
1857
	return rc;
1858 1859 1860 1861 1862 1863 1864 1865 1866
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
1867
	struct i7core_pvt *pvt;
1868
	struct i7core_dev *i7core_dev;
1869 1870 1871 1872 1873 1874

	debugf0(__FILE__ ": %s()\n", __func__);

	if (i7core_pci)
		edac_pci_release_generic_ctl(i7core_pci);

1875

1876
	mci = edac_mc_del_mc(&pdev->dev);
1877 1878 1879
	if (!mci)
		return;

1880 1881
	/* Unregisters on edac_mce in order to receive memory errors */
	pvt = mci->pvt_info;
1882
	i7core_dev = pvt->i7core_dev;
1883 1884
	edac_mce_unregister(&pvt->edac_mce);

1885
	/* retrieve references to resources, and free those resources */
1886
	mutex_lock(&i7core_edac_lock);
1887
	i7core_put_devices(i7core_dev);
1888
	mutex_unlock(&i7core_edac_lock);
1889

1890
	kfree(mci->ctl_name);
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	edac_mc_free(mci);
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

1920 1921
	i7core_xeon_pci_fixup();

1922 1923
	pci_rc = pci_register_driver(&i7core_driver);

1924 1925 1926 1927 1928 1929 1930
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");