kexec.c 68.2 KB
Newer Older
1 2 3 4 5 6 7 8
/*
 * kexec.c - kexec system call
 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
 *
 * This source code is licensed under the GNU General Public License,
 * Version 2.  See the file COPYING for more details.
 */

9 10
#define pr_fmt(fmt)	"kexec: " fmt

11
#include <linux/capability.h>
12 13 14 15 16
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/kexec.h>
17
#include <linux/mutex.h>
18 19 20 21 22
#include <linux/list.h>
#include <linux/highmem.h>
#include <linux/syscalls.h>
#include <linux/reboot.h>
#include <linux/ioport.h>
23
#include <linux/hardirq.h>
24 25
#include <linux/elf.h>
#include <linux/elfcore.h>
K
Ken'ichi Ohmichi 已提交
26 27
#include <linux/utsname.h>
#include <linux/numa.h>
H
Huang Ying 已提交
28 29
#include <linux/suspend.h>
#include <linux/device.h>
30 31 32 33
#include <linux/freezer.h>
#include <linux/pm.h>
#include <linux/cpu.h>
#include <linux/console.h>
34
#include <linux/vmalloc.h>
35
#include <linux/swap.h>
36
#include <linux/syscore_ops.h>
37
#include <linux/compiler.h>
38
#include <linux/hugetlb.h>
39

40 41 42
#include <asm/page.h>
#include <asm/uaccess.h>
#include <asm/io.h>
K
Ken'ichi Ohmichi 已提交
43
#include <asm/sections.h>
44

45 46 47
#include <crypto/hash.h>
#include <crypto/sha.h>

48
/* Per cpu memory for storing cpu states in case of system crash. */
49
note_buf_t __percpu *crash_notes;
50

K
Ken'ichi Ohmichi 已提交
51
/* vmcoreinfo stuff */
52
static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
K
Ken'ichi Ohmichi 已提交
53
u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
54 55
size_t vmcoreinfo_size;
size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
K
Ken'ichi Ohmichi 已提交
56

57 58 59
/* Flag to indicate we are going to kexec a new kernel */
bool kexec_in_progress = false;

60 61 62 63 64 65 66
/*
 * Declare these symbols weak so that if architecture provides a purgatory,
 * these will be overridden.
 */
char __weak kexec_purgatory[0];
size_t __weak kexec_purgatory_size = 0;

67
#ifdef CONFIG_KEXEC_FILE
68
static int kexec_calculate_store_digests(struct kimage *image);
69
#endif
70

71 72 73 74 75 76 77
/* Location of the reserved area for the crash kernel */
struct resource crashk_res = {
	.name  = "Crash kernel",
	.start = 0,
	.end   = 0,
	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
78
struct resource crashk_low_res = {
79
	.name  = "Crash kernel",
80 81 82 83
	.start = 0,
	.end   = 0,
	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
84

85 86
int kexec_should_crash(struct task_struct *p)
{
87
	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
88 89 90 91
		return 1;
	return 0;
}

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/*
 * When kexec transitions to the new kernel there is a one-to-one
 * mapping between physical and virtual addresses.  On processors
 * where you can disable the MMU this is trivial, and easy.  For
 * others it is still a simple predictable page table to setup.
 *
 * In that environment kexec copies the new kernel to its final
 * resting place.  This means I can only support memory whose
 * physical address can fit in an unsigned long.  In particular
 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
 * If the assembly stub has more restrictive requirements
 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
 * defined more restrictively in <asm/kexec.h>.
 *
 * The code for the transition from the current kernel to the
 * the new kernel is placed in the control_code_buffer, whose size
108
 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
 * page of memory is necessary, but some architectures require more.
 * Because this memory must be identity mapped in the transition from
 * virtual to physical addresses it must live in the range
 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 * modifiable.
 *
 * The assembly stub in the control code buffer is passed a linked list
 * of descriptor pages detailing the source pages of the new kernel,
 * and the destination addresses of those source pages.  As this data
 * structure is not used in the context of the current OS, it must
 * be self-contained.
 *
 * The code has been made to work with highmem pages and will use a
 * destination page in its final resting place (if it happens
 * to allocate it).  The end product of this is that most of the
 * physical address space, and most of RAM can be used.
 *
 * Future directions include:
 *  - allocating a page table with the control code buffer identity
 *    mapped, to simplify machine_kexec and make kexec_on_panic more
 *    reliable.
 */

/*
 * KIMAGE_NO_DEST is an impossible destination address..., for
 * allocating pages whose destination address we do not care about.
 */
#define KIMAGE_NO_DEST (-1UL)

M
Maneesh Soni 已提交
138 139 140
static int kimage_is_destination_range(struct kimage *image,
				       unsigned long start, unsigned long end);
static struct page *kimage_alloc_page(struct kimage *image,
A
Al Viro 已提交
141
				       gfp_t gfp_mask,
M
Maneesh Soni 已提交
142
				       unsigned long dest);
143

144 145 146
static int copy_user_segment_list(struct kimage *image,
				  unsigned long nr_segments,
				  struct kexec_segment __user *segments)
147
{
148
	int ret;
149 150 151 152 153
	size_t segment_bytes;

	/* Read in the segments */
	image->nr_segments = nr_segments;
	segment_bytes = nr_segments * sizeof(*segments);
154 155 156 157 158 159 160 161 162 163 164
	ret = copy_from_user(image->segment, segments, segment_bytes);
	if (ret)
		ret = -EFAULT;

	return ret;
}

static int sanity_check_segment_list(struct kimage *image)
{
	int result, i;
	unsigned long nr_segments = image->nr_segments;
165 166 167 168 169 170 171 172

	/*
	 * Verify we have good destination addresses.  The caller is
	 * responsible for making certain we don't attempt to load
	 * the new image into invalid or reserved areas of RAM.  This
	 * just verifies it is an address we can use.
	 *
	 * Since the kernel does everything in page size chunks ensure
173
	 * the destination addresses are page aligned.  Too many
174 175 176 177 178 179 180 181
	 * special cases crop of when we don't do this.  The most
	 * insidious is getting overlapping destination addresses
	 * simply because addresses are changed to page size
	 * granularity.
	 */
	result = -EADDRNOTAVAIL;
	for (i = 0; i < nr_segments; i++) {
		unsigned long mstart, mend;
M
Maneesh Soni 已提交
182

183 184 185
		mstart = image->segment[i].mem;
		mend   = mstart + image->segment[i].memsz;
		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
186
			return result;
187
		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
188
			return result;
189 190 191 192 193 194 195 196
	}

	/* Verify our destination addresses do not overlap.
	 * If we alloed overlapping destination addresses
	 * through very weird things can happen with no
	 * easy explanation as one segment stops on another.
	 */
	result = -EINVAL;
M
Maneesh Soni 已提交
197
	for (i = 0; i < nr_segments; i++) {
198 199
		unsigned long mstart, mend;
		unsigned long j;
M
Maneesh Soni 已提交
200

201 202
		mstart = image->segment[i].mem;
		mend   = mstart + image->segment[i].memsz;
M
Maneesh Soni 已提交
203
		for (j = 0; j < i; j++) {
204 205 206 207 208
			unsigned long pstart, pend;
			pstart = image->segment[j].mem;
			pend   = pstart + image->segment[j].memsz;
			/* Do the segments overlap ? */
			if ((mend > pstart) && (mstart < pend))
209
				return result;
210 211 212 213 214 215 216 217 218
		}
	}

	/* Ensure our buffer sizes are strictly less than
	 * our memory sizes.  This should always be the case,
	 * and it is easier to check up front than to be surprised
	 * later on.
	 */
	result = -EINVAL;
M
Maneesh Soni 已提交
219
	for (i = 0; i < nr_segments; i++) {
220
		if (image->segment[i].bufsz > image->segment[i].memsz)
221
			return result;
222 223
	}

224 225 226 227 228 229 230 231 232
	/*
	 * Verify we have good destination addresses.  Normally
	 * the caller is responsible for making certain we don't
	 * attempt to load the new image into invalid or reserved
	 * areas of RAM.  But crash kernels are preloaded into a
	 * reserved area of ram.  We must ensure the addresses
	 * are in the reserved area otherwise preloading the
	 * kernel could corrupt things.
	 */
M
Maneesh Soni 已提交
233

234 235 236 237 238 239 240 241 242 243 244 245 246
	if (image->type == KEXEC_TYPE_CRASH) {
		result = -EADDRNOTAVAIL;
		for (i = 0; i < nr_segments; i++) {
			unsigned long mstart, mend;

			mstart = image->segment[i].mem;
			mend = mstart + image->segment[i].memsz - 1;
			/* Ensure we are within the crash kernel limits */
			if ((mstart < crashk_res.start) ||
			    (mend > crashk_res.end))
				return result;
		}
	}
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	return 0;
}

static struct kimage *do_kimage_alloc_init(void)
{
	struct kimage *image;

	/* Allocate a controlling structure */
	image = kzalloc(sizeof(*image), GFP_KERNEL);
	if (!image)
		return NULL;

	image->head = 0;
	image->entry = &image->head;
	image->last_entry = &image->head;
	image->control_page = ~0; /* By default this does not apply */
	image->type = KEXEC_TYPE_DEFAULT;

	/* Initialize the list of control pages */
	INIT_LIST_HEAD(&image->control_pages);

	/* Initialize the list of destination pages */
	INIT_LIST_HEAD(&image->dest_pages);

	/* Initialize the list of unusable pages */
	INIT_LIST_HEAD(&image->unusable_pages);

	return image;
276 277
}

278 279
static void kimage_free_page_list(struct list_head *list);

280 281 282 283
static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
			     unsigned long nr_segments,
			     struct kexec_segment __user *segments,
			     unsigned long flags)
284
{
285
	int ret;
286
	struct kimage *image;
287 288 289 290 291 292 293
	bool kexec_on_panic = flags & KEXEC_ON_CRASH;

	if (kexec_on_panic) {
		/* Verify we have a valid entry point */
		if ((entry < crashk_res.start) || (entry > crashk_res.end))
			return -EADDRNOTAVAIL;
	}
294 295

	/* Allocate and initialize a controlling structure */
296 297 298 299 300 301
	image = do_kimage_alloc_init();
	if (!image)
		return -ENOMEM;

	image->start = entry;

302 303
	ret = copy_user_segment_list(image, nr_segments, segments);
	if (ret)
304 305
		goto out_free_image;

306 307
	ret = sanity_check_segment_list(image);
	if (ret)
308
		goto out_free_image;
M
Maneesh Soni 已提交
309

310 311 312 313 314 315
	 /* Enable the special crash kernel control page allocation policy. */
	if (kexec_on_panic) {
		image->control_page = crashk_res.start;
		image->type = KEXEC_TYPE_CRASH;
	}

316 317 318 319 320
	/*
	 * Find a location for the control code buffer, and add it
	 * the vector of segments so that it's pages will also be
	 * counted as destination pages.
	 */
321
	ret = -ENOMEM;
322
	image->control_code_page = kimage_alloc_control_pages(image,
323
					   get_order(KEXEC_CONTROL_PAGE_SIZE));
324
	if (!image->control_code_page) {
325
		pr_err("Could not allocate control_code_buffer\n");
326
		goto out_free_image;
327 328
	}

329 330 331 332 333 334
	if (!kexec_on_panic) {
		image->swap_page = kimage_alloc_control_pages(image, 0);
		if (!image->swap_page) {
			pr_err("Could not allocate swap buffer\n");
			goto out_free_control_pages;
		}
H
Huang Ying 已提交
335 336
	}

337 338
	*rimage = image;
	return 0;
339
out_free_control_pages:
340
	kimage_free_page_list(&image->control_pages);
341
out_free_image:
342
	kfree(image);
343
	return ret;
344 345
}

346
#ifdef CONFIG_KEXEC_FILE
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
{
	struct fd f = fdget(fd);
	int ret;
	struct kstat stat;
	loff_t pos;
	ssize_t bytes = 0;

	if (!f.file)
		return -EBADF;

	ret = vfs_getattr(&f.file->f_path, &stat);
	if (ret)
		goto out;

	if (stat.size > INT_MAX) {
		ret = -EFBIG;
		goto out;
	}

	/* Don't hand 0 to vmalloc, it whines. */
	if (stat.size == 0) {
		ret = -EINVAL;
		goto out;
	}

	*buf = vmalloc(stat.size);
	if (!*buf) {
		ret = -ENOMEM;
		goto out;
	}

	pos = 0;
	while (pos < stat.size) {
		bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
				    stat.size - pos);
		if (bytes < 0) {
			vfree(*buf);
			ret = bytes;
			goto out;
		}

		if (bytes == 0)
			break;
		pos += bytes;
	}

	if (pos != stat.size) {
		ret = -EBADF;
		vfree(*buf);
		goto out;
	}

	*buf_len = pos;
out:
	fdput(f);
	return ret;
}

/* Architectures can provide this probe function */
int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
					 unsigned long buf_len)
{
	return -ENOEXEC;
}

void * __weak arch_kexec_kernel_image_load(struct kimage *image)
{
	return ERR_PTR(-ENOEXEC);
}

void __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
{
}

422 423 424 425 426 427
int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
					unsigned long buf_len)
{
	return -EKEYREJECTED;
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
/* Apply relocations of type RELA */
int __weak
arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
				 unsigned int relsec)
{
	pr_err("RELA relocation unsupported.\n");
	return -ENOEXEC;
}

/* Apply relocations of type REL */
int __weak
arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
			     unsigned int relsec)
{
	pr_err("REL relocation unsupported.\n");
	return -ENOEXEC;
}

446 447 448 449 450 451 452
/*
 * Free up memory used by kernel, initrd, and comand line. This is temporary
 * memory allocation which is not needed any more after these buffers have
 * been loaded into separate segments and have been copied elsewhere.
 */
static void kimage_file_post_load_cleanup(struct kimage *image)
{
453 454
	struct purgatory_info *pi = &image->purgatory_info;

455 456 457 458 459 460 461 462 463
	vfree(image->kernel_buf);
	image->kernel_buf = NULL;

	vfree(image->initrd_buf);
	image->initrd_buf = NULL;

	kfree(image->cmdline_buf);
	image->cmdline_buf = NULL;

464 465 466 467 468 469
	vfree(pi->purgatory_buf);
	pi->purgatory_buf = NULL;

	vfree(pi->sechdrs);
	pi->sechdrs = NULL;

470 471
	/* See if architecture has anything to cleanup post load */
	arch_kimage_file_post_load_cleanup(image);
472 473 474 475 476 477 478 479

	/*
	 * Above call should have called into bootloader to free up
	 * any data stored in kimage->image_loader_data. It should
	 * be ok now to free it up.
	 */
	kfree(image->image_loader_data);
	image->image_loader_data = NULL;
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
}

/*
 * In file mode list of segments is prepared by kernel. Copy relevant
 * data from user space, do error checking, prepare segment list
 */
static int
kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
			     const char __user *cmdline_ptr,
			     unsigned long cmdline_len, unsigned flags)
{
	int ret = 0;
	void *ldata;

	ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
				&image->kernel_buf_len);
	if (ret)
		return ret;

	/* Call arch image probe handlers */
	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
					    image->kernel_buf_len);

	if (ret)
		goto out;

506 507 508 509 510 511 512 513 514
#ifdef CONFIG_KEXEC_VERIFY_SIG
	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
					   image->kernel_buf_len);
	if (ret) {
		pr_debug("kernel signature verification failed.\n");
		goto out;
	}
	pr_debug("kernel signature verification successful.\n");
#endif
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	/* It is possible that there no initramfs is being loaded */
	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
		ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
					&image->initrd_buf_len);
		if (ret)
			goto out;
	}

	if (cmdline_len) {
		image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
		if (!image->cmdline_buf) {
			ret = -ENOMEM;
			goto out;
		}

		ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
				     cmdline_len);
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

		image->cmdline_buf_len = cmdline_len;

		/* command line should be a string with last byte null */
		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
			ret = -EINVAL;
			goto out;
		}
	}

	/* Call arch image load handlers */
	ldata = arch_kexec_kernel_image_load(image);

	if (IS_ERR(ldata)) {
		ret = PTR_ERR(ldata);
		goto out;
	}

	image->image_loader_data = ldata;
out:
	/* In case of error, free up all allocated memory in this function */
	if (ret)
		kimage_file_post_load_cleanup(image);
	return ret;
}

static int
kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
		       int initrd_fd, const char __user *cmdline_ptr,
		       unsigned long cmdline_len, unsigned long flags)
{
	int ret;
	struct kimage *image;
569
	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
570 571 572 573 574 575 576

	image = do_kimage_alloc_init();
	if (!image)
		return -ENOMEM;

	image->file_mode = 1;

577 578 579 580 581 582
	if (kexec_on_panic) {
		/* Enable special crash kernel control page alloc policy. */
		image->control_page = crashk_res.start;
		image->type = KEXEC_TYPE_CRASH;
	}

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
					   cmdline_ptr, cmdline_len, flags);
	if (ret)
		goto out_free_image;

	ret = sanity_check_segment_list(image);
	if (ret)
		goto out_free_post_load_bufs;

	ret = -ENOMEM;
	image->control_code_page = kimage_alloc_control_pages(image,
					   get_order(KEXEC_CONTROL_PAGE_SIZE));
	if (!image->control_code_page) {
		pr_err("Could not allocate control_code_buffer\n");
		goto out_free_post_load_bufs;
	}

600 601 602 603 604 605
	if (!kexec_on_panic) {
		image->swap_page = kimage_alloc_control_pages(image, 0);
		if (!image->swap_page) {
			pr_err(KERN_ERR "Could not allocate swap buffer\n");
			goto out_free_control_pages;
		}
606 607 608 609 610 611 612 613 614 615 616 617
	}

	*rimage = image;
	return 0;
out_free_control_pages:
	kimage_free_page_list(&image->control_pages);
out_free_post_load_bufs:
	kimage_file_post_load_cleanup(image);
out_free_image:
	kfree(image);
	return ret;
}
618 619 620
#else /* CONFIG_KEXEC_FILE */
static inline void kimage_file_post_load_cleanup(struct kimage *image) { }
#endif /* CONFIG_KEXEC_FILE */
621

M
Maneesh Soni 已提交
622 623 624
static int kimage_is_destination_range(struct kimage *image,
					unsigned long start,
					unsigned long end)
625 626 627 628 629
{
	unsigned long i;

	for (i = 0; i < image->nr_segments; i++) {
		unsigned long mstart, mend;
M
Maneesh Soni 已提交
630

631
		mstart = image->segment[i].mem;
M
Maneesh Soni 已提交
632 633
		mend = mstart + image->segment[i].memsz;
		if ((end > mstart) && (start < mend))
634 635
			return 1;
	}
M
Maneesh Soni 已提交
636

637 638 639
	return 0;
}

A
Al Viro 已提交
640
static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
641 642
{
	struct page *pages;
M
Maneesh Soni 已提交
643

644 645 646 647
	pages = alloc_pages(gfp_mask, order);
	if (pages) {
		unsigned int count, i;
		pages->mapping = NULL;
H
Hugh Dickins 已提交
648
		set_page_private(pages, order);
649
		count = 1 << order;
M
Maneesh Soni 已提交
650
		for (i = 0; i < count; i++)
651 652
			SetPageReserved(pages + i);
	}
M
Maneesh Soni 已提交
653

654 655 656 657 658 659
	return pages;
}

static void kimage_free_pages(struct page *page)
{
	unsigned int order, count, i;
M
Maneesh Soni 已提交
660

H
Hugh Dickins 已提交
661
	order = page_private(page);
662
	count = 1 << order;
M
Maneesh Soni 已提交
663
	for (i = 0; i < count; i++)
664 665 666 667 668 669 670
		ClearPageReserved(page + i);
	__free_pages(page, order);
}

static void kimage_free_page_list(struct list_head *list)
{
	struct list_head *pos, *next;
M
Maneesh Soni 已提交
671

672 673 674 675 676 677 678 679 680
	list_for_each_safe(pos, next, list) {
		struct page *page;

		page = list_entry(pos, struct page, lru);
		list_del(&page->lru);
		kimage_free_pages(page);
	}
}

M
Maneesh Soni 已提交
681 682
static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
							unsigned int order)
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
{
	/* Control pages are special, they are the intermediaries
	 * that are needed while we copy the rest of the pages
	 * to their final resting place.  As such they must
	 * not conflict with either the destination addresses
	 * or memory the kernel is already using.
	 *
	 * The only case where we really need more than one of
	 * these are for architectures where we cannot disable
	 * the MMU and must instead generate an identity mapped
	 * page table for all of the memory.
	 *
	 * At worst this runs in O(N) of the image size.
	 */
	struct list_head extra_pages;
	struct page *pages;
	unsigned int count;

	count = 1 << order;
	INIT_LIST_HEAD(&extra_pages);

	/* Loop while I can allocate a page and the page allocated
	 * is a destination page.
	 */
	do {
		unsigned long pfn, epfn, addr, eaddr;
M
Maneesh Soni 已提交
709

710 711 712 713 714 715 716 717
		pages = kimage_alloc_pages(GFP_KERNEL, order);
		if (!pages)
			break;
		pfn   = page_to_pfn(pages);
		epfn  = pfn + count;
		addr  = pfn << PAGE_SHIFT;
		eaddr = epfn << PAGE_SHIFT;
		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
M
Maneesh Soni 已提交
718
			      kimage_is_destination_range(image, addr, eaddr)) {
719 720 721
			list_add(&pages->lru, &extra_pages);
			pages = NULL;
		}
M
Maneesh Soni 已提交
722 723
	} while (!pages);

724 725 726 727 728 729 730 731 732 733 734 735 736 737
	if (pages) {
		/* Remember the allocated page... */
		list_add(&pages->lru, &image->control_pages);

		/* Because the page is already in it's destination
		 * location we will never allocate another page at
		 * that address.  Therefore kimage_alloc_pages
		 * will not return it (again) and we don't need
		 * to give it an entry in image->segment[].
		 */
	}
	/* Deal with the destination pages I have inadvertently allocated.
	 *
	 * Ideally I would convert multi-page allocations into single
L
Lucas De Marchi 已提交
738
	 * page allocations, and add everything to image->dest_pages.
739 740 741 742 743
	 *
	 * For now it is simpler to just free the pages.
	 */
	kimage_free_page_list(&extra_pages);

M
Maneesh Soni 已提交
744
	return pages;
745 746
}

M
Maneesh Soni 已提交
747 748
static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
						      unsigned int order)
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
{
	/* Control pages are special, they are the intermediaries
	 * that are needed while we copy the rest of the pages
	 * to their final resting place.  As such they must
	 * not conflict with either the destination addresses
	 * or memory the kernel is already using.
	 *
	 * Control pages are also the only pags we must allocate
	 * when loading a crash kernel.  All of the other pages
	 * are specified by the segments and we just memcpy
	 * into them directly.
	 *
	 * The only case where we really need more than one of
	 * these are for architectures where we cannot disable
	 * the MMU and must instead generate an identity mapped
	 * page table for all of the memory.
	 *
	 * Given the low demand this implements a very simple
	 * allocator that finds the first hole of the appropriate
	 * size in the reserved memory region, and allocates all
	 * of the memory up to and including the hole.
	 */
	unsigned long hole_start, hole_end, size;
	struct page *pages;
M
Maneesh Soni 已提交
773

774 775 776 777
	pages = NULL;
	size = (1 << order) << PAGE_SHIFT;
	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
	hole_end   = hole_start + size - 1;
M
Maneesh Soni 已提交
778
	while (hole_end <= crashk_res.end) {
779
		unsigned long i;
M
Maneesh Soni 已提交
780

781
		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
782 783
			break;
		/* See if I overlap any of the segments */
M
Maneesh Soni 已提交
784
		for (i = 0; i < image->nr_segments; i++) {
785
			unsigned long mstart, mend;
M
Maneesh Soni 已提交
786

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
			mstart = image->segment[i].mem;
			mend   = mstart + image->segment[i].memsz - 1;
			if ((hole_end >= mstart) && (hole_start <= mend)) {
				/* Advance the hole to the end of the segment */
				hole_start = (mend + (size - 1)) & ~(size - 1);
				hole_end   = hole_start + size - 1;
				break;
			}
		}
		/* If I don't overlap any segments I have found my hole! */
		if (i == image->nr_segments) {
			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
			break;
		}
	}
M
Maneesh Soni 已提交
802
	if (pages)
803
		image->control_page = hole_end;
M
Maneesh Soni 已提交
804

805 806 807 808
	return pages;
}


M
Maneesh Soni 已提交
809 810
struct page *kimage_alloc_control_pages(struct kimage *image,
					 unsigned int order)
811 812
{
	struct page *pages = NULL;
M
Maneesh Soni 已提交
813 814

	switch (image->type) {
815 816 817 818 819 820 821
	case KEXEC_TYPE_DEFAULT:
		pages = kimage_alloc_normal_control_pages(image, order);
		break;
	case KEXEC_TYPE_CRASH:
		pages = kimage_alloc_crash_control_pages(image, order);
		break;
	}
M
Maneesh Soni 已提交
822

823 824 825 826 827
	return pages;
}

static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
{
M
Maneesh Soni 已提交
828
	if (*image->entry != 0)
829
		image->entry++;
M
Maneesh Soni 已提交
830

831 832 833
	if (image->entry == image->last_entry) {
		kimage_entry_t *ind_page;
		struct page *page;
M
Maneesh Soni 已提交
834

835
		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
M
Maneesh Soni 已提交
836
		if (!page)
837
			return -ENOMEM;
M
Maneesh Soni 已提交
838

839 840 841
		ind_page = page_address(page);
		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
		image->entry = ind_page;
M
Maneesh Soni 已提交
842 843
		image->last_entry = ind_page +
				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
844 845 846 847
	}
	*image->entry = entry;
	image->entry++;
	*image->entry = 0;
M
Maneesh Soni 已提交
848

849 850 851
	return 0;
}

M
Maneesh Soni 已提交
852 853
static int kimage_set_destination(struct kimage *image,
				   unsigned long destination)
854 855 856 857 858
{
	int result;

	destination &= PAGE_MASK;
	result = kimage_add_entry(image, destination | IND_DESTINATION);
M
Maneesh Soni 已提交
859
	if (result == 0)
860
		image->destination = destination;
M
Maneesh Soni 已提交
861

862 863 864 865 866 867 868 869 870 871
	return result;
}


static int kimage_add_page(struct kimage *image, unsigned long page)
{
	int result;

	page &= PAGE_MASK;
	result = kimage_add_entry(image, page | IND_SOURCE);
M
Maneesh Soni 已提交
872
	if (result == 0)
873
		image->destination += PAGE_SIZE;
M
Maneesh Soni 已提交
874

875 876 877 878 879 880 881 882 883
	return result;
}


static void kimage_free_extra_pages(struct kimage *image)
{
	/* Walk through and free any extra destination pages I may have */
	kimage_free_page_list(&image->dest_pages);

L
Lucas De Marchi 已提交
884
	/* Walk through and free any unusable pages I have cached */
885
	kimage_free_page_list(&image->unusable_pages);
886 887

}
888
static void kimage_terminate(struct kimage *image)
889
{
M
Maneesh Soni 已提交
890
	if (*image->entry != 0)
891
		image->entry++;
M
Maneesh Soni 已提交
892

893 894 895 896 897
	*image->entry = IND_DONE;
}

#define for_each_kimage_entry(image, ptr, entry) \
	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
898 899
		ptr = (entry & IND_INDIRECTION) ? \
			phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915

static void kimage_free_entry(kimage_entry_t entry)
{
	struct page *page;

	page = pfn_to_page(entry >> PAGE_SHIFT);
	kimage_free_pages(page);
}

static void kimage_free(struct kimage *image)
{
	kimage_entry_t *ptr, entry;
	kimage_entry_t ind = 0;

	if (!image)
		return;
M
Maneesh Soni 已提交
916

917 918 919 920
	kimage_free_extra_pages(image);
	for_each_kimage_entry(image, ptr, entry) {
		if (entry & IND_INDIRECTION) {
			/* Free the previous indirection page */
M
Maneesh Soni 已提交
921
			if (ind & IND_INDIRECTION)
922 923 924 925 926
				kimage_free_entry(ind);
			/* Save this indirection page until we are
			 * done with it.
			 */
			ind = entry;
927
		} else if (entry & IND_SOURCE)
928 929 930
			kimage_free_entry(entry);
	}
	/* Free the final indirection page */
M
Maneesh Soni 已提交
931
	if (ind & IND_INDIRECTION)
932 933 934 935 936 937 938
		kimage_free_entry(ind);

	/* Handle any machine specific cleanup */
	machine_kexec_cleanup(image);

	/* Free the kexec control pages... */
	kimage_free_page_list(&image->control_pages);
939 940 941 942 943 944 945 946

	/*
	 * Free up any temporary buffers allocated. This might hit if
	 * error occurred much later after buffer allocation.
	 */
	if (image->file_mode)
		kimage_file_post_load_cleanup(image);

947 948 949
	kfree(image);
}

M
Maneesh Soni 已提交
950 951
static kimage_entry_t *kimage_dst_used(struct kimage *image,
					unsigned long page)
952 953 954 955 956
{
	kimage_entry_t *ptr, entry;
	unsigned long destination = 0;

	for_each_kimage_entry(image, ptr, entry) {
M
Maneesh Soni 已提交
957
		if (entry & IND_DESTINATION)
958 959
			destination = entry & PAGE_MASK;
		else if (entry & IND_SOURCE) {
M
Maneesh Soni 已提交
960
			if (page == destination)
961 962 963 964
				return ptr;
			destination += PAGE_SIZE;
		}
	}
M
Maneesh Soni 已提交
965

966
	return NULL;
967 968
}

M
Maneesh Soni 已提交
969
static struct page *kimage_alloc_page(struct kimage *image,
A
Al Viro 已提交
970
					gfp_t gfp_mask,
M
Maneesh Soni 已提交
971
					unsigned long destination)
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
{
	/*
	 * Here we implement safeguards to ensure that a source page
	 * is not copied to its destination page before the data on
	 * the destination page is no longer useful.
	 *
	 * To do this we maintain the invariant that a source page is
	 * either its own destination page, or it is not a
	 * destination page at all.
	 *
	 * That is slightly stronger than required, but the proof
	 * that no problems will not occur is trivial, and the
	 * implementation is simply to verify.
	 *
	 * When allocating all pages normally this algorithm will run
	 * in O(N) time, but in the worst case it will run in O(N^2)
	 * time.   If the runtime is a problem the data structures can
	 * be fixed.
	 */
	struct page *page;
	unsigned long addr;

	/*
	 * Walk through the list of destination pages, and see if I
	 * have a match.
	 */
	list_for_each_entry(page, &image->dest_pages, lru) {
		addr = page_to_pfn(page) << PAGE_SHIFT;
		if (addr == destination) {
			list_del(&page->lru);
			return page;
		}
	}
	page = NULL;
	while (1) {
		kimage_entry_t *old;

		/* Allocate a page, if we run out of memory give up */
		page = kimage_alloc_pages(gfp_mask, 0);
M
Maneesh Soni 已提交
1011
		if (!page)
1012
			return NULL;
1013
		/* If the page cannot be used file it away */
M
Maneesh Soni 已提交
1014 1015
		if (page_to_pfn(page) >
				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
1016
			list_add(&page->lru, &image->unusable_pages);
1017 1018 1019 1020 1021 1022 1023 1024 1025
			continue;
		}
		addr = page_to_pfn(page) << PAGE_SHIFT;

		/* If it is the destination page we want use it */
		if (addr == destination)
			break;

		/* If the page is not a destination page use it */
M
Maneesh Soni 已提交
1026 1027
		if (!kimage_is_destination_range(image, addr,
						  addr + PAGE_SIZE))
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
			break;

		/*
		 * I know that the page is someones destination page.
		 * See if there is already a source page for this
		 * destination page.  And if so swap the source pages.
		 */
		old = kimage_dst_used(image, addr);
		if (old) {
			/* If so move it */
			unsigned long old_addr;
			struct page *old_page;

			old_addr = *old & PAGE_MASK;
			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
			copy_highpage(page, old_page);
			*old = addr | (*old & ~PAGE_MASK);

			/* The old page I have found cannot be a
1047 1048
			 * destination page, so return it if it's
			 * gfp_flags honor the ones passed in.
1049
			 */
1050 1051 1052 1053 1054
			if (!(gfp_mask & __GFP_HIGHMEM) &&
			    PageHighMem(old_page)) {
				kimage_free_pages(old_page);
				continue;
			}
1055 1056 1057
			addr = old_addr;
			page = old_page;
			break;
1058
		} else {
1059 1060 1061 1062 1063 1064
			/* Place the page on the destination list I
			 * will use it later.
			 */
			list_add(&page->lru, &image->dest_pages);
		}
	}
M
Maneesh Soni 已提交
1065

1066 1067 1068 1069
	return page;
}

static int kimage_load_normal_segment(struct kimage *image,
M
Maneesh Soni 已提交
1070
					 struct kexec_segment *segment)
1071 1072
{
	unsigned long maddr;
1073
	size_t ubytes, mbytes;
1074
	int result;
1075 1076
	unsigned char __user *buf = NULL;
	unsigned char *kbuf = NULL;
1077 1078

	result = 0;
1079 1080 1081 1082
	if (image->file_mode)
		kbuf = segment->kbuf;
	else
		buf = segment->buf;
1083 1084 1085 1086 1087
	ubytes = segment->bufsz;
	mbytes = segment->memsz;
	maddr = segment->mem;

	result = kimage_set_destination(image, maddr);
M
Maneesh Soni 已提交
1088
	if (result < 0)
1089
		goto out;
M
Maneesh Soni 已提交
1090 1091

	while (mbytes) {
1092 1093 1094
		struct page *page;
		char *ptr;
		size_t uchunk, mchunk;
M
Maneesh Soni 已提交
1095

1096
		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
1097
		if (!page) {
1098 1099 1100
			result  = -ENOMEM;
			goto out;
		}
M
Maneesh Soni 已提交
1101 1102 1103
		result = kimage_add_page(image, page_to_pfn(page)
								<< PAGE_SHIFT);
		if (result < 0)
1104
			goto out;
M
Maneesh Soni 已提交
1105

1106 1107
		ptr = kmap(page);
		/* Start with a clear page */
1108
		clear_page(ptr);
1109
		ptr += maddr & ~PAGE_MASK;
1110 1111 1112
		mchunk = min_t(size_t, mbytes,
				PAGE_SIZE - (maddr & ~PAGE_MASK));
		uchunk = min(ubytes, mchunk);
M
Maneesh Soni 已提交
1113

1114 1115 1116 1117 1118
		/* For file based kexec, source pages are in kernel memory */
		if (image->file_mode)
			memcpy(ptr, kbuf, uchunk);
		else
			result = copy_from_user(ptr, buf, uchunk);
1119 1120
		kunmap(page);
		if (result) {
1121
			result = -EFAULT;
1122 1123 1124 1125
			goto out;
		}
		ubytes -= uchunk;
		maddr  += mchunk;
1126 1127 1128 1129
		if (image->file_mode)
			kbuf += mchunk;
		else
			buf += mchunk;
1130 1131
		mbytes -= mchunk;
	}
M
Maneesh Soni 已提交
1132
out:
1133 1134 1135 1136
	return result;
}

static int kimage_load_crash_segment(struct kimage *image,
M
Maneesh Soni 已提交
1137
					struct kexec_segment *segment)
1138 1139 1140 1141 1142 1143
{
	/* For crash dumps kernels we simply copy the data from
	 * user space to it's destination.
	 * We do things a page at a time for the sake of kmap.
	 */
	unsigned long maddr;
1144
	size_t ubytes, mbytes;
1145
	int result;
1146 1147
	unsigned char __user *buf = NULL;
	unsigned char *kbuf = NULL;
1148 1149

	result = 0;
1150 1151 1152 1153
	if (image->file_mode)
		kbuf = segment->kbuf;
	else
		buf = segment->buf;
1154 1155 1156
	ubytes = segment->bufsz;
	mbytes = segment->memsz;
	maddr = segment->mem;
M
Maneesh Soni 已提交
1157
	while (mbytes) {
1158 1159 1160
		struct page *page;
		char *ptr;
		size_t uchunk, mchunk;
M
Maneesh Soni 已提交
1161

1162
		page = pfn_to_page(maddr >> PAGE_SHIFT);
1163
		if (!page) {
1164 1165 1166 1167 1168
			result  = -ENOMEM;
			goto out;
		}
		ptr = kmap(page);
		ptr += maddr & ~PAGE_MASK;
1169 1170 1171 1172
		mchunk = min_t(size_t, mbytes,
				PAGE_SIZE - (maddr & ~PAGE_MASK));
		uchunk = min(ubytes, mchunk);
		if (mchunk > uchunk) {
1173 1174 1175
			/* Zero the trailing part of the page */
			memset(ptr + uchunk, 0, mchunk - uchunk);
		}
1176 1177 1178 1179 1180 1181

		/* For file based kexec, source pages are in kernel memory */
		if (image->file_mode)
			memcpy(ptr, kbuf, uchunk);
		else
			result = copy_from_user(ptr, buf, uchunk);
Z
Zou Nan hai 已提交
1182
		kexec_flush_icache_page(page);
1183 1184
		kunmap(page);
		if (result) {
1185
			result = -EFAULT;
1186 1187 1188 1189
			goto out;
		}
		ubytes -= uchunk;
		maddr  += mchunk;
1190 1191 1192 1193
		if (image->file_mode)
			kbuf += mchunk;
		else
			buf += mchunk;
1194 1195
		mbytes -= mchunk;
	}
M
Maneesh Soni 已提交
1196
out:
1197 1198 1199 1200
	return result;
}

static int kimage_load_segment(struct kimage *image,
M
Maneesh Soni 已提交
1201
				struct kexec_segment *segment)
1202 1203
{
	int result = -ENOMEM;
M
Maneesh Soni 已提交
1204 1205

	switch (image->type) {
1206 1207 1208 1209 1210 1211 1212
	case KEXEC_TYPE_DEFAULT:
		result = kimage_load_normal_segment(image, segment);
		break;
	case KEXEC_TYPE_CRASH:
		result = kimage_load_crash_segment(image, segment);
		break;
	}
M
Maneesh Soni 已提交
1213

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	return result;
}

/*
 * Exec Kernel system call: for obvious reasons only root may call it.
 *
 * This call breaks up into three pieces.
 * - A generic part which loads the new kernel from the current
 *   address space, and very carefully places the data in the
 *   allocated pages.
 *
 * - A generic part that interacts with the kernel and tells all of
 *   the devices to shut down.  Preventing on-going dmas, and placing
 *   the devices in a consistent state so a later kernel can
 *   reinitialize them.
 *
 * - A machine specific part that includes the syscall number
G
Geert Uytterhoeven 已提交
1231
 *   and then copies the image to it's final destination.  And
1232 1233 1234 1235 1236
 *   jumps into the image at entry.
 *
 * kexec does not sync, or unmount filesystems so if you need
 * that to happen you need to do that yourself.
 */
1237 1238
struct kimage *kexec_image;
struct kimage *kexec_crash_image;
1239
int kexec_load_disabled;
1240 1241

static DEFINE_MUTEX(kexec_mutex);
1242

1243 1244
SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
		struct kexec_segment __user *, segments, unsigned long, flags)
1245 1246 1247 1248 1249
{
	struct kimage **dest_image, *image;
	int result;

	/* We only trust the superuser with rebooting the system. */
1250
	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
		return -EPERM;

	/*
	 * Verify we have a legal set of flags
	 * This leaves us room for future extensions.
	 */
	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
		return -EINVAL;

	/* Verify we are on the appropriate architecture */
	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
		return -EINVAL;

	/* Put an artificial cap on the number
	 * of segments passed to kexec_load.
	 */
	if (nr_segments > KEXEC_SEGMENT_MAX)
		return -EINVAL;

	image = NULL;
	result = 0;

	/* Because we write directly to the reserved memory
	 * region when loading crash kernels we need a mutex here to
	 * prevent multiple crash  kernels from attempting to load
	 * simultaneously, and to prevent a crash kernel from loading
	 * over the top of a in use crash kernel.
	 *
	 * KISS: always take the mutex.
	 */
1282
	if (!mutex_trylock(&kexec_mutex))
1283
		return -EBUSY;
M
Maneesh Soni 已提交
1284

1285
	dest_image = &kexec_image;
M
Maneesh Soni 已提交
1286
	if (flags & KEXEC_ON_CRASH)
1287 1288 1289
		dest_image = &kexec_crash_image;
	if (nr_segments > 0) {
		unsigned long i;
M
Maneesh Soni 已提交
1290

1291
		/* Loading another kernel to reboot into */
M
Maneesh Soni 已提交
1292
		if ((flags & KEXEC_ON_CRASH) == 0)
1293 1294
			result = kimage_alloc_init(&image, entry, nr_segments,
						   segments, flags);
1295 1296 1297 1298 1299 1300
		/* Loading another kernel to switch to if this one crashes */
		else if (flags & KEXEC_ON_CRASH) {
			/* Free any current crash dump kernel before
			 * we corrupt it.
			 */
			kimage_free(xchg(&kexec_crash_image, NULL));
1301 1302
			result = kimage_alloc_init(&image, entry, nr_segments,
						   segments, flags);
1303
			crash_map_reserved_pages();
1304
		}
M
Maneesh Soni 已提交
1305
		if (result)
1306
			goto out;
M
Maneesh Soni 已提交
1307

H
Huang Ying 已提交
1308 1309
		if (flags & KEXEC_PRESERVE_CONTEXT)
			image->preserve_context = 1;
1310
		result = machine_kexec_prepare(image);
M
Maneesh Soni 已提交
1311
		if (result)
1312
			goto out;
M
Maneesh Soni 已提交
1313 1314

		for (i = 0; i < nr_segments; i++) {
1315
			result = kimage_load_segment(image, &image->segment[i]);
M
Maneesh Soni 已提交
1316
			if (result)
1317 1318
				goto out;
		}
1319
		kimage_terminate(image);
1320 1321
		if (flags & KEXEC_ON_CRASH)
			crash_unmap_reserved_pages();
1322 1323 1324 1325
	}
	/* Install the new kernel, and  Uninstall the old */
	image = xchg(dest_image, image);

M
Maneesh Soni 已提交
1326
out:
1327
	mutex_unlock(&kexec_mutex);
1328
	kimage_free(image);
M
Maneesh Soni 已提交
1329

1330 1331 1332
	return result;
}

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
/*
 * Add and remove page tables for crashkernel memory
 *
 * Provide an empty default implementation here -- architecture
 * code may override this
 */
void __weak crash_map_reserved_pages(void)
{}

void __weak crash_unmap_reserved_pages(void)
{}

1345
#ifdef CONFIG_COMPAT
1346 1347 1348 1349
COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
		       compat_ulong_t, nr_segments,
		       struct compat_kexec_segment __user *, segments,
		       compat_ulong_t, flags)
1350 1351 1352 1353 1354 1355 1356 1357
{
	struct compat_kexec_segment in;
	struct kexec_segment out, __user *ksegments;
	unsigned long i, result;

	/* Don't allow clients that don't understand the native
	 * architecture to do anything.
	 */
M
Maneesh Soni 已提交
1358
	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1359 1360
		return -EINVAL;

M
Maneesh Soni 已提交
1361
	if (nr_segments > KEXEC_SEGMENT_MAX)
1362 1363 1364
		return -EINVAL;

	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1365
	for (i = 0; i < nr_segments; i++) {
1366
		result = copy_from_user(&in, &segments[i], sizeof(in));
M
Maneesh Soni 已提交
1367
		if (result)
1368 1369 1370 1371 1372 1373 1374 1375
			return -EFAULT;

		out.buf   = compat_ptr(in.buf);
		out.bufsz = in.bufsz;
		out.mem   = in.mem;
		out.memsz = in.memsz;

		result = copy_to_user(&ksegments[i], &out, sizeof(out));
M
Maneesh Soni 已提交
1376
		if (result)
1377 1378 1379 1380 1381 1382 1383
			return -EFAULT;
	}

	return sys_kexec_load(entry, nr_segments, ksegments, flags);
}
#endif

1384
#ifdef CONFIG_KEXEC_FILE
1385 1386 1387 1388
SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
		unsigned long, flags)
{
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	int ret = 0, i;
	struct kimage **dest_image, *image;

	/* We only trust the superuser with rebooting the system. */
	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
		return -EPERM;

	/* Make sure we have a legal set of flags */
	if (flags != (flags & KEXEC_FILE_FLAGS))
		return -EINVAL;

	image = NULL;

	if (!mutex_trylock(&kexec_mutex))
		return -EBUSY;

	dest_image = &kexec_image;
	if (flags & KEXEC_FILE_ON_CRASH)
		dest_image = &kexec_crash_image;

	if (flags & KEXEC_FILE_UNLOAD)
		goto exchange;

	/*
	 * In case of crash, new kernel gets loaded in reserved region. It is
	 * same memory where old crash kernel might be loaded. Free any
	 * current crash dump kernel before we corrupt it.
	 */
	if (flags & KEXEC_FILE_ON_CRASH)
		kimage_free(xchg(&kexec_crash_image, NULL));

	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
				     cmdline_len, flags);
	if (ret)
		goto out;

	ret = machine_kexec_prepare(image);
	if (ret)
		goto out;

1429 1430 1431 1432
	ret = kexec_calculate_store_digests(image);
	if (ret)
		goto out;

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	for (i = 0; i < image->nr_segments; i++) {
		struct kexec_segment *ksegment;

		ksegment = &image->segment[i];
		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
			 ksegment->memsz);

		ret = kimage_load_segment(image, &image->segment[i]);
		if (ret)
			goto out;
	}

	kimage_terminate(image);

	/*
	 * Free up any temporary buffers allocated which are not needed
	 * after image has been loaded
	 */
	kimage_file_post_load_cleanup(image);
exchange:
	image = xchg(dest_image, image);
out:
	mutex_unlock(&kexec_mutex);
	kimage_free(image);
	return ret;
1459 1460
}

1461 1462
#endif /* CONFIG_KEXEC_FILE */

1463
void crash_kexec(struct pt_regs *regs)
1464
{
1465
	/* Take the kexec_mutex here to prevent sys_kexec_load
1466 1467 1468 1469 1470 1471 1472
	 * running on one cpu from replacing the crash kernel
	 * we are using after a panic on a different cpu.
	 *
	 * If the crash kernel was not located in a fixed area
	 * of memory the xchg(&kexec_crash_image) would be
	 * sufficient.  But since I reuse the memory...
	 */
1473
	if (mutex_trylock(&kexec_mutex)) {
1474
		if (kexec_crash_image) {
1475
			struct pt_regs fixed_regs;
1476

1477
			crash_setup_regs(&fixed_regs, regs);
K
Ken'ichi Ohmichi 已提交
1478
			crash_save_vmcoreinfo();
1479
			machine_crash_shutdown(&fixed_regs);
1480
			machine_kexec(kexec_crash_image);
1481
		}
1482
		mutex_unlock(&kexec_mutex);
1483 1484
	}
}
1485

1486 1487
size_t crash_get_memory_size(void)
{
1488
	size_t size = 0;
1489
	mutex_lock(&kexec_mutex);
1490
	if (crashk_res.end != crashk_res.start)
1491
		size = resource_size(&crashk_res);
1492 1493 1494 1495
	mutex_unlock(&kexec_mutex);
	return size;
}

1496 1497
void __weak crash_free_reserved_phys_range(unsigned long begin,
					   unsigned long end)
1498 1499 1500
{
	unsigned long addr;

1501 1502
	for (addr = begin; addr < end; addr += PAGE_SIZE)
		free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1503 1504 1505 1506 1507 1508
}

int crash_shrink_memory(unsigned long new_size)
{
	int ret = 0;
	unsigned long start, end;
1509
	unsigned long old_size;
1510
	struct resource *ram_res;
1511 1512 1513 1514 1515 1516 1517 1518 1519

	mutex_lock(&kexec_mutex);

	if (kexec_crash_image) {
		ret = -ENOENT;
		goto unlock;
	}
	start = crashk_res.start;
	end = crashk_res.end;
1520 1521 1522
	old_size = (end == 0) ? 0 : end - start + 1;
	if (new_size >= old_size) {
		ret = (new_size == old_size) ? 0 : -EINVAL;
1523 1524 1525
		goto unlock;
	}

1526 1527 1528 1529 1530 1531
	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
	if (!ram_res) {
		ret = -ENOMEM;
		goto unlock;
	}

1532 1533
	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1534

1535
	crash_map_reserved_pages();
1536
	crash_free_reserved_phys_range(end, crashk_res.end);
1537

1538
	if ((start == end) && (crashk_res.parent != NULL))
1539
		release_resource(&crashk_res);
1540 1541 1542 1543 1544 1545

	ram_res->start = end;
	ram_res->end = crashk_res.end;
	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
	ram_res->name = "System RAM";

1546
	crashk_res.end = end - 1;
1547 1548

	insert_resource(&iomem_resource, ram_res);
1549
	crash_unmap_reserved_pages();
1550 1551 1552 1553 1554 1555

unlock:
	mutex_unlock(&kexec_mutex);
	return ret;
}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
			    size_t data_len)
{
	struct elf_note note;

	note.n_namesz = strlen(name) + 1;
	note.n_descsz = data_len;
	note.n_type   = type;
	memcpy(buf, &note, sizeof(note));
	buf += (sizeof(note) + 3)/4;
	memcpy(buf, name, note.n_namesz);
	buf += (note.n_namesz + 3)/4;
	memcpy(buf, data, note.n_descsz);
	buf += (note.n_descsz + 3)/4;

	return buf;
}

static void final_note(u32 *buf)
{
	struct elf_note note;

	note.n_namesz = 0;
	note.n_descsz = 0;
	note.n_type   = 0;
	memcpy(buf, &note, sizeof(note));
}

void crash_save_cpu(struct pt_regs *regs, int cpu)
{
	struct elf_prstatus prstatus;
	u32 *buf;

1589
	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1590 1591 1592 1593 1594 1595 1596 1597 1598
		return;

	/* Using ELF notes here is opportunistic.
	 * I need a well defined structure format
	 * for the data I pass, and I need tags
	 * on the data to indicate what information I have
	 * squirrelled away.  ELF notes happen to provide
	 * all of that, so there is no need to invent something new.
	 */
1599
	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1600 1601 1602 1603
	if (!buf)
		return;
	memset(&prstatus, 0, sizeof(prstatus));
	prstatus.pr_pid = current->pid;
T
Tejun Heo 已提交
1604
	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1605
	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1606
			      &prstatus, sizeof(prstatus));
1607 1608 1609
	final_note(buf);
}

1610 1611 1612 1613 1614
static int __init crash_notes_memory_init(void)
{
	/* Allocate memory for saving cpu registers. */
	crash_notes = alloc_percpu(note_buf_t);
	if (!crash_notes) {
1615
		pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
1616 1617 1618 1619
		return -ENOMEM;
	}
	return 0;
}
1620
subsys_initcall(crash_notes_memory_init);
K
Ken'ichi Ohmichi 已提交
1621

B
Bernhard Walle 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

/*
 * parsing the "crashkernel" commandline
 *
 * this code is intended to be called from architecture specific code
 */


/*
 * This function parses command lines in the format
 *
 *   crashkernel=ramsize-range:size[,...][@offset]
 *
 * The function returns 0 on success and -EINVAL on failure.
 */
1637 1638 1639 1640
static int __init parse_crashkernel_mem(char *cmdline,
					unsigned long long system_ram,
					unsigned long long *crash_size,
					unsigned long long *crash_base)
B
Bernhard Walle 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
{
	char *cur = cmdline, *tmp;

	/* for each entry of the comma-separated list */
	do {
		unsigned long long start, end = ULLONG_MAX, size;

		/* get the start of the range */
		start = memparse(cur, &tmp);
		if (cur == tmp) {
1651
			pr_warn("crashkernel: Memory value expected\n");
B
Bernhard Walle 已提交
1652 1653 1654 1655
			return -EINVAL;
		}
		cur = tmp;
		if (*cur != '-') {
1656
			pr_warn("crashkernel: '-' expected\n");
B
Bernhard Walle 已提交
1657 1658 1659 1660 1661 1662 1663 1664
			return -EINVAL;
		}
		cur++;

		/* if no ':' is here, than we read the end */
		if (*cur != ':') {
			end = memparse(cur, &tmp);
			if (cur == tmp) {
1665
				pr_warn("crashkernel: Memory value expected\n");
B
Bernhard Walle 已提交
1666 1667 1668 1669
				return -EINVAL;
			}
			cur = tmp;
			if (end <= start) {
1670
				pr_warn("crashkernel: end <= start\n");
B
Bernhard Walle 已提交
1671 1672 1673 1674 1675
				return -EINVAL;
			}
		}

		if (*cur != ':') {
1676
			pr_warn("crashkernel: ':' expected\n");
B
Bernhard Walle 已提交
1677 1678 1679 1680 1681 1682
			return -EINVAL;
		}
		cur++;

		size = memparse(cur, &tmp);
		if (cur == tmp) {
1683
			pr_warn("Memory value expected\n");
B
Bernhard Walle 已提交
1684 1685 1686 1687
			return -EINVAL;
		}
		cur = tmp;
		if (size >= system_ram) {
1688
			pr_warn("crashkernel: invalid size\n");
B
Bernhard Walle 已提交
1689 1690 1691 1692
			return -EINVAL;
		}

		/* match ? */
1693
		if (system_ram >= start && system_ram < end) {
B
Bernhard Walle 已提交
1694 1695 1696 1697 1698 1699
			*crash_size = size;
			break;
		}
	} while (*cur++ == ',');

	if (*crash_size > 0) {
1700
		while (*cur && *cur != ' ' && *cur != '@')
B
Bernhard Walle 已提交
1701 1702 1703 1704 1705
			cur++;
		if (*cur == '@') {
			cur++;
			*crash_base = memparse(cur, &tmp);
			if (cur == tmp) {
1706
				pr_warn("Memory value expected after '@'\n");
B
Bernhard Walle 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
				return -EINVAL;
			}
		}
	}

	return 0;
}

/*
 * That function parses "simple" (old) crashkernel command lines like
 *
1718
 *	crashkernel=size[@offset]
B
Bernhard Walle 已提交
1719 1720 1721
 *
 * It returns 0 on success and -EINVAL on failure.
 */
1722 1723 1724
static int __init parse_crashkernel_simple(char *cmdline,
					   unsigned long long *crash_size,
					   unsigned long long *crash_base)
B
Bernhard Walle 已提交
1725 1726 1727 1728 1729
{
	char *cur = cmdline;

	*crash_size = memparse(cmdline, &cur);
	if (cmdline == cur) {
1730
		pr_warn("crashkernel: memory value expected\n");
B
Bernhard Walle 已提交
1731 1732 1733 1734 1735
		return -EINVAL;
	}

	if (*cur == '@')
		*crash_base = memparse(cur+1, &cur);
1736
	else if (*cur != ' ' && *cur != '\0') {
1737
		pr_warn("crashkernel: unrecognized char\n");
1738 1739
		return -EINVAL;
	}
B
Bernhard Walle 已提交
1740 1741 1742 1743

	return 0;
}

1744 1745 1746 1747 1748 1749 1750 1751 1752
#define SUFFIX_HIGH 0
#define SUFFIX_LOW  1
#define SUFFIX_NULL 2
static __initdata char *suffix_tbl[] = {
	[SUFFIX_HIGH] = ",high",
	[SUFFIX_LOW]  = ",low",
	[SUFFIX_NULL] = NULL,
};

B
Bernhard Walle 已提交
1753
/*
1754 1755 1756 1757 1758
 * That function parses "suffix"  crashkernel command lines like
 *
 *	crashkernel=size,[high|low]
 *
 * It returns 0 on success and -EINVAL on failure.
B
Bernhard Walle 已提交
1759
 */
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
static int __init parse_crashkernel_suffix(char *cmdline,
					   unsigned long long	*crash_size,
					   unsigned long long	*crash_base,
					   const char *suffix)
{
	char *cur = cmdline;

	*crash_size = memparse(cmdline, &cur);
	if (cmdline == cur) {
		pr_warn("crashkernel: memory value expected\n");
		return -EINVAL;
	}

	/* check with suffix */
	if (strncmp(cur, suffix, strlen(suffix))) {
		pr_warn("crashkernel: unrecognized char\n");
		return -EINVAL;
	}
	cur += strlen(suffix);
	if (*cur != ' ' && *cur != '\0') {
		pr_warn("crashkernel: unrecognized char\n");
		return -EINVAL;
	}

	return 0;
}

static __init char *get_last_crashkernel(char *cmdline,
			     const char *name,
			     const char *suffix)
{
	char *p = cmdline, *ck_cmdline = NULL;

	/* find crashkernel and use the last one if there are more */
	p = strstr(p, name);
	while (p) {
		char *end_p = strchr(p, ' ');
		char *q;

		if (!end_p)
			end_p = p + strlen(p);

		if (!suffix) {
			int i;

			/* skip the one with any known suffix */
			for (i = 0; suffix_tbl[i]; i++) {
				q = end_p - strlen(suffix_tbl[i]);
				if (!strncmp(q, suffix_tbl[i],
					     strlen(suffix_tbl[i])))
					goto next;
			}
			ck_cmdline = p;
		} else {
			q = end_p - strlen(suffix);
			if (!strncmp(q, suffix, strlen(suffix)))
				ck_cmdline = p;
		}
next:
		p = strstr(p+1, name);
	}

	if (!ck_cmdline)
		return NULL;

	return ck_cmdline;
}

1828
static int __init __parse_crashkernel(char *cmdline,
B
Bernhard Walle 已提交
1829 1830
			     unsigned long long system_ram,
			     unsigned long long *crash_size,
1831
			     unsigned long long *crash_base,
1832 1833
			     const char *name,
			     const char *suffix)
B
Bernhard Walle 已提交
1834 1835
{
	char	*first_colon, *first_space;
1836
	char	*ck_cmdline;
B
Bernhard Walle 已提交
1837 1838 1839 1840 1841

	BUG_ON(!crash_size || !crash_base);
	*crash_size = 0;
	*crash_base = 0;

1842
	ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
B
Bernhard Walle 已提交
1843 1844 1845 1846

	if (!ck_cmdline)
		return -EINVAL;

1847
	ck_cmdline += strlen(name);
B
Bernhard Walle 已提交
1848

1849 1850 1851
	if (suffix)
		return parse_crashkernel_suffix(ck_cmdline, crash_size,
				crash_base, suffix);
B
Bernhard Walle 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	/*
	 * if the commandline contains a ':', then that's the extended
	 * syntax -- if not, it must be the classic syntax
	 */
	first_colon = strchr(ck_cmdline, ':');
	first_space = strchr(ck_cmdline, ' ');
	if (first_colon && (!first_space || first_colon < first_space))
		return parse_crashkernel_mem(ck_cmdline, system_ram,
				crash_size, crash_base);

X
Xishi Qiu 已提交
1862
	return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
B
Bernhard Walle 已提交
1863 1864
}

1865 1866 1867 1868
/*
 * That function is the entry point for command line parsing and should be
 * called from the arch-specific code.
 */
1869 1870 1871 1872 1873 1874
int __init parse_crashkernel(char *cmdline,
			     unsigned long long system_ram,
			     unsigned long long *crash_size,
			     unsigned long long *crash_base)
{
	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1875
					"crashkernel=", NULL);
1876
}
1877 1878 1879 1880 1881 1882 1883

int __init parse_crashkernel_high(char *cmdline,
			     unsigned long long system_ram,
			     unsigned long long *crash_size,
			     unsigned long long *crash_base)
{
	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1884
				"crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1885
}
1886 1887 1888 1889 1890 1891 1892

int __init parse_crashkernel_low(char *cmdline,
			     unsigned long long system_ram,
			     unsigned long long *crash_size,
			     unsigned long long *crash_base)
{
	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1893
				"crashkernel=", suffix_tbl[SUFFIX_LOW]);
1894
}
B
Bernhard Walle 已提交
1895

1896
static void update_vmcoreinfo_note(void)
K
Ken'ichi Ohmichi 已提交
1897
{
1898
	u32 *buf = vmcoreinfo_note;
K
Ken'ichi Ohmichi 已提交
1899 1900 1901 1902 1903 1904 1905 1906

	if (!vmcoreinfo_size)
		return;
	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
			      vmcoreinfo_size);
	final_note(buf);
}

1907 1908
void crash_save_vmcoreinfo(void)
{
1909
	vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1910 1911 1912
	update_vmcoreinfo_note();
}

K
Ken'ichi Ohmichi 已提交
1913 1914 1915 1916
void vmcoreinfo_append_str(const char *fmt, ...)
{
	va_list args;
	char buf[0x50];
1917
	size_t r;
K
Ken'ichi Ohmichi 已提交
1918 1919

	va_start(args, fmt);
1920
	r = vscnprintf(buf, sizeof(buf), fmt, args);
K
Ken'ichi Ohmichi 已提交
1921 1922
	va_end(args);

1923
	r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
K
Ken'ichi Ohmichi 已提交
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933

	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);

	vmcoreinfo_size += r;
}

/*
 * provide an empty default implementation here -- architecture
 * code may override this
 */
1934
void __weak arch_crash_save_vmcoreinfo(void)
K
Ken'ichi Ohmichi 已提交
1935 1936
{}

1937
unsigned long __weak paddr_vmcoreinfo_note(void)
K
Ken'ichi Ohmichi 已提交
1938 1939 1940 1941 1942 1943
{
	return __pa((unsigned long)(char *)&vmcoreinfo_note);
}

static int __init crash_save_vmcoreinfo_init(void)
{
1944 1945
	VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
	VMCOREINFO_PAGESIZE(PAGE_SIZE);
K
Ken'ichi Ohmichi 已提交
1946

1947 1948
	VMCOREINFO_SYMBOL(init_uts_ns);
	VMCOREINFO_SYMBOL(node_online_map);
1949
#ifdef CONFIG_MMU
1950
	VMCOREINFO_SYMBOL(swapper_pg_dir);
1951
#endif
1952
	VMCOREINFO_SYMBOL(_stext);
1953
	VMCOREINFO_SYMBOL(vmap_area_list);
K
Ken'ichi Ohmichi 已提交
1954 1955

#ifndef CONFIG_NEED_MULTIPLE_NODES
1956 1957
	VMCOREINFO_SYMBOL(mem_map);
	VMCOREINFO_SYMBOL(contig_page_data);
K
Ken'ichi Ohmichi 已提交
1958 1959
#endif
#ifdef CONFIG_SPARSEMEM
1960 1961
	VMCOREINFO_SYMBOL(mem_section);
	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1962
	VMCOREINFO_STRUCT_SIZE(mem_section);
1963
	VMCOREINFO_OFFSET(mem_section, section_mem_map);
K
Ken'ichi Ohmichi 已提交
1964
#endif
1965 1966 1967 1968 1969 1970
	VMCOREINFO_STRUCT_SIZE(page);
	VMCOREINFO_STRUCT_SIZE(pglist_data);
	VMCOREINFO_STRUCT_SIZE(zone);
	VMCOREINFO_STRUCT_SIZE(free_area);
	VMCOREINFO_STRUCT_SIZE(list_head);
	VMCOREINFO_SIZE(nodemask_t);
1971 1972 1973 1974
	VMCOREINFO_OFFSET(page, flags);
	VMCOREINFO_OFFSET(page, _count);
	VMCOREINFO_OFFSET(page, mapping);
	VMCOREINFO_OFFSET(page, lru);
1975 1976
	VMCOREINFO_OFFSET(page, _mapcount);
	VMCOREINFO_OFFSET(page, private);
1977 1978
	VMCOREINFO_OFFSET(pglist_data, node_zones);
	VMCOREINFO_OFFSET(pglist_data, nr_zones);
K
Ken'ichi Ohmichi 已提交
1979
#ifdef CONFIG_FLAT_NODE_MEM_MAP
1980
	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
K
Ken'ichi Ohmichi 已提交
1981
#endif
1982 1983 1984 1985 1986 1987 1988 1989 1990
	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
	VMCOREINFO_OFFSET(pglist_data, node_id);
	VMCOREINFO_OFFSET(zone, free_area);
	VMCOREINFO_OFFSET(zone, vm_stat);
	VMCOREINFO_OFFSET(zone, spanned_pages);
	VMCOREINFO_OFFSET(free_area, free_list);
	VMCOREINFO_OFFSET(list_head, next);
	VMCOREINFO_OFFSET(list_head, prev);
1991 1992
	VMCOREINFO_OFFSET(vmap_area, va_start);
	VMCOREINFO_OFFSET(vmap_area, list);
1993
	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1994
	log_buf_kexec_setup();
1995
	VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1996
	VMCOREINFO_NUMBER(NR_FREE_PAGES);
1997 1998 1999
	VMCOREINFO_NUMBER(PG_lru);
	VMCOREINFO_NUMBER(PG_private);
	VMCOREINFO_NUMBER(PG_swapcache);
2000
	VMCOREINFO_NUMBER(PG_slab);
2001 2002 2003
#ifdef CONFIG_MEMORY_FAILURE
	VMCOREINFO_NUMBER(PG_hwpoison);
#endif
2004
	VMCOREINFO_NUMBER(PG_head_mask);
2005
	VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
2006
#ifdef CONFIG_HUGETLBFS
2007
	VMCOREINFO_SYMBOL(free_huge_page);
2008
#endif
K
Ken'ichi Ohmichi 已提交
2009 2010

	arch_crash_save_vmcoreinfo();
2011
	update_vmcoreinfo_note();
K
Ken'ichi Ohmichi 已提交
2012 2013 2014 2015

	return 0;
}

2016
subsys_initcall(crash_save_vmcoreinfo_init);
H
Huang Ying 已提交
2017

2018
#ifdef CONFIG_KEXEC_FILE
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
static int __kexec_add_segment(struct kimage *image, char *buf,
			       unsigned long bufsz, unsigned long mem,
			       unsigned long memsz)
{
	struct kexec_segment *ksegment;

	ksegment = &image->segment[image->nr_segments];
	ksegment->kbuf = buf;
	ksegment->bufsz = bufsz;
	ksegment->mem = mem;
	ksegment->memsz = memsz;
	image->nr_segments++;

	return 0;
}

static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
				    struct kexec_buf *kbuf)
{
	struct kimage *image = kbuf->image;
	unsigned long temp_start, temp_end;

	temp_end = min(end, kbuf->buf_max);
	temp_start = temp_end - kbuf->memsz;

	do {
		/* align down start */
		temp_start = temp_start & (~(kbuf->buf_align - 1));

		if (temp_start < start || temp_start < kbuf->buf_min)
			return 0;

		temp_end = temp_start + kbuf->memsz - 1;

		/*
		 * Make sure this does not conflict with any of existing
		 * segments
		 */
		if (kimage_is_destination_range(image, temp_start, temp_end)) {
			temp_start = temp_start - PAGE_SIZE;
			continue;
		}

		/* We found a suitable memory range */
		break;
	} while (1);

	/* If we are here, we found a suitable memory range */
	__kexec_add_segment(image, kbuf->buffer, kbuf->bufsz, temp_start,
			    kbuf->memsz);

	/* Success, stop navigating through remaining System RAM ranges */
	return 1;
}

static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
				     struct kexec_buf *kbuf)
{
	struct kimage *image = kbuf->image;
	unsigned long temp_start, temp_end;

	temp_start = max(start, kbuf->buf_min);

	do {
		temp_start = ALIGN(temp_start, kbuf->buf_align);
		temp_end = temp_start + kbuf->memsz - 1;

		if (temp_end > end || temp_end > kbuf->buf_max)
			return 0;
		/*
		 * Make sure this does not conflict with any of existing
		 * segments
		 */
		if (kimage_is_destination_range(image, temp_start, temp_end)) {
			temp_start = temp_start + PAGE_SIZE;
			continue;
		}

		/* We found a suitable memory range */
		break;
	} while (1);

	/* If we are here, we found a suitable memory range */
	__kexec_add_segment(image, kbuf->buffer, kbuf->bufsz, temp_start,
			    kbuf->memsz);

	/* Success, stop navigating through remaining System RAM ranges */
	return 1;
}

static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
{
	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
	unsigned long sz = end - start + 1;

	/* Returning 0 will take to next memory range */
	if (sz < kbuf->memsz)
		return 0;

	if (end < kbuf->buf_min || start > kbuf->buf_max)
		return 0;

	/*
	 * Allocate memory top down with-in ram range. Otherwise bottom up
	 * allocation.
	 */
	if (kbuf->top_down)
		return locate_mem_hole_top_down(start, end, kbuf);
	return locate_mem_hole_bottom_up(start, end, kbuf);
}

/*
 * Helper function for placing a buffer in a kexec segment. This assumes
 * that kexec_mutex is held.
 */
int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
		     unsigned long memsz, unsigned long buf_align,
		     unsigned long buf_min, unsigned long buf_max,
		     bool top_down, unsigned long *load_addr)
{

	struct kexec_segment *ksegment;
	struct kexec_buf buf, *kbuf;
	int ret;

	/* Currently adding segment this way is allowed only in file mode */
	if (!image->file_mode)
		return -EINVAL;

	if (image->nr_segments >= KEXEC_SEGMENT_MAX)
		return -EINVAL;

	/*
	 * Make sure we are not trying to add buffer after allocating
	 * control pages. All segments need to be placed first before
	 * any control pages are allocated. As control page allocation
	 * logic goes through list of segments to make sure there are
	 * no destination overlaps.
	 */
	if (!list_empty(&image->control_pages)) {
		WARN_ON(1);
		return -EINVAL;
	}

	memset(&buf, 0, sizeof(struct kexec_buf));
	kbuf = &buf;
	kbuf->image = image;
	kbuf->buffer = buffer;
	kbuf->bufsz = bufsz;

	kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
	kbuf->buf_align = max(buf_align, PAGE_SIZE);
	kbuf->buf_min = buf_min;
	kbuf->buf_max = buf_max;
	kbuf->top_down = top_down;

	/* Walk the RAM ranges and allocate a suitable range for the buffer */
2176 2177 2178 2179 2180 2181 2182 2183
	if (image->type == KEXEC_TYPE_CRASH)
		ret = walk_iomem_res("Crash kernel",
				     IORESOURCE_MEM | IORESOURCE_BUSY,
				     crashk_res.start, crashk_res.end, kbuf,
				     locate_mem_hole_callback);
	else
		ret = walk_system_ram_res(0, -1, kbuf,
					  locate_mem_hole_callback);
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
	if (ret != 1) {
		/* A suitable memory range could not be found for buffer */
		return -EADDRNOTAVAIL;
	}

	/* Found a suitable memory range */
	ksegment = &image->segment[image->nr_segments - 1];
	*load_addr = ksegment->mem;
	return 0;
}

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
/* Calculate and store the digest of segments */
static int kexec_calculate_store_digests(struct kimage *image)
{
	struct crypto_shash *tfm;
	struct shash_desc *desc;
	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
	size_t desc_size, nullsz;
	char *digest;
	void *zero_buf;
	struct kexec_sha_region *sha_regions;
	struct purgatory_info *pi = &image->purgatory_info;

	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
	zero_buf_sz = PAGE_SIZE;

	tfm = crypto_alloc_shash("sha256", 0, 0);
	if (IS_ERR(tfm)) {
		ret = PTR_ERR(tfm);
		goto out;
	}

	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
	desc = kzalloc(desc_size, GFP_KERNEL);
	if (!desc) {
		ret = -ENOMEM;
		goto out_free_tfm;
	}

	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
	sha_regions = vzalloc(sha_region_sz);
	if (!sha_regions)
		goto out_free_desc;

	desc->tfm   = tfm;
	desc->flags = 0;

	ret = crypto_shash_init(desc);
	if (ret < 0)
		goto out_free_sha_regions;

	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
	if (!digest) {
		ret = -ENOMEM;
		goto out_free_sha_regions;
	}

	for (j = i = 0; i < image->nr_segments; i++) {
		struct kexec_segment *ksegment;

		ksegment = &image->segment[i];
		/*
		 * Skip purgatory as it will be modified once we put digest
		 * info in purgatory.
		 */
		if (ksegment->kbuf == pi->purgatory_buf)
			continue;

		ret = crypto_shash_update(desc, ksegment->kbuf,
					  ksegment->bufsz);
		if (ret)
			break;

		/*
		 * Assume rest of the buffer is filled with zero and
		 * update digest accordingly.
		 */
		nullsz = ksegment->memsz - ksegment->bufsz;
		while (nullsz) {
			unsigned long bytes = nullsz;

			if (bytes > zero_buf_sz)
				bytes = zero_buf_sz;
			ret = crypto_shash_update(desc, zero_buf, bytes);
			if (ret)
				break;
			nullsz -= bytes;
		}

		if (ret)
			break;

		sha_regions[j].start = ksegment->mem;
		sha_regions[j].len = ksegment->memsz;
		j++;
	}

	if (!ret) {
		ret = crypto_shash_final(desc, digest);
		if (ret)
			goto out_free_digest;
		ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
						sha_regions, sha_region_sz, 0);
		if (ret)
			goto out_free_digest;

		ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
						digest, SHA256_DIGEST_SIZE, 0);
		if (ret)
			goto out_free_digest;
	}

out_free_digest:
	kfree(digest);
out_free_sha_regions:
	vfree(sha_regions);
out_free_desc:
	kfree(desc);
out_free_tfm:
	kfree(tfm);
out:
	return ret;
}

/* Actually load purgatory. Lot of code taken from kexec-tools */
static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
				  unsigned long max, int top_down)
{
	struct purgatory_info *pi = &image->purgatory_info;
	unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
	unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
	unsigned char *buf_addr, *src;
	int i, ret = 0, entry_sidx = -1;
	const Elf_Shdr *sechdrs_c;
	Elf_Shdr *sechdrs = NULL;
	void *purgatory_buf = NULL;

	/*
	 * sechdrs_c points to section headers in purgatory and are read
	 * only. No modifications allowed.
	 */
	sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;

	/*
	 * We can not modify sechdrs_c[] and its fields. It is read only.
	 * Copy it over to a local copy where one can store some temporary
	 * data and free it at the end. We need to modify ->sh_addr and
	 * ->sh_offset fields to keep track of permanent and temporary
	 * locations of sections.
	 */
	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
	if (!sechdrs)
		return -ENOMEM;

	memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));

	/*
	 * We seem to have multiple copies of sections. First copy is which
	 * is embedded in kernel in read only section. Some of these sections
	 * will be copied to a temporary buffer and relocated. And these
	 * sections will finally be copied to their final destination at
	 * segment load time.
	 *
	 * Use ->sh_offset to reflect section address in memory. It will
	 * point to original read only copy if section is not allocatable.
	 * Otherwise it will point to temporary copy which will be relocated.
	 *
	 * Use ->sh_addr to contain final address of the section where it
	 * will go during execution time.
	 */
	for (i = 0; i < pi->ehdr->e_shnum; i++) {
		if (sechdrs[i].sh_type == SHT_NOBITS)
			continue;

		sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
						sechdrs[i].sh_offset;
	}

	/*
	 * Identify entry point section and make entry relative to section
	 * start.
	 */
	entry = pi->ehdr->e_entry;
	for (i = 0; i < pi->ehdr->e_shnum; i++) {
		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
			continue;

		if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
			continue;

		/* Make entry section relative */
		if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
		    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
		     pi->ehdr->e_entry)) {
			entry_sidx = i;
			entry -= sechdrs[i].sh_addr;
			break;
		}
	}

	/* Determine how much memory is needed to load relocatable object. */
	buf_align = 1;
	bss_align = 1;
	buf_sz = 0;
	bss_sz = 0;

	for (i = 0; i < pi->ehdr->e_shnum; i++) {
		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
			continue;

		align = sechdrs[i].sh_addralign;
		if (sechdrs[i].sh_type != SHT_NOBITS) {
			if (buf_align < align)
				buf_align = align;
			buf_sz = ALIGN(buf_sz, align);
			buf_sz += sechdrs[i].sh_size;
		} else {
			/* bss section */
			if (bss_align < align)
				bss_align = align;
			bss_sz = ALIGN(bss_sz, align);
			bss_sz += sechdrs[i].sh_size;
		}
	}

	/* Determine the bss padding required to align bss properly */
	bss_pad = 0;
	if (buf_sz & (bss_align - 1))
		bss_pad = bss_align - (buf_sz & (bss_align - 1));

	memsz = buf_sz + bss_pad + bss_sz;

	/* Allocate buffer for purgatory */
	purgatory_buf = vzalloc(buf_sz);
	if (!purgatory_buf) {
		ret = -ENOMEM;
		goto out;
	}

	if (buf_align < bss_align)
		buf_align = bss_align;

	/* Add buffer to segment list */
	ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
				buf_align, min, max, top_down,
				&pi->purgatory_load_addr);
	if (ret)
		goto out;

	/* Load SHF_ALLOC sections */
	buf_addr = purgatory_buf;
	load_addr = curr_load_addr = pi->purgatory_load_addr;
	bss_addr = load_addr + buf_sz + bss_pad;

	for (i = 0; i < pi->ehdr->e_shnum; i++) {
		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
			continue;

		align = sechdrs[i].sh_addralign;
		if (sechdrs[i].sh_type != SHT_NOBITS) {
			curr_load_addr = ALIGN(curr_load_addr, align);
			offset = curr_load_addr - load_addr;
			/* We already modifed ->sh_offset to keep src addr */
			src = (char *) sechdrs[i].sh_offset;
			memcpy(buf_addr + offset, src, sechdrs[i].sh_size);

			/* Store load address and source address of section */
			sechdrs[i].sh_addr = curr_load_addr;

			/*
			 * This section got copied to temporary buffer. Update
			 * ->sh_offset accordingly.
			 */
			sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);

			/* Advance to the next address */
			curr_load_addr += sechdrs[i].sh_size;
		} else {
			bss_addr = ALIGN(bss_addr, align);
			sechdrs[i].sh_addr = bss_addr;
			bss_addr += sechdrs[i].sh_size;
		}
	}

	/* Update entry point based on load address of text section */
	if (entry_sidx >= 0)
		entry += sechdrs[entry_sidx].sh_addr;

	/* Make kernel jump to purgatory after shutdown */
	image->start = entry;

	/* Used later to get/set symbol values */
	pi->sechdrs = sechdrs;

	/*
	 * Used later to identify which section is purgatory and skip it
	 * from checksumming.
	 */
	pi->purgatory_buf = purgatory_buf;
	return ret;
out:
	vfree(sechdrs);
	vfree(purgatory_buf);
	return ret;
}

static int kexec_apply_relocations(struct kimage *image)
{
	int i, ret;
	struct purgatory_info *pi = &image->purgatory_info;
	Elf_Shdr *sechdrs = pi->sechdrs;

	/* Apply relocations */
	for (i = 0; i < pi->ehdr->e_shnum; i++) {
		Elf_Shdr *section, *symtab;

		if (sechdrs[i].sh_type != SHT_RELA &&
		    sechdrs[i].sh_type != SHT_REL)
			continue;

		/*
		 * For section of type SHT_RELA/SHT_REL,
		 * ->sh_link contains section header index of associated
		 * symbol table. And ->sh_info contains section header
		 * index of section to which relocations apply.
		 */
		if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
		    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
			return -ENOEXEC;

		section = &sechdrs[sechdrs[i].sh_info];
		symtab = &sechdrs[sechdrs[i].sh_link];

		if (!(section->sh_flags & SHF_ALLOC))
			continue;

		/*
		 * symtab->sh_link contain section header index of associated
		 * string table.
		 */
		if (symtab->sh_link >= pi->ehdr->e_shnum)
			/* Invalid section number? */
			continue;

		/*
		 * Respective archicture needs to provide support for applying
		 * relocations of type SHT_RELA/SHT_REL.
		 */
		if (sechdrs[i].sh_type == SHT_RELA)
			ret = arch_kexec_apply_relocations_add(pi->ehdr,
							       sechdrs, i);
		else if (sechdrs[i].sh_type == SHT_REL)
			ret = arch_kexec_apply_relocations(pi->ehdr,
							   sechdrs, i);
		if (ret)
			return ret;
	}

	return 0;
}

/* Load relocatable purgatory object and relocate it appropriately */
int kexec_load_purgatory(struct kimage *image, unsigned long min,
			 unsigned long max, int top_down,
			 unsigned long *load_addr)
{
	struct purgatory_info *pi = &image->purgatory_info;
	int ret;

	if (kexec_purgatory_size <= 0)
		return -EINVAL;

	if (kexec_purgatory_size < sizeof(Elf_Ehdr))
		return -ENOEXEC;

	pi->ehdr = (Elf_Ehdr *)kexec_purgatory;

	if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
	    || pi->ehdr->e_type != ET_REL
	    || !elf_check_arch(pi->ehdr)
	    || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
		return -ENOEXEC;

	if (pi->ehdr->e_shoff >= kexec_purgatory_size
	    || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
	    kexec_purgatory_size - pi->ehdr->e_shoff))
		return -ENOEXEC;

	ret = __kexec_load_purgatory(image, min, max, top_down);
	if (ret)
		return ret;

	ret = kexec_apply_relocations(image);
	if (ret)
		goto out;

	*load_addr = pi->purgatory_load_addr;
	return 0;
out:
	vfree(pi->sechdrs);
	vfree(pi->purgatory_buf);
	return ret;
}

static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
					    const char *name)
{
	Elf_Sym *syms;
	Elf_Shdr *sechdrs;
	Elf_Ehdr *ehdr;
	int i, k;
	const char *strtab;

	if (!pi->sechdrs || !pi->ehdr)
		return NULL;

	sechdrs = pi->sechdrs;
	ehdr = pi->ehdr;

	for (i = 0; i < ehdr->e_shnum; i++) {
		if (sechdrs[i].sh_type != SHT_SYMTAB)
			continue;

		if (sechdrs[i].sh_link >= ehdr->e_shnum)
			/* Invalid strtab section number */
			continue;
		strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
		syms = (Elf_Sym *)sechdrs[i].sh_offset;

		/* Go through symbols for a match */
		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
				continue;

			if (strcmp(strtab + syms[k].st_name, name) != 0)
				continue;

			if (syms[k].st_shndx == SHN_UNDEF ||
			    syms[k].st_shndx >= ehdr->e_shnum) {
				pr_debug("Symbol: %s has bad section index %d.\n",
						name, syms[k].st_shndx);
				return NULL;
			}

			/* Found the symbol we are looking for */
			return &syms[k];
		}
	}

	return NULL;
}

void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
{
	struct purgatory_info *pi = &image->purgatory_info;
	Elf_Sym *sym;
	Elf_Shdr *sechdr;

	sym = kexec_purgatory_find_symbol(pi, name);
	if (!sym)
		return ERR_PTR(-EINVAL);

	sechdr = &pi->sechdrs[sym->st_shndx];

	/*
	 * Returns the address where symbol will finally be loaded after
	 * kexec_load_segment()
	 */
	return (void *)(sechdr->sh_addr + sym->st_value);
}

/*
 * Get or set value of a symbol. If "get_value" is true, symbol value is
 * returned in buf otherwise symbol value is set based on value in buf.
 */
int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
				   void *buf, unsigned int size, bool get_value)
{
	Elf_Sym *sym;
	Elf_Shdr *sechdrs;
	struct purgatory_info *pi = &image->purgatory_info;
	char *sym_buf;

	sym = kexec_purgatory_find_symbol(pi, name);
	if (!sym)
		return -EINVAL;

	if (sym->st_size != size) {
		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
		       name, (unsigned long)sym->st_size, size);
		return -EINVAL;
	}

	sechdrs = pi->sechdrs;

	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
		       get_value ? "get" : "set");
		return -EINVAL;
	}

	sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
					sym->st_value;

	if (get_value)
		memcpy((void *)buf, sym_buf, size);
	else
		memcpy((void *)sym_buf, buf, size);

	return 0;
}
2695
#endif /* CONFIG_KEXEC_FILE */
2696

2697 2698 2699
/*
 * Move into place and start executing a preloaded standalone
 * executable.  If nothing was preloaded return an error.
H
Huang Ying 已提交
2700 2701 2702 2703 2704
 */
int kernel_kexec(void)
{
	int error = 0;

2705
	if (!mutex_trylock(&kexec_mutex))
H
Huang Ying 已提交
2706 2707 2708 2709 2710 2711 2712
		return -EBUSY;
	if (!kexec_image) {
		error = -EINVAL;
		goto Unlock;
	}

#ifdef CONFIG_KEXEC_JUMP
2713
	if (kexec_image->preserve_context) {
2714
		lock_system_sleep();
2715 2716 2717 2718 2719 2720 2721
		pm_prepare_console();
		error = freeze_processes();
		if (error) {
			error = -EBUSY;
			goto Restore_console;
		}
		suspend_console();
2722
		error = dpm_suspend_start(PMSG_FREEZE);
2723 2724
		if (error)
			goto Resume_console;
2725
		/* At this point, dpm_suspend_start() has been called,
2726 2727
		 * but *not* dpm_suspend_end(). We *must* call
		 * dpm_suspend_end() now.  Otherwise, drivers for
2728 2729 2730 2731
		 * some devices (e.g. interrupt controllers) become
		 * desynchronized with the actual state of the
		 * hardware at resume time, and evil weirdness ensues.
		 */
2732
		error = dpm_suspend_end(PMSG_FREEZE);
2733
		if (error)
2734 2735 2736 2737
			goto Resume_devices;
		error = disable_nonboot_cpus();
		if (error)
			goto Enable_cpus;
2738
		local_irq_disable();
2739
		error = syscore_suspend();
2740
		if (error)
2741
			goto Enable_irqs;
2742
	} else
H
Huang Ying 已提交
2743
#endif
2744
	{
2745
		kexec_in_progress = true;
2746
		kernel_restart_prepare(NULL);
V
Vivek Goyal 已提交
2747
		migrate_to_reboot_cpu();
2748 2749 2750 2751 2752 2753 2754 2755

		/*
		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
		 * no further code needs to use CPU hotplug (which is true in
		 * the reboot case). However, the kexec path depends on using
		 * CPU hotplug again; so re-enable it here.
		 */
		cpu_hotplug_enable();
2756
		pr_emerg("Starting new kernel\n");
H
Huang Ying 已提交
2757 2758 2759 2760 2761 2762
		machine_shutdown();
	}

	machine_kexec(kexec_image);

#ifdef CONFIG_KEXEC_JUMP
2763
	if (kexec_image->preserve_context) {
2764
		syscore_resume();
2765
 Enable_irqs:
H
Huang Ying 已提交
2766
		local_irq_enable();
2767
 Enable_cpus:
2768
		enable_nonboot_cpus();
2769
		dpm_resume_start(PMSG_RESTORE);
2770
 Resume_devices:
2771
		dpm_resume_end(PMSG_RESTORE);
2772 2773 2774 2775 2776
 Resume_console:
		resume_console();
		thaw_processes();
 Restore_console:
		pm_restore_console();
2777
		unlock_system_sleep();
H
Huang Ying 已提交
2778
	}
2779
#endif
H
Huang Ying 已提交
2780 2781

 Unlock:
2782
	mutex_unlock(&kexec_mutex);
H
Huang Ying 已提交
2783 2784
	return error;
}