rbtree.txt 13.3 KB
Newer Older
R
Rob Landley 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Red-black Trees (rbtree) in Linux
January 18, 2007
Rob Landley <rob@landley.net>
=============================

What are red-black trees, and what are they for?
------------------------------------------------

Red-black trees are a type of self-balancing binary search tree, used for
storing sortable key/value data pairs.  This differs from radix trees (which
are used to efficiently store sparse arrays and thus use long integer indexes
to insert/access/delete nodes) and hash tables (which are not kept sorted to
be easily traversed in order, and must be tuned for a specific size and
hash function where rbtrees scale gracefully storing arbitrary keys).

Red-black trees are similar to AVL trees, but provide faster real-time bounded
worst case performance for insertion and deletion (at most two rotations and
three rotations, respectively, to balance the tree), with slightly slower
(but still O(log n)) lookup time.

To quote Linux Weekly News:

    There are a number of red-black trees in use in the kernel.
24 25
    The deadline and CFQ I/O schedulers employ rbtrees to
    track requests; the packet CD/DVD driver does the same.
R
Rob Landley 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    The high-resolution timer code uses an rbtree to organize outstanding
    timer requests.  The ext3 filesystem tracks directory entries in a
    red-black tree.  Virtual memory areas (VMAs) are tracked with red-black
    trees, as are epoll file descriptors, cryptographic keys, and network
    packets in the "hierarchical token bucket" scheduler.

This document covers use of the Linux rbtree implementation.  For more
information on the nature and implementation of Red Black Trees,  see:

  Linux Weekly News article on red-black trees
    http://lwn.net/Articles/184495/

  Wikipedia entry on red-black trees
    http://en.wikipedia.org/wiki/Red-black_tree

Linux implementation of red-black trees
---------------------------------------

Linux's rbtree implementation lives in the file "lib/rbtree.c".  To use it,
"#include <linux/rbtree.h>".

The Linux rbtree implementation is optimized for speed, and thus has one
less layer of indirection (and better cache locality) than more traditional
tree implementations.  Instead of using pointers to separate rb_node and data
structures, each instance of struct rb_node is embedded in the data structure
it organizes.  And instead of using a comparison callback function pointer,
users are expected to write their own tree search and insert functions
which call the provided rbtree functions.  Locking is also left up to the
user of the rbtree code.

Creating a new rbtree
---------------------

Data nodes in an rbtree tree are structures containing a struct rb_node member:

  struct mytype {
  	struct rb_node node;
  	char *keystring;
  };

When dealing with a pointer to the embedded struct rb_node, the containing data
structure may be accessed with the standard container_of() macro.  In addition,
individual members may be accessed directly via rb_entry(node, type, member).

At the root of each rbtree is an rb_root structure, which is initialized to be
empty via:

  struct rb_root mytree = RB_ROOT;

Searching for a value in an rbtree
----------------------------------

Writing a search function for your tree is fairly straightforward: start at the
root, compare each value, and follow the left or right branch as necessary.

Example:

  struct mytype *my_search(struct rb_root *root, char *string)
  {
  	struct rb_node *node = root->rb_node;

  	while (node) {
  		struct mytype *data = container_of(node, struct mytype, node);
		int result;

		result = strcmp(string, data->keystring);

		if (result < 0)
  			node = node->rb_left;
		else if (result > 0)
  			node = node->rb_right;
		else
  			return data;
	}
	return NULL;
  }

Inserting data into an rbtree
-----------------------------

Inserting data in the tree involves first searching for the place to insert the
new node, then inserting the node and rebalancing ("recoloring") the tree.

The search for insertion differs from the previous search by finding the
location of the pointer on which to graft the new node.  The new node also
needs a link to its parent node for rebalancing purposes.

Example:

  int my_insert(struct rb_root *root, struct mytype *data)
  {
  	struct rb_node **new = &(root->rb_node), *parent = NULL;

  	/* Figure out where to put new node */
  	while (*new) {
  		struct mytype *this = container_of(*new, struct mytype, node);
  		int result = strcmp(data->keystring, this->keystring);

		parent = *new;
  		if (result < 0)
  			new = &((*new)->rb_left);
  		else if (result > 0)
  			new = &((*new)->rb_right);
  		else
  			return FALSE;
  	}

  	/* Add new node and rebalance tree. */
134 135
  	rb_link_node(&data->node, parent, new);
  	rb_insert_color(&data->node, root);
R
Rob Landley 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148

	return TRUE;
  }

Removing or replacing existing data in an rbtree
------------------------------------------------

To remove an existing node from a tree, call:

  void rb_erase(struct rb_node *victim, struct rb_root *tree);

Example:

149
  struct mytype *data = mysearch(&mytree, "walrus");
R
Rob Landley 已提交
150 151

  if (data) {
152
  	rb_erase(&data->node, &mytree);
R
Rob Landley 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  	myfree(data);
  }

To replace an existing node in a tree with a new one with the same key, call:

  void rb_replace_node(struct rb_node *old, struct rb_node *new,
  			struct rb_root *tree);

Replacing a node this way does not re-sort the tree: If the new node doesn't
have the same key as the old node, the rbtree will probably become corrupted.

Iterating through the elements stored in an rbtree (in sort order)
------------------------------------------------------------------

Four functions are provided for iterating through an rbtree's contents in
sorted order.  These work on arbitrary trees, and should not need to be
modified or wrapped (except for locking purposes):

  struct rb_node *rb_first(struct rb_root *tree);
  struct rb_node *rb_last(struct rb_root *tree);
  struct rb_node *rb_next(struct rb_node *node);
  struct rb_node *rb_prev(struct rb_node *node);

To start iterating, call rb_first() or rb_last() with a pointer to the root
of the tree, which will return a pointer to the node structure contained in
the first or last element in the tree.  To continue, fetch the next or previous
node by calling rb_next() or rb_prev() on the current node.  This will return
NULL when there are no more nodes left.

The iterator functions return a pointer to the embedded struct rb_node, from
which the containing data structure may be accessed with the container_of()
macro, and individual members may be accessed directly via
rb_entry(node, type, member).

Example:

  struct rb_node *node;
  for (node = rb_first(&mytree); node; node = rb_next(node))
191
	printk("key=%s\n", rb_entry(node, struct mytype, node)->keystring);
R
Rob Landley 已提交
192

193 194 195
Support for Augmented rbtrees
-----------------------------

196 197 198 199 200 201 202 203
Augmented rbtree is an rbtree with "some" additional data stored in
each node, where the additional data for node N must be a function of
the contents of all nodes in the subtree rooted at N. This data can
be used to augment some new functionality to rbtree. Augmented rbtree
is an optional feature built on top of basic rbtree infrastructure.
An rbtree user who wants this feature will have to call the augmentation
functions with the user provided augmentation callback when inserting
and erasing nodes.
204

205
C files implementing augmented rbtree manipulation must include
206
<linux/rbtree_augmented.h> instead of <linux/rbtree.h>. Note that
207 208 209 210 211 212
linux/rbtree_augmented.h exposes some rbtree implementations details
you are not expected to rely on; please stick to the documented APIs
there and do not include <linux/rbtree_augmented.h> from header files
either so as to minimize chances of your users accidentally relying on
such implementation details.

213 214 215 216 217 218
On insertion, the user must update the augmented information on the path
leading to the inserted node, then call rb_link_node() as usual and
rb_augment_inserted() instead of the usual rb_insert_color() call.
If rb_augment_inserted() rebalances the rbtree, it will callback into
a user provided function to update the augmented information on the
affected subtrees.
219

220 221 222
When erasing a node, the user must call rb_erase_augmented() instead of
rb_erase(). rb_erase_augmented() calls back into user provided functions
to updated the augmented information on affected subtrees.
223

224 225 226 227 228 229 230 231 232 233 234 235 236 237
In both cases, the callbacks are provided through struct rb_augment_callbacks.
3 callbacks must be defined:

- A propagation callback, which updates the augmented value for a given
  node and its ancestors, up to a given stop point (or NULL to update
  all the way to the root).

- A copy callback, which copies the augmented value for a given subtree
  to a newly assigned subtree root.

- A tree rotation callback, which copies the augmented value for a given
  subtree to a newly assigned subtree root AND recomputes the augmented
  information for the former subtree root.

238 239 240 241 242
The compiled code for rb_erase_augmented() may inline the propagation and
copy callbacks, which results in a large function, so each augmented rbtree
user should have a single rb_erase_augmented() call site in order to limit
compiled code size.

243 244

Sample usage:
245 246 247 248 249 250 251 252 253 254 255 256 257

Interval tree is an example of augmented rb tree. Reference -
"Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein.
More details about interval trees:

Classical rbtree has a single key and it cannot be directly used to store
interval ranges like [lo:hi] and do a quick lookup for any overlap with a new
lo:hi or to find whether there is an exact match for a new lo:hi.

However, rbtree can be augmented to store such interval ranges in a structured
way making it possible to do efficient lookup and exact match.

This "extra information" stored in each node is the maximum hi
C
Carlos Garcia 已提交
258
(max_hi) value among all the nodes that are its descendants. This
259 260 261 262 263
information can be maintained at each node just be looking at the node
and its immediate children. And this will be used in O(log n) lookup
for lowest match (lowest start address among all possible matches)
with something like:

264 265 266
struct interval_tree_node *
interval_tree_first_match(struct rb_root *root,
			  unsigned long start, unsigned long last)
267
{
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	struct interval_tree_node *node;

	if (!root->rb_node)
		return NULL;
	node = rb_entry(root->rb_node, struct interval_tree_node, rb);

	while (true) {
		if (node->rb.rb_left) {
			struct interval_tree_node *left =
				rb_entry(node->rb.rb_left,
					 struct interval_tree_node, rb);
			if (left->__subtree_last >= start) {
				/*
				 * Some nodes in left subtree satisfy Cond2.
				 * Iterate to find the leftmost such node N.
				 * If it also satisfies Cond1, that's the match
				 * we are looking for. Otherwise, there is no
				 * matching interval as nodes to the right of N
				 * can't satisfy Cond1 either.
				 */
				node = left;
				continue;
			}
291
		}
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
		if (node->start <= last) {		/* Cond1 */
			if (node->last >= start)	/* Cond2 */
				return node;	/* node is leftmost match */
			if (node->rb.rb_right) {
				node = rb_entry(node->rb.rb_right,
					struct interval_tree_node, rb);
				if (node->__subtree_last >= start)
					continue;
			}
		}
		return NULL;	/* No match */
	}
}

Insertion/removal are defined using the following augmented callbacks:

static inline unsigned long
compute_subtree_last(struct interval_tree_node *node)
{
	unsigned long max = node->last, subtree_last;
	if (node->rb.rb_left) {
		subtree_last = rb_entry(node->rb.rb_left,
			struct interval_tree_node, rb)->__subtree_last;
		if (max < subtree_last)
			max = subtree_last;
	}
	if (node->rb.rb_right) {
		subtree_last = rb_entry(node->rb.rb_right,
			struct interval_tree_node, rb)->__subtree_last;
		if (max < subtree_last)
			max = subtree_last;
	}
	return max;
}

static void augment_propagate(struct rb_node *rb, struct rb_node *stop)
{
	while (rb != stop) {
		struct interval_tree_node *node =
			rb_entry(rb, struct interval_tree_node, rb);
		unsigned long subtree_last = compute_subtree_last(node);
		if (node->__subtree_last == subtree_last)
			break;
		node->__subtree_last = subtree_last;
		rb = rb_parent(&node->rb);
	}
}

static void augment_copy(struct rb_node *rb_old, struct rb_node *rb_new)
{
	struct interval_tree_node *old =
		rb_entry(rb_old, struct interval_tree_node, rb);
	struct interval_tree_node *new =
		rb_entry(rb_new, struct interval_tree_node, rb);

	new->__subtree_last = old->__subtree_last;
}

static void augment_rotate(struct rb_node *rb_old, struct rb_node *rb_new)
{
	struct interval_tree_node *old =
		rb_entry(rb_old, struct interval_tree_node, rb);
	struct interval_tree_node *new =
		rb_entry(rb_new, struct interval_tree_node, rb);

	new->__subtree_last = old->__subtree_last;
	old->__subtree_last = compute_subtree_last(old);
}

static const struct rb_augment_callbacks augment_callbacks = {
	augment_propagate, augment_copy, augment_rotate
};

void interval_tree_insert(struct interval_tree_node *node,
			  struct rb_root *root)
{
	struct rb_node **link = &root->rb_node, *rb_parent = NULL;
	unsigned long start = node->start, last = node->last;
	struct interval_tree_node *parent;

	while (*link) {
		rb_parent = *link;
		parent = rb_entry(rb_parent, struct interval_tree_node, rb);
		if (parent->__subtree_last < last)
			parent->__subtree_last = last;
		if (start < parent->start)
			link = &parent->rb.rb_left;
		else
			link = &parent->rb.rb_right;
381
	}
382 383 384 385

	node->__subtree_last = last;
	rb_link_node(&node->rb, rb_parent, link);
	rb_insert_augmented(&node->rb, root, &augment_callbacks);
386 387
}

388 389 390 391 392
void interval_tree_remove(struct interval_tree_node *node,
			  struct rb_root *root)
{
	rb_erase_augmented(&node->rb, root, &augment_callbacks);
}