clock.c 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/*
 * arch/sh/kernel/cpu/clock.c - SuperH clock framework
 *
 *  Copyright (C) 2005  Paul Mundt
 *
 * This clock framework is derived from the OMAP version by:
 *
 *	Copyright (C) 2004 Nokia Corporation
 *	Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 */
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/kref.h>
#include <linux/seq_file.h>
#include <linux/err.h>
#include <asm/clock.h>
#include <asm/timer.h>

static LIST_HEAD(clock_list);
static DEFINE_SPINLOCK(clock_lock);
static DECLARE_MUTEX(clock_list_sem);

/*
 * Each subtype is expected to define the init routines for these clocks,
 * as each subtype (or processor family) will have these clocks at the
 * very least. These are all provided through the CPG, which even some of
 * the more quirky parts (such as ST40, SH4-202, etc.) still have.
 *
 * The processor-specific code is expected to register any additional
 * clock sources that are of interest.
 */
static struct clk master_clk = {
	.name		= "master_clk",
	.flags		= CLK_ALWAYS_ENABLED | CLK_RATE_PROPAGATES,
	.rate		= CONFIG_SH_PCLK_FREQ,
};

static struct clk module_clk = {
	.name		= "module_clk",
	.parent		= &master_clk,
	.flags		= CLK_ALWAYS_ENABLED | CLK_RATE_PROPAGATES,
};

static struct clk bus_clk = {
	.name		= "bus_clk",
	.parent		= &master_clk,
	.flags		= CLK_ALWAYS_ENABLED | CLK_RATE_PROPAGATES,
};

static struct clk cpu_clk = {
	.name		= "cpu_clk",
	.parent		= &master_clk,
	.flags		= CLK_ALWAYS_ENABLED,
};

/*
 * The ordering of these clocks matters, do not change it.
 */
static struct clk *onchip_clocks[] = {
	&master_clk,
	&module_clk,
	&bus_clk,
	&cpu_clk,
};

static void propagate_rate(struct clk *clk)
{
	struct clk *clkp;

	list_for_each_entry(clkp, &clock_list, node) {
		if (likely(clkp->parent != clk))
			continue;
		if (likely(clkp->ops && clkp->ops->recalc))
			clkp->ops->recalc(clkp);
	}
}

int __clk_enable(struct clk *clk)
{
	/*
	 * See if this is the first time we're enabling the clock, some
	 * clocks that are always enabled still require "special"
	 * initialization. This is especially true if the clock mode
	 * changes and the clock needs to hunt for the proper set of
	 * divisors to use before it can effectively recalc.
	 */
	if (unlikely(atomic_read(&clk->kref.refcount) == 1))
		if (clk->ops && clk->ops->init)
			clk->ops->init(clk);

	if (clk->flags & CLK_ALWAYS_ENABLED)
		return 0;

	if (likely(clk->ops && clk->ops->enable))
		clk->ops->enable(clk);

	kref_get(&clk->kref);
	return 0;
}

int clk_enable(struct clk *clk)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&clock_lock, flags);
	ret = __clk_enable(clk);
	spin_unlock_irqrestore(&clock_lock, flags);

	return ret;
}

static void clk_kref_release(struct kref *kref)
{
	/* Nothing to do */
}

void __clk_disable(struct clk *clk)
{
	if (clk->flags & CLK_ALWAYS_ENABLED)
		return;

	kref_put(&clk->kref, clk_kref_release);
}

void clk_disable(struct clk *clk)
{
	unsigned long flags;

	spin_lock_irqsave(&clock_lock, flags);
	__clk_disable(clk);
	spin_unlock_irqrestore(&clock_lock, flags);
}

int clk_register(struct clk *clk)
{
	down(&clock_list_sem);

	list_add(&clk->node, &clock_list);
	kref_init(&clk->kref);

	up(&clock_list_sem);

	return 0;
}

void clk_unregister(struct clk *clk)
{
	down(&clock_list_sem);
	list_del(&clk->node);
	up(&clock_list_sem);
}

inline unsigned long clk_get_rate(struct clk *clk)
{
	return clk->rate;
}

int clk_set_rate(struct clk *clk, unsigned long rate)
{
	int ret = -EOPNOTSUPP;

	if (likely(clk->ops && clk->ops->set_rate)) {
		unsigned long flags;

		spin_lock_irqsave(&clock_lock, flags);
		ret = clk->ops->set_rate(clk, rate);
		spin_unlock_irqrestore(&clock_lock, flags);
	}

	if (unlikely(clk->flags & CLK_RATE_PROPAGATES))
		propagate_rate(clk);

	return ret;
}

void clk_recalc_rate(struct clk *clk)
{
	if (likely(clk->ops && clk->ops->recalc)) {
		unsigned long flags;

		spin_lock_irqsave(&clock_lock, flags);
		clk->ops->recalc(clk);
		spin_unlock_irqrestore(&clock_lock, flags);
	}

	if (unlikely(clk->flags & CLK_RATE_PROPAGATES))
		propagate_rate(clk);
}

struct clk *clk_get(const char *id)
{
	struct clk *p, *clk = ERR_PTR(-ENOENT);

	down(&clock_list_sem);
	list_for_each_entry(p, &clock_list, node) {
		if (strcmp(id, p->name) == 0 && try_module_get(p->owner)) {
			clk = p;
			break;
		}
	}
	up(&clock_list_sem);

	return clk;
}

void clk_put(struct clk *clk)
{
	if (clk && !IS_ERR(clk))
		module_put(clk->owner);
}

void __init __attribute__ ((weak))
arch_init_clk_ops(struct clk_ops **ops, int type)
{
}

int __init clk_init(void)
{
	int i, ret = 0;

228
	BUG_ON(unlikely(!master_clk.rate));
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

	for (i = 0; i < ARRAY_SIZE(onchip_clocks); i++) {
		struct clk *clk = onchip_clocks[i];

		arch_init_clk_ops(&clk->ops, i);
		ret |= clk_register(clk);
		clk_enable(clk);
	}

	/* Kick the child clocks.. */
	propagate_rate(&master_clk);
	propagate_rate(&bus_clk);

	return ret;
}

int show_clocks(struct seq_file *m)
{
	struct clk *clk;

	list_for_each_entry_reverse(clk, &clock_list, node) {
		unsigned long rate = clk_get_rate(clk);

		/*
		 * Don't bother listing dummy clocks with no ancestry
		 * that only support enable and disable ops.
		 */
		if (unlikely(!rate && !clk->parent))
			continue;

		seq_printf(m, "%-12s\t: %ld.%02ldMHz\n", clk->name,
			   rate / 1000000, (rate % 1000000) / 10000);
	}

	return 0;
}

EXPORT_SYMBOL_GPL(clk_register);
EXPORT_SYMBOL_GPL(clk_unregister);
EXPORT_SYMBOL_GPL(clk_get);
EXPORT_SYMBOL_GPL(clk_put);
EXPORT_SYMBOL_GPL(clk_enable);
EXPORT_SYMBOL_GPL(clk_disable);
EXPORT_SYMBOL_GPL(__clk_enable);
EXPORT_SYMBOL_GPL(__clk_disable);
EXPORT_SYMBOL_GPL(clk_get_rate);
EXPORT_SYMBOL_GPL(clk_set_rate);
EXPORT_SYMBOL_GPL(clk_recalc_rate);