arm_arch_timer.c 42.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/drivers/clocksource/arm_arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
11 12 13

#define pr_fmt(fmt)	"arm_arch_timer: " fmt

14 15 16 17 18
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
19
#include <linux/cpu_pm.h>
20
#include <linux/clockchips.h>
21
#include <linux/clocksource.h>
22 23
#include <linux/interrupt.h>
#include <linux/of_irq.h>
24
#include <linux/of_address.h>
25
#include <linux/io.h>
26
#include <linux/slab.h>
27
#include <linux/sched/clock.h>
28
#include <linux/sched_clock.h>
29
#include <linux/acpi.h>
30 31

#include <asm/arch_timer.h>
32
#include <asm/virt.h>
33 34 35

#include <clocksource/arm_arch_timer.h>

36 37 38
#undef pr_fmt
#define pr_fmt(fmt) "arch_timer: " fmt

39 40 41
#define CNTTIDR		0x08
#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))

42 43 44 45 46 47 48 49
#define CNTACR(n)	(0x40 + ((n) * 4))
#define CNTACR_RPCT	BIT(0)
#define CNTACR_RVCT	BIT(1)
#define CNTACR_RFRQ	BIT(2)
#define CNTACR_RVOFF	BIT(3)
#define CNTACR_RWVT	BIT(4)
#define CNTACR_RWPT	BIT(5)

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
#define CNTVCT_LO	0x08
#define CNTVCT_HI	0x0c
#define CNTFRQ		0x10
#define CNTP_TVAL	0x28
#define CNTP_CTL	0x2c
#define CNTV_TVAL	0x38
#define CNTV_CTL	0x3c

static unsigned arch_timers_present __initdata;

static void __iomem *arch_counter_base;

struct arch_timer {
	void __iomem *base;
	struct clock_event_device evt;
};

#define to_arch_timer(e) container_of(e, struct arch_timer, evt)

69
static u32 arch_timer_rate;
70
static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
71 72 73

static struct clock_event_device __percpu *arch_timer_evt;

74
static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
75
static bool arch_timer_c3stop;
76
static bool arch_timer_mem_use_virtual;
77
static bool arch_counter_suspend_stop;
78
static bool vdso_default = true;
79

80
static cpumask_t evtstrm_available = CPU_MASK_NONE;
81 82 83 84 85 86 87 88
static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);

static int __init early_evtstrm_cfg(char *buf)
{
	return strtobool(buf, &evtstrm_enable);
}
early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);

89 90 91 92
/*
 * Architected system timer support.
 */

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
			  struct clock_event_device *clk)
{
	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTV_TVAL);
			break;
		}
	} else {
		arch_timer_reg_write_cp15(access, reg, val);
	}
}

static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
			struct clock_event_device *clk)
{
	u32 val;

	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTV_TVAL);
			break;
		}
	} else {
		val = arch_timer_reg_read_cp15(access, reg);
	}

	return val;
}

155 156 157 158 159 160 161
/*
 * Default to cp15 based access because arm64 uses this function for
 * sched_clock() before DT is probed and the cp15 method is guaranteed
 * to exist on arm64. arm doesn't use this before DT is probed so even
 * if we don't have the cp15 accessors we won't have a problem.
 */
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
162
EXPORT_SYMBOL_GPL(arch_timer_read_counter);
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

static u64 arch_counter_read(struct clocksource *cs)
{
	return arch_timer_read_counter();
}

static u64 arch_counter_read_cc(const struct cyclecounter *cc)
{
	return arch_timer_read_counter();
}

static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
};

static struct cyclecounter cyclecounter __ro_after_init = {
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

187 188 189 190 191 192
struct ate_acpi_oem_info {
	char oem_id[ACPI_OEM_ID_SIZE + 1];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
	u32 oem_revision;
};

193
#ifdef CONFIG_FSL_ERRATUM_A008585
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
/*
 * The number of retries is an arbitrary value well beyond the highest number
 * of iterations the loop has been observed to take.
 */
#define __fsl_a008585_read_reg(reg) ({			\
	u64 _old, _new;					\
	int _retries = 200;				\
							\
	do {						\
		_old = read_sysreg(reg);		\
		_new = read_sysreg(reg);		\
		_retries--;				\
	} while (unlikely(_old != _new) && _retries);	\
							\
	WARN_ON_ONCE(!_retries);			\
	_new;						\
})

static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
213 214 215 216
{
	return __fsl_a008585_read_reg(cntp_tval_el0);
}

217
static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
218 219 220 221
{
	return __fsl_a008585_read_reg(cntv_tval_el0);
}

222 223 224 225 226
static u64 notrace fsl_a008585_read_cntpct_el0(void)
{
	return __fsl_a008585_read_reg(cntpct_el0);
}

227
static u64 notrace fsl_a008585_read_cntvct_el0(void)
228 229 230
{
	return __fsl_a008585_read_reg(cntvct_el0);
}
231 232
#endif

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
#ifdef CONFIG_HISILICON_ERRATUM_161010101
/*
 * Verify whether the value of the second read is larger than the first by
 * less than 32 is the only way to confirm the value is correct, so clear the
 * lower 5 bits to check whether the difference is greater than 32 or not.
 * Theoretically the erratum should not occur more than twice in succession
 * when reading the system counter, but it is possible that some interrupts
 * may lead to more than twice read errors, triggering the warning, so setting
 * the number of retries far beyond the number of iterations the loop has been
 * observed to take.
 */
#define __hisi_161010101_read_reg(reg) ({				\
	u64 _old, _new;						\
	int _retries = 50;					\
								\
	do {							\
		_old = read_sysreg(reg);			\
		_new = read_sysreg(reg);			\
		_retries--;					\
	} while (unlikely((_new - _old) >> 5) && _retries);	\
								\
	WARN_ON_ONCE(!_retries);				\
	_new;							\
})

static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntp_tval_el0);
}

static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntv_tval_el0);
}

268 269 270 271 272
static u64 notrace hisi_161010101_read_cntpct_el0(void)
{
	return __hisi_161010101_read_reg(cntpct_el0);
}

273 274 275 276
static u64 notrace hisi_161010101_read_cntvct_el0(void)
{
	return __hisi_161010101_read_reg(cntvct_el0);
}
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
	/*
	 * Note that trailing spaces are required to properly match
	 * the OEM table information.
	 */
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP05   ",
		.oem_revision	= 0,
	},
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP06   ",
		.oem_revision	= 0,
	},
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP07   ",
		.oem_revision	= 0,
	},
	{ /* Sentinel indicating the end of the OEM array */ },
};
300 301
#endif

302
#ifdef CONFIG_ARM64_ERRATUM_858921
303 304 305 306 307 308 309 310 311
static u64 notrace arm64_858921_read_cntpct_el0(void)
{
	u64 old, new;

	old = read_sysreg(cntpct_el0);
	new = read_sysreg(cntpct_el0);
	return (((old ^ new) >> 32) & 1) ? old : new;
}

312 313 314 315 316 317 318 319 320 321
static u64 notrace arm64_858921_read_cntvct_el0(void)
{
	u64 old, new;

	old = read_sysreg(cntvct_el0);
	new = read_sysreg(cntvct_el0);
	return (((old ^ new) >> 32) & 1) ? old : new;
}
#endif

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
/*
 * The low bits of the counter registers are indeterminate while bit 10 or
 * greater is rolling over. Since the counter value can jump both backward
 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
 * with all ones or all zeros in the low bits. Bound the loop by the maximum
 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
 */
#define __sun50i_a64_read_reg(reg) ({					\
	u64 _val;							\
	int _retries = 150;						\
									\
	do {								\
		_val = read_sysreg(reg);				\
		_retries--;						\
	} while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);	\
									\
	WARN_ON_ONCE(!_retries);					\
	_val;								\
})

static u64 notrace sun50i_a64_read_cntpct_el0(void)
{
	return __sun50i_a64_read_reg(cntpct_el0);
}

static u64 notrace sun50i_a64_read_cntvct_el0(void)
{
	return __sun50i_a64_read_reg(cntvct_el0);
}

static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
{
	return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
}

static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
{
	return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
}
#endif

364 365 366 367 368 369 370
#ifdef CONFIG_ARM64_ERRATUM_1188873
static u64 notrace arm64_1188873_read_cntvct_el0(void)
{
	return read_sysreg(cntvct_el0);
}
#endif

371
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
372
DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
373 374 375 376 377
EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);

DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);

378 379 380 381
static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
						struct clock_event_device *clk)
{
	unsigned long ctrl;
382
	u64 cval;
383 384 385 386 387

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;

388 389
	if (access == ARCH_TIMER_PHYS_ACCESS) {
		cval = evt + arch_counter_get_cntpct();
390
		write_sysreg(cval, cntp_cval_el0);
391 392
	} else {
		cval = evt + arch_counter_get_cntvct();
393
		write_sysreg(cval, cntv_cval_el0);
394
	}
395 396 397 398

	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}

399
static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
400 401 402 403 404 405
					    struct clock_event_device *clk)
{
	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
	return 0;
}

406
static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
407 408 409 410 411 412
					    struct clock_event_device *clk)
{
	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
	return 0;
}

413 414 415
static const struct arch_timer_erratum_workaround ool_workarounds[] = {
#ifdef CONFIG_FSL_ERRATUM_A008585
	{
416
		.match_type = ate_match_dt,
417
		.id = "fsl,erratum-a008585",
418
		.desc = "Freescale erratum a005858",
419 420
		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
421
		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
422
		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
423 424
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
425 426
	},
#endif
427 428
#ifdef CONFIG_HISILICON_ERRATUM_161010101
	{
429
		.match_type = ate_match_dt,
430
		.id = "hisilicon,erratum-161010101",
431
		.desc = "HiSilicon erratum 161010101",
432 433
		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
434
		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
435
		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
436 437
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
438 439 440 441 442 443 444
	},
	{
		.match_type = ate_match_acpi_oem_info,
		.id = hisi_161010101_oem_info,
		.desc = "HiSilicon erratum 161010101",
		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
445
		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
446 447 448
		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
449 450
	},
#endif
451 452 453 454 455
#ifdef CONFIG_ARM64_ERRATUM_858921
	{
		.match_type = ate_match_local_cap_id,
		.id = (void *)ARM64_WORKAROUND_858921,
		.desc = "ARM erratum 858921",
456
		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
457 458 459
		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
	},
#endif
460 461 462 463 464 465 466 467 468 469 470 471 472
#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
	{
		.match_type = ate_match_dt,
		.id = "allwinner,erratum-unknown1",
		.desc = "Allwinner erratum UNKNOWN1",
		.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
		.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
	},
#endif
473 474 475 476 477 478 479 480
#ifdef CONFIG_ARM64_ERRATUM_1188873
	{
		.match_type = ate_match_local_cap_id,
		.id = (void *)ARM64_WORKAROUND_1188873,
		.desc = "ARM erratum 1188873",
		.read_cntvct_el0 = arm64_1188873_read_cntvct_el0,
	},
#endif
481
};
482 483 484 485 486 487 488 489 490 491 492 493 494

typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
			       const void *);

static
bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
				 const void *arg)
{
	const struct device_node *np = arg;

	return of_property_read_bool(np, wa->id);
}

495 496 497 498 499 500 501
static
bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
					const void *arg)
{
	return this_cpu_has_cap((uintptr_t)wa->id);
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

static
bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
				       const void *arg)
{
	static const struct ate_acpi_oem_info empty_oem_info = {};
	const struct ate_acpi_oem_info *info = wa->id;
	const struct acpi_table_header *table = arg;

	/* Iterate over the ACPI OEM info array, looking for a match */
	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
		    info->oem_revision == table->oem_revision)
			return true;

		info++;
	}

	return false;
}

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
			  ate_match_fn_t match_fn,
			  void *arg)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
		if (ool_workarounds[i].match_type != type)
			continue;

		if (match_fn(&ool_workarounds[i], arg))
			return &ool_workarounds[i];
	}

	return NULL;
}

static
543 544
void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
				  bool local)
545
{
546 547 548 549 550 551 552 553 554
	int i;

	if (local) {
		__this_cpu_write(timer_unstable_counter_workaround, wa);
	} else {
		for_each_possible_cpu(i)
			per_cpu(timer_unstable_counter_workaround, i) = wa;
	}

555 556 557 558 559
	/*
	 * Use the locked version, as we're called from the CPU
	 * hotplug framework. Otherwise, we end-up in deadlock-land.
	 */
	static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled);
560 561 562 563 564 565 566 567 568 569 570

	/*
	 * Don't use the vdso fastpath if errata require using the
	 * out-of-line counter accessor. We may change our mind pretty
	 * late in the game (with a per-CPU erratum, for example), so
	 * change both the default value and the vdso itself.
	 */
	if (wa->read_cntvct_el0) {
		clocksource_counter.archdata.vdso_direct = false;
		vdso_default = false;
	}
571 572 573 574 575 576 577
}

static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
					    void *arg)
{
	const struct arch_timer_erratum_workaround *wa;
	ate_match_fn_t match_fn = NULL;
578
	bool local = false;
579 580 581 582 583

	switch (type) {
	case ate_match_dt:
		match_fn = arch_timer_check_dt_erratum;
		break;
584 585 586 587
	case ate_match_local_cap_id:
		match_fn = arch_timer_check_local_cap_erratum;
		local = true;
		break;
588 589 590
	case ate_match_acpi_oem_info:
		match_fn = arch_timer_check_acpi_oem_erratum;
		break;
591 592 593 594 595 596 597 598 599
	default:
		WARN_ON(1);
		return;
	}

	wa = arch_timer_iterate_errata(type, match_fn, arg);
	if (!wa)
		return;

600
	if (needs_unstable_timer_counter_workaround()) {
601 602 603
		const struct arch_timer_erratum_workaround *__wa;
		__wa = __this_cpu_read(timer_unstable_counter_workaround);
		if (__wa && wa != __wa)
604
			pr_warn("Can't enable workaround for %s (clashes with %s\n)",
605 606 607 608
				wa->desc, __wa->desc);

		if (__wa)
			return;
609 610
	}

611
	arch_timer_enable_workaround(wa, local);
612 613
	pr_info("Enabling %s workaround for %s\n",
		local ? "local" : "global", wa->desc);
614 615
}

616 617 618
#define erratum_handler(fn, r, ...)					\
({									\
	bool __val;							\
619 620 621 622 623 624 625 626 627
	if (needs_unstable_timer_counter_workaround()) {		\
		const struct arch_timer_erratum_workaround *__wa;	\
		__wa = __this_cpu_read(timer_unstable_counter_workaround); \
		if (__wa && __wa->fn) {					\
			r = __wa->fn(__VA_ARGS__);			\
			__val = true;					\
		} else {						\
			__val = false;					\
		}							\
628 629 630 631 632 633
	} else {							\
		__val = false;						\
	}								\
	__val;								\
})

634 635 636 637 638 639 640
static bool arch_timer_this_cpu_has_cntvct_wa(void)
{
	const struct arch_timer_erratum_workaround *wa;

	wa = __this_cpu_read(timer_unstable_counter_workaround);
	return wa && wa->read_cntvct_el0;
}
641 642
#else
#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
643 644
#define erratum_set_next_event_tval_virt(...)		({BUG(); 0;})
#define erratum_set_next_event_tval_phys(...)		({BUG(); 0;})
645
#define erratum_handler(fn, r, ...)			({false;})
646
#define arch_timer_this_cpu_has_cntvct_wa()		({false;})
647
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
648

649
static __always_inline irqreturn_t timer_handler(const int access,
650 651 652
					struct clock_event_device *evt)
{
	unsigned long ctrl;
653

654
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
655 656
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
657
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

679 680 681 682 683 684 685 686 687 688 689 690 691 692
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
}

693 694
static __always_inline int timer_shutdown(const int access,
					  struct clock_event_device *clk)
695 696
{
	unsigned long ctrl;
697 698 699 700 701 702

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);

	return 0;
703 704
}

705
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
706
{
707
	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
708 709
}

710
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
711
{
712
	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
713 714
}

715
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
716
{
717
	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
718 719
}

720
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
721
{
722
	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
723 724
}

725
static __always_inline void set_next_event(const int access, unsigned long evt,
726
					   struct clock_event_device *clk)
727 728
{
	unsigned long ctrl;
729
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
730 731
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
732 733
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
734 735 736
}

static int arch_timer_set_next_event_virt(unsigned long evt,
737
					  struct clock_event_device *clk)
738
{
739 740 741 742
	int ret;

	if (erratum_handler(set_next_event_virt, ret, evt, clk))
		return ret;
743

744
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
745 746 747 748
	return 0;
}

static int arch_timer_set_next_event_phys(unsigned long evt,
749
					  struct clock_event_device *clk)
750
{
751 752 753 754
	int ret;

	if (erratum_handler(set_next_event_phys, ret, evt, clk))
		return ret;
755

756
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
757 758 759
	return 0;
}

760 761
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
					      struct clock_event_device *clk)
762
{
763 764 765 766 767 768 769 770 771 772 773
	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
	return 0;
}

static int arch_timer_set_next_event_phys_mem(unsigned long evt,
					      struct clock_event_device *clk)
{
	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
	return 0;
}

774 775
static void __arch_timer_setup(unsigned type,
			       struct clock_event_device *clk)
776 777 778
{
	clk->features = CLOCK_EVT_FEAT_ONESHOT;

779
	if (type == ARCH_TIMER_TYPE_CP15) {
780 781
		if (arch_timer_c3stop)
			clk->features |= CLOCK_EVT_FEAT_C3STOP;
782 783 784
		clk->name = "arch_sys_timer";
		clk->rating = 450;
		clk->cpumask = cpumask_of(smp_processor_id());
785 786
		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
		switch (arch_timer_uses_ppi) {
787
		case ARCH_TIMER_VIRT_PPI:
788
			clk->set_state_shutdown = arch_timer_shutdown_virt;
789
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
790
			clk->set_next_event = arch_timer_set_next_event_virt;
791
			break;
792 793 794
		case ARCH_TIMER_PHYS_SECURE_PPI:
		case ARCH_TIMER_PHYS_NONSECURE_PPI:
		case ARCH_TIMER_HYP_PPI:
795
			clk->set_state_shutdown = arch_timer_shutdown_phys;
796
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
797
			clk->set_next_event = arch_timer_set_next_event_phys;
798 799 800
			break;
		default:
			BUG();
801
		}
802

803
		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
804
	} else {
805
		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
806 807
		clk->name = "arch_mem_timer";
		clk->rating = 400;
808
		clk->cpumask = cpu_possible_mask;
809
		if (arch_timer_mem_use_virtual) {
810
			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
811
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
812 813 814
			clk->set_next_event =
				arch_timer_set_next_event_virt_mem;
		} else {
815
			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
816
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
817 818 819
			clk->set_next_event =
				arch_timer_set_next_event_phys_mem;
		}
820 821
	}

822
	clk->set_state_shutdown(clk);
823

824 825
	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
}
826

827 828 829 830 831 832 833 834 835 836 837 838 839
static void arch_timer_evtstrm_enable(int divider)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
	/* Set the divider and enable virtual event stream */
	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
			| ARCH_TIMER_VIRT_EVT_EN;
	arch_timer_set_cntkctl(cntkctl);
	elf_hwcap |= HWCAP_EVTSTRM;
#ifdef CONFIG_COMPAT
	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
#endif
840
	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
841 842
}

843 844 845 846 847 848 849 850 851 852 853 854 855
static void arch_timer_configure_evtstream(void)
{
	int evt_stream_div, pos;

	/* Find the closest power of two to the divisor */
	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
	pos = fls(evt_stream_div);
	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
		pos--;
	/* enable event stream */
	arch_timer_evtstrm_enable(min(pos, 15));
}

856 857 858 859
static void arch_counter_set_user_access(void)
{
	u32 cntkctl = arch_timer_get_cntkctl();

860
	/* Disable user access to the timers and both counters */
861 862 863
	/* Also disable virtual event stream */
	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
			| ARCH_TIMER_USR_VT_ACCESS_EN
864
		        | ARCH_TIMER_USR_VCT_ACCESS_EN
865 866 867
			| ARCH_TIMER_VIRT_EVT_EN
			| ARCH_TIMER_USR_PCT_ACCESS_EN);

868 869 870 871 872 873 874 875 876
	/*
	 * Enable user access to the virtual counter if it doesn't
	 * need to be workaround. The vdso may have been already
	 * disabled though.
	 */
	if (arch_timer_this_cpu_has_cntvct_wa())
		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
	else
		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
877 878 879 880

	arch_timer_set_cntkctl(cntkctl);
}

881 882
static bool arch_timer_has_nonsecure_ppi(void)
{
883 884
	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
885 886
}

887 888 889 890 891 892 893 894 895 896 897 898 899
static u32 check_ppi_trigger(int irq)
{
	u32 flags = irq_get_trigger_type(irq);

	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
		pr_warn("WARNING: Please fix your firmware\n");
		flags = IRQF_TRIGGER_LOW;
	}

	return flags;
}

900
static int arch_timer_starting_cpu(unsigned int cpu)
901
{
902
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
903
	u32 flags;
904

905
	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
906

907 908
	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
909

910
	if (arch_timer_has_nonsecure_ppi()) {
911 912 913
		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
				  flags);
914
	}
915 916

	arch_counter_set_user_access();
917
	if (evtstrm_enable)
918
		arch_timer_configure_evtstream();
919 920 921 922

	return 0;
}

923 924 925 926 927 928
/*
 * For historical reasons, when probing with DT we use whichever (non-zero)
 * rate was probed first, and don't verify that others match. If the first node
 * probed has a clock-frequency property, this overrides the HW register.
 */
static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
929
{
930 931 932
	/* Who has more than one independent system counter? */
	if (arch_timer_rate)
		return;
933

934 935
	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
		arch_timer_rate = rate;
936

937 938
	/* Check the timer frequency. */
	if (arch_timer_rate == 0)
939
		pr_warn("frequency not available\n");
940 941 942 943
}

static void arch_timer_banner(unsigned type)
{
944
	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
945 946 947 948
		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
			" and " : "",
		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
949 950
		(unsigned long)arch_timer_rate / 1000000,
		(unsigned long)(arch_timer_rate / 10000) % 100,
951
		type & ARCH_TIMER_TYPE_CP15 ?
952
			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
953
			"",
954 955
		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
		type & ARCH_TIMER_TYPE_MEM ?
956 957
			arch_timer_mem_use_virtual ? "virt" : "phys" :
			"");
958 959 960 961 962 963 964
}

u32 arch_timer_get_rate(void)
{
	return arch_timer_rate;
}

965 966 967 968 969 970 971 972 973 974
bool arch_timer_evtstrm_available(void)
{
	/*
	 * We might get called from a preemptible context. This is fine
	 * because availability of the event stream should be always the same
	 * for a preemptible context and context where we might resume a task.
	 */
	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
}

975
static u64 arch_counter_get_cntvct_mem(void)
976
{
977 978 979 980 981 982 983 984 985
	u32 vct_lo, vct_hi, tmp_hi;

	do {
		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
	} while (vct_hi != tmp_hi);

	return ((u64) vct_hi << 32) | vct_lo;
986 987
}

988 989 990 991 992 993
static struct arch_timer_kvm_info arch_timer_kvm_info;

struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
{
	return &arch_timer_kvm_info;
}
994

995 996 997 998 999
static void __init arch_counter_register(unsigned type)
{
	u64 start_count;

	/* Register the CP15 based counter if we have one */
1000
	if (type & ARCH_TIMER_TYPE_CP15) {
1001
		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1002
		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1003 1004 1005
			arch_timer_read_counter = arch_counter_get_cntvct;
		else
			arch_timer_read_counter = arch_counter_get_cntpct;
1006

1007
		clocksource_counter.archdata.vdso_direct = vdso_default;
1008
	} else {
1009
		arch_timer_read_counter = arch_counter_get_cntvct_mem;
1010 1011
	}

1012 1013
	if (!arch_counter_suspend_stop)
		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1014 1015 1016 1017
	start_count = arch_timer_read_counter();
	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
1018 1019
	timecounter_init(&arch_timer_kvm_info.timecounter,
			 &cyclecounter, start_count);
1020 1021 1022

	/* 56 bits minimum, so we assume worst case rollover */
	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1023 1024
}

1025
static void arch_timer_stop(struct clock_event_device *clk)
1026
{
1027
	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1028

1029 1030
	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
	if (arch_timer_has_nonsecure_ppi())
1031
		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1032

1033
	clk->set_state_shutdown(clk);
1034 1035
}

1036
static int arch_timer_dying_cpu(unsigned int cpu)
1037
{
1038
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1039

1040 1041
	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);

1042 1043
	arch_timer_stop(clk);
	return 0;
1044 1045
}

1046
#ifdef CONFIG_CPU_PM
1047
static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1048 1049 1050
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
{
1051
	if (action == CPU_PM_ENTER) {
1052
		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1053 1054 1055

		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1056
		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1057 1058 1059 1060

		if (elf_hwcap & HWCAP_EVTSTRM)
			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
	}
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_pm_notifier = {
	.notifier_call = arch_timer_cpu_pm_notify,
};

static int __init arch_timer_cpu_pm_init(void)
{
	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
}
1072 1073 1074 1075 1076 1077

static void __init arch_timer_cpu_pm_deinit(void)
{
	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
}

1078 1079 1080 1081 1082
#else
static int __init arch_timer_cpu_pm_init(void)
{
	return 0;
}
1083 1084 1085 1086

static void __init arch_timer_cpu_pm_deinit(void)
{
}
1087 1088
#endif

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
static int __init arch_timer_register(void)
{
	int err;
	int ppi;

	arch_timer_evt = alloc_percpu(struct clock_event_device);
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}

1100 1101
	ppi = arch_timer_ppi[arch_timer_uses_ppi];
	switch (arch_timer_uses_ppi) {
1102
	case ARCH_TIMER_VIRT_PPI:
1103 1104
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
1105
		break;
1106 1107
	case ARCH_TIMER_PHYS_SECURE_PPI:
	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1108 1109
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
1110
		if (!err && arch_timer_has_nonsecure_ppi()) {
1111
			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1112 1113 1114
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
1115
				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1116 1117
						arch_timer_evt);
		}
1118
		break;
1119
	case ARCH_TIMER_HYP_PPI:
1120 1121 1122 1123 1124
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		break;
	default:
		BUG();
1125 1126 1127
	}

	if (err) {
1128
		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1129 1130 1131
		goto out_free;
	}

1132 1133 1134 1135
	err = arch_timer_cpu_pm_init();
	if (err)
		goto out_unreg_notify;

1136 1137
	/* Register and immediately configure the timer on the boot CPU */
	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
T
Thomas Gleixner 已提交
1138
				"clockevents/arm/arch_timer:starting",
1139 1140 1141
				arch_timer_starting_cpu, arch_timer_dying_cpu);
	if (err)
		goto out_unreg_cpupm;
1142 1143
	return 0;

1144 1145 1146
out_unreg_cpupm:
	arch_timer_cpu_pm_deinit();

1147
out_unreg_notify:
1148 1149
	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
	if (arch_timer_has_nonsecure_ppi())
1150
		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1151 1152 1153 1154 1155 1156 1157 1158
				arch_timer_evt);

out_free:
	free_percpu(arch_timer_evt);
out:
	return err;
}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
{
	int ret;
	irq_handler_t func;
	struct arch_timer *t;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return -ENOMEM;

	t->base = base;
	t->evt.irq = irq;
1171
	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1172 1173 1174 1175 1176 1177 1178 1179

	if (arch_timer_mem_use_virtual)
		func = arch_timer_handler_virt_mem;
	else
		func = arch_timer_handler_phys_mem;

	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
	if (ret) {
1180
		pr_err("Failed to request mem timer irq\n");
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
		kfree(t);
	}

	return ret;
}

static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer",    },
	{ .compatible   = "arm,armv8-timer",    },
	{},
};

static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer-mem", },
	{},
};

1198
static bool __init arch_timer_needs_of_probing(void)
1199 1200
{
	struct device_node *dn;
1201
	bool needs_probing = false;
1202
	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1203

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	/* We have two timers, and both device-tree nodes are probed. */
	if ((arch_timers_present & mask) == mask)
		return false;

	/*
	 * Only one type of timer is probed,
	 * check if we have another type of timer node in device-tree.
	 */
	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
	else
		dn = of_find_matching_node(NULL, arch_timer_of_match);

	if (dn && of_device_is_available(dn))
1218
		needs_probing = true;
1219

1220 1221
	of_node_put(dn);

1222
	return needs_probing;
1223 1224
}

1225
static int __init arch_timer_common_init(void)
1226 1227 1228
{
	arch_timer_banner(arch_timers_present);
	arch_counter_register(arch_timers_present);
1229
	return arch_timer_arch_init();
1230 1231
}

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
/**
 * arch_timer_select_ppi() - Select suitable PPI for the current system.
 *
 * If HYP mode is available, we know that the physical timer
 * has been configured to be accessible from PL1. Use it, so
 * that a guest can use the virtual timer instead.
 *
 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
 * accesses to CNTP_*_EL1 registers are silently redirected to
 * their CNTHP_*_EL2 counterparts, and use a different PPI
 * number.
 *
 * If no interrupt provided for virtual timer, we'll have to
 * stick to the physical timer. It'd better be accessible...
 * For arm64 we never use the secure interrupt.
 *
 * Return: a suitable PPI type for the current system.
 */
static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1251
{
1252 1253
	if (is_kernel_in_hyp_mode())
		return ARCH_TIMER_HYP_PPI;
1254

1255 1256
	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
		return ARCH_TIMER_VIRT_PPI;
1257

1258 1259 1260 1261 1262 1263
	if (IS_ENABLED(CONFIG_ARM64))
		return ARCH_TIMER_PHYS_NONSECURE_PPI;

	return ARCH_TIMER_PHYS_SECURE_PPI;
}

1264
static int __init arch_timer_of_init(struct device_node *np)
1265
{
1266
	int i, ret;
1267
	u32 rate;
1268

1269
	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1270
		pr_warn("multiple nodes in dt, skipping\n");
1271
		return 0;
1272 1273
	}

1274
	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1275
	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1276 1277
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

1278 1279
	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];

1280
	rate = arch_timer_get_cntfrq();
1281
	arch_timer_of_configure_rate(rate, np);
1282 1283 1284

	arch_timer_c3stop = !of_property_read_bool(np, "always-on");

1285 1286
	/* Check for globally applicable workarounds */
	arch_timer_check_ool_workaround(ate_match_dt, np);
1287

1288 1289 1290 1291 1292 1293
	/*
	 * If we cannot rely on firmware initializing the timer registers then
	 * we should use the physical timers instead.
	 */
	if (IS_ENABLED(CONFIG_ARM) &&
	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1294
		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1295 1296 1297 1298 1299 1300 1301
	else
		arch_timer_uses_ppi = arch_timer_select_ppi();

	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
		pr_err("No interrupt available, giving up\n");
		return -EINVAL;
	}
1302

1303 1304 1305 1306
	/* On some systems, the counter stops ticking when in suspend. */
	arch_counter_suspend_stop = of_property_read_bool(np,
							 "arm,no-tick-in-suspend");

1307 1308 1309 1310 1311 1312 1313 1314
	ret = arch_timer_register();
	if (ret)
		return ret;

	if (arch_timer_needs_of_probing())
		return 0;

	return arch_timer_common_init();
1315
}
1316 1317
TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1318

1319 1320
static u32 __init
arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1321
{
1322 1323
	void __iomem *base;
	u32 rate;
1324

1325 1326 1327 1328 1329 1330
	base = ioremap(frame->cntbase, frame->size);
	if (!base) {
		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
		return 0;
	}

1331
	rate = readl_relaxed(base + CNTFRQ);
1332

1333
	iounmap(base);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346

	return rate;
}

static struct arch_timer_mem_frame * __init
arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
{
	struct arch_timer_mem_frame *frame, *best_frame = NULL;
	void __iomem *cntctlbase;
	u32 cnttidr;
	int i;

	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1347
	if (!cntctlbase) {
1348 1349 1350
		pr_err("Can't map CNTCTLBase @ %pa\n",
			&timer_mem->cntctlbase);
		return NULL;
1351 1352 1353 1354 1355 1356 1357 1358
	}

	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);

	/*
	 * Try to find a virtual capable frame. Otherwise fall back to a
	 * physical capable frame.
	 */
1359 1360 1361
	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1362

1363 1364 1365
		frame = &timer_mem->frame[i];
		if (!frame->valid)
			continue;
1366

1367
		/* Try enabling everything, and see what sticks */
1368 1369
		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1370

1371
		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1372
		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1373 1374 1375 1376
			best_frame = frame;
			arch_timer_mem_use_virtual = true;
			break;
		}
1377 1378 1379 1380

		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
			continue;

1381
		best_frame = frame;
1382 1383
	}

1384 1385
	iounmap(cntctlbase);

1386
	return best_frame;
1387 1388 1389 1390 1391 1392 1393
}

static int __init
arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
{
	void __iomem *base;
	int ret, irq = 0;
1394 1395

	if (arch_timer_mem_use_virtual)
1396
		irq = frame->virt_irq;
1397
	else
1398
		irq = frame->phys_irq;
1399

1400
	if (!irq) {
1401
		pr_err("Frame missing %s irq.\n",
1402
		       arch_timer_mem_use_virtual ? "virt" : "phys");
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
		return -EINVAL;
	}

	if (!request_mem_region(frame->cntbase, frame->size,
				"arch_mem_timer"))
		return -EBUSY;

	base = ioremap(frame->cntbase, frame->size);
	if (!base) {
		pr_err("Can't map frame's registers\n");
		return -ENXIO;
1414 1415
	}

1416
	ret = arch_timer_mem_register(base, irq);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	if (ret) {
		iounmap(base);
		return ret;
	}

	arch_counter_base = base;
	arch_timers_present |= ARCH_TIMER_TYPE_MEM;

	return 0;
}

static int __init arch_timer_mem_of_init(struct device_node *np)
{
	struct arch_timer_mem *timer_mem;
	struct arch_timer_mem_frame *frame;
	struct device_node *frame_node;
	struct resource res;
	int ret = -EINVAL;
	u32 rate;

	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
	if (!timer_mem)
		return -ENOMEM;

	if (of_address_to_resource(np, 0, &res))
1442
		goto out;
1443 1444
	timer_mem->cntctlbase = res.start;
	timer_mem->size = resource_size(&res);
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	for_each_available_child_of_node(np, frame_node) {
		u32 n;
		struct arch_timer_mem_frame *frame;

		if (of_property_read_u32(frame_node, "frame-number", &n)) {
			pr_err(FW_BUG "Missing frame-number.\n");
			of_node_put(frame_node);
			goto out;
		}
		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
			of_node_put(frame_node);
			goto out;
		}
		frame = &timer_mem->frame[n];

		if (frame->valid) {
			pr_err(FW_BUG "Duplicated frame-number.\n");
			of_node_put(frame_node);
			goto out;
		}

		if (of_address_to_resource(frame_node, 0, &res)) {
			of_node_put(frame_node);
			goto out;
		}
		frame->cntbase = res.start;
		frame->size = resource_size(&res);

		frame->virt_irq = irq_of_parse_and_map(frame_node,
						       ARCH_TIMER_VIRT_SPI);
		frame->phys_irq = irq_of_parse_and_map(frame_node,
						       ARCH_TIMER_PHYS_SPI);

		frame->valid = true;
	}

	frame = arch_timer_mem_find_best_frame(timer_mem);
	if (!frame) {
1486 1487
		pr_err("Unable to find a suitable frame in timer @ %pa\n",
			&timer_mem->cntctlbase);
1488 1489 1490 1491 1492 1493 1494 1495 1496
		ret = -EINVAL;
		goto out;
	}

	rate = arch_timer_mem_frame_get_cntfrq(frame);
	arch_timer_of_configure_rate(rate, np);

	ret = arch_timer_mem_frame_register(frame);
	if (!ret && !arch_timer_needs_of_probing())
1497
		ret = arch_timer_common_init();
1498
out:
1499
	kfree(timer_mem);
1500
	return ret;
1501
}
1502
TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1503
		       arch_timer_mem_of_init);
1504

1505
#ifdef CONFIG_ACPI_GTDT
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
static int __init
arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
{
	struct arch_timer_mem_frame *frame;
	u32 rate;
	int i;

	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
		frame = &timer_mem->frame[i];

		if (!frame->valid)
			continue;

		rate = arch_timer_mem_frame_get_cntfrq(frame);
		if (rate == arch_timer_rate)
			continue;

		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
			&frame->cntbase,
			(unsigned long)rate, (unsigned long)arch_timer_rate);

		return -EINVAL;
	}

	return 0;
}

static int __init arch_timer_mem_acpi_init(int platform_timer_count)
{
	struct arch_timer_mem *timers, *timer;
1536
	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
	int timer_count, i, ret = 0;

	timers = kcalloc(platform_timer_count, sizeof(*timers),
			    GFP_KERNEL);
	if (!timers)
		return -ENOMEM;

	ret = acpi_arch_timer_mem_init(timers, &timer_count);
	if (ret || !timer_count)
		goto out;

	/*
	 * While unlikely, it's theoretically possible that none of the frames
	 * in a timer expose the combination of feature we want.
	 */
1552
	for (i = 0; i < timer_count; i++) {
1553 1554 1555
		timer = &timers[i];

		frame = arch_timer_mem_find_best_frame(timer);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
		if (!best_frame)
			best_frame = frame;

		ret = arch_timer_mem_verify_cntfrq(timer);
		if (ret) {
			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
			goto out;
		}

		if (!best_frame) /* implies !frame */
			/*
			 * Only complain about missing suitable frames if we
			 * haven't already found one in a previous iteration.
			 */
			pr_err("Unable to find a suitable frame in timer @ %pa\n",
				&timer->cntctlbase);
1572 1573
	}

1574 1575
	if (best_frame)
		ret = arch_timer_mem_frame_register(best_frame);
1576 1577 1578 1579 1580 1581
out:
	kfree(timers);
	return ret;
}

/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1582 1583
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
{
1584
	int ret, platform_timer_count;
1585

1586
	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1587
		pr_warn("already initialized, skipping\n");
1588 1589 1590
		return -EINVAL;
	}

1591
	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1592

1593
	ret = acpi_gtdt_init(table, &platform_timer_count);
1594 1595 1596 1597
	if (ret) {
		pr_err("Failed to init GTDT table.\n");
		return ret;
	}
1598

1599
	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1600
		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1601

1602
	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1603
		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1604

1605
	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1606
		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1607

1608 1609
	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];

1610 1611 1612 1613 1614 1615 1616 1617 1618
	/*
	 * When probing via ACPI, we have no mechanism to override the sysreg
	 * CNTFRQ value. This *must* be correct.
	 */
	arch_timer_rate = arch_timer_get_cntfrq();
	if (!arch_timer_rate) {
		pr_err(FW_BUG "frequency not available.\n");
		return -EINVAL;
	}
1619

1620 1621 1622 1623 1624 1625
	arch_timer_uses_ppi = arch_timer_select_ppi();
	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
		pr_err("No interrupt available, giving up\n");
		return -EINVAL;
	}

1626
	/* Always-on capability */
1627
	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1628

1629 1630 1631
	/* Check for globally applicable workarounds */
	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);

1632 1633 1634 1635
	ret = arch_timer_register();
	if (ret)
		return ret;

1636 1637 1638 1639
	if (platform_timer_count &&
	    arch_timer_mem_acpi_init(platform_timer_count))
		pr_err("Failed to initialize memory-mapped timer.\n");

1640
	return arch_timer_common_init();
1641
}
1642
TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1643
#endif