send.c 160.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (C) 2012 Alexander Block.  All rights reserved.
 */

#include <linux/bsearch.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/sort.h>
#include <linux/mount.h>
#include <linux/xattr.h>
#include <linux/posix_acl_xattr.h>
#include <linux/radix-tree.h>
14
#include <linux/vmalloc.h>
A
Andy Shevchenko 已提交
15
#include <linux/string.h>
16
#include <linux/compat.h>
17
#include <linux/crc32c.h>
18 19 20 21 22 23 24

#include "send.h"
#include "backref.h"
#include "locking.h"
#include "disk-io.h"
#include "btrfs_inode.h"
#include "transaction.h"
25
#include "compression.h"
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

/*
 * A fs_path is a helper to dynamically build path names with unknown size.
 * It reallocates the internal buffer on demand.
 * It allows fast adding of path elements on the right side (normal path) and
 * fast adding to the left side (reversed path). A reversed path can also be
 * unreversed if needed.
 */
struct fs_path {
	union {
		struct {
			char *start;
			char *end;

			char *buf;
41 42
			unsigned short buf_len:15;
			unsigned short reversed:1;
43 44
			char inline_buf[];
		};
45 46 47 48 49 50
		/*
		 * Average path length does not exceed 200 bytes, we'll have
		 * better packing in the slab and higher chance to satisfy
		 * a allocation later during send.
		 */
		char pad[256];
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
	};
};
#define FS_PATH_INLINE_SIZE \
	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))


/* reused for each extent */
struct clone_root {
	struct btrfs_root *root;
	u64 ino;
	u64 offset;

	u64 found_refs;
};

#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)

struct send_ctx {
	struct file *send_filp;
	loff_t send_off;
	char *send_buf;
	u32 send_size;
	u32 send_max_size;
	u64 total_send_size;
	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
77
	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

	struct btrfs_root *send_root;
	struct btrfs_root *parent_root;
	struct clone_root *clone_roots;
	int clone_roots_cnt;

	/* current state of the compare_tree call */
	struct btrfs_path *left_path;
	struct btrfs_path *right_path;
	struct btrfs_key *cmp_key;

	/*
	 * infos of the currently processed inode. In case of deleted inodes,
	 * these are the values from the deleted inode.
	 */
	u64 cur_ino;
	u64 cur_inode_gen;
	int cur_inode_new;
	int cur_inode_new_gen;
	int cur_inode_deleted;
	u64 cur_inode_size;
	u64 cur_inode_mode;
L
Liu Bo 已提交
100
	u64 cur_inode_rdev;
101
	u64 cur_inode_last_extent;
102
	u64 cur_inode_next_write_offset;
103 104 105 106 107 108 109 110 111 112

	u64 send_progress;

	struct list_head new_refs;
	struct list_head deleted_refs;

	struct radix_tree_root name_cache;
	struct list_head name_cache_list;
	int name_cache_size;

L
Liu Bo 已提交
113 114
	struct file_ra_state ra;

115
	char *read_buf;
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

	/*
	 * We process inodes by their increasing order, so if before an
	 * incremental send we reverse the parent/child relationship of
	 * directories such that a directory with a lower inode number was
	 * the parent of a directory with a higher inode number, and the one
	 * becoming the new parent got renamed too, we can't rename/move the
	 * directory with lower inode number when we finish processing it - we
	 * must process the directory with higher inode number first, then
	 * rename/move it and then rename/move the directory with lower inode
	 * number. Example follows.
	 *
	 * Tree state when the first send was performed:
	 *
	 * .
	 * |-- a                   (ino 257)
	 *     |-- b               (ino 258)
	 *         |
	 *         |
	 *         |-- c           (ino 259)
	 *         |   |-- d       (ino 260)
	 *         |
	 *         |-- c2          (ino 261)
	 *
	 * Tree state when the second (incremental) send is performed:
	 *
	 * .
	 * |-- a                   (ino 257)
	 *     |-- b               (ino 258)
	 *         |-- c2          (ino 261)
	 *             |-- d2      (ino 260)
	 *                 |-- cc  (ino 259)
	 *
	 * The sequence of steps that lead to the second state was:
	 *
	 * mv /a/b/c/d /a/b/c2/d2
	 * mv /a/b/c /a/b/c2/d2/cc
	 *
	 * "c" has lower inode number, but we can't move it (2nd mv operation)
	 * before we move "d", which has higher inode number.
	 *
	 * So we just memorize which move/rename operations must be performed
	 * later when their respective parent is processed and moved/renamed.
	 */

	/* Indexed by parent directory inode number. */
	struct rb_root pending_dir_moves;

	/*
	 * Reverse index, indexed by the inode number of a directory that
	 * is waiting for the move/rename of its immediate parent before its
	 * own move/rename can be performed.
	 */
	struct rb_root waiting_dir_moves;
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

	/*
	 * A directory that is going to be rm'ed might have a child directory
	 * which is in the pending directory moves index above. In this case,
	 * the directory can only be removed after the move/rename of its child
	 * is performed. Example:
	 *
	 * Parent snapshot:
	 *
	 * .                        (ino 256)
	 * |-- a/                   (ino 257)
	 *     |-- b/               (ino 258)
	 *         |-- c/           (ino 259)
	 *         |   |-- x/       (ino 260)
	 *         |
	 *         |-- y/           (ino 261)
	 *
	 * Send snapshot:
	 *
	 * .                        (ino 256)
	 * |-- a/                   (ino 257)
	 *     |-- b/               (ino 258)
	 *         |-- YY/          (ino 261)
	 *              |-- x/      (ino 260)
	 *
	 * Sequence of steps that lead to the send snapshot:
	 * rm -f /a/b/c/foo.txt
	 * mv /a/b/y /a/b/YY
	 * mv /a/b/c/x /a/b/YY
	 * rmdir /a/b/c
	 *
	 * When the child is processed, its move/rename is delayed until its
	 * parent is processed (as explained above), but all other operations
	 * like update utimes, chown, chgrp, etc, are performed and the paths
	 * that it uses for those operations must use the orphanized name of
	 * its parent (the directory we're going to rm later), so we need to
	 * memorize that name.
	 *
	 * Indexed by the inode number of the directory to be deleted.
	 */
	struct rb_root orphan_dirs;
211 212 213 214 215 216 217 218 219 220 221 222 223 224
};

struct pending_dir_move {
	struct rb_node node;
	struct list_head list;
	u64 parent_ino;
	u64 ino;
	u64 gen;
	struct list_head update_refs;
};

struct waiting_dir_move {
	struct rb_node node;
	u64 ino;
225 226 227 228 229 230
	/*
	 * There might be some directory that could not be removed because it
	 * was waiting for this directory inode to be moved first. Therefore
	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
	 */
	u64 rmdir_ino;
231
	bool orphanized;
232 233 234 235 236 237
};

struct orphan_dir_info {
	struct rb_node node;
	u64 ino;
	u64 gen;
238
	u64 last_dir_index_offset;
239 240 241 242
};

struct name_cache_entry {
	struct list_head list;
243 244 245 246 247 248 249 250 251
	/*
	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
	 * more then one inum would fall into the same entry, we use radix_list
	 * to store the additional entries. radix_list is also used to store
	 * entries where two entries have the same inum but different
	 * generations.
	 */
	struct list_head radix_list;
252 253 254 255 256 257 258 259 260 261
	u64 ino;
	u64 gen;
	u64 parent_ino;
	u64 parent_gen;
	int ret;
	int need_later_update;
	int name_len;
	char name[];
};

262
__cold
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static void inconsistent_snapshot_error(struct send_ctx *sctx,
					enum btrfs_compare_tree_result result,
					const char *what)
{
	const char *result_string;

	switch (result) {
	case BTRFS_COMPARE_TREE_NEW:
		result_string = "new";
		break;
	case BTRFS_COMPARE_TREE_DELETED:
		result_string = "deleted";
		break;
	case BTRFS_COMPARE_TREE_CHANGED:
		result_string = "updated";
		break;
	case BTRFS_COMPARE_TREE_SAME:
		ASSERT(0);
		result_string = "unchanged";
		break;
	default:
		ASSERT(0);
		result_string = "unexpected";
	}

	btrfs_err(sctx->send_root->fs_info,
		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
		  result_string, what, sctx->cmp_key->objectid,
		  sctx->send_root->root_key.objectid,
		  (sctx->parent_root ?
		   sctx->parent_root->root_key.objectid : 0));
}

296 297
static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);

298 299 300 301 302
static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx *sctx, u64 ino);

static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);

303 304 305 306 307 308 309
static int need_send_hole(struct send_ctx *sctx)
{
	return (sctx->parent_root && !sctx->cur_inode_new &&
		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
		S_ISREG(sctx->cur_inode_mode));
}

310 311 312 313 314 315 316 317 318 319 320 321 322
static void fs_path_reset(struct fs_path *p)
{
	if (p->reversed) {
		p->start = p->buf + p->buf_len - 1;
		p->end = p->start;
		*p->start = 0;
	} else {
		p->start = p->buf;
		p->end = p->start;
		*p->start = 0;
	}
}

323
static struct fs_path *fs_path_alloc(void)
324 325 326
{
	struct fs_path *p;

327
	p = kmalloc(sizeof(*p), GFP_KERNEL);
328 329 330 331 332 333 334 335 336
	if (!p)
		return NULL;
	p->reversed = 0;
	p->buf = p->inline_buf;
	p->buf_len = FS_PATH_INLINE_SIZE;
	fs_path_reset(p);
	return p;
}

337
static struct fs_path *fs_path_alloc_reversed(void)
338 339 340
{
	struct fs_path *p;

341
	p = fs_path_alloc();
342 343 344 345 346 347 348
	if (!p)
		return NULL;
	p->reversed = 1;
	fs_path_reset(p);
	return p;
}

349
static void fs_path_free(struct fs_path *p)
350 351 352
{
	if (!p)
		return;
353 354
	if (p->buf != p->inline_buf)
		kfree(p->buf);
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
	kfree(p);
}

static int fs_path_len(struct fs_path *p)
{
	return p->end - p->start;
}

static int fs_path_ensure_buf(struct fs_path *p, int len)
{
	char *tmp_buf;
	int path_len;
	int old_buf_len;

	len++;

	if (p->buf_len >= len)
		return 0;

374 375 376 377 378
	if (len > PATH_MAX) {
		WARN_ON(1);
		return -ENOMEM;
	}

379 380 381
	path_len = p->end - p->start;
	old_buf_len = p->buf_len;

382 383 384
	/*
	 * First time the inline_buf does not suffice
	 */
385
	if (p->buf == p->inline_buf) {
386
		tmp_buf = kmalloc(len, GFP_KERNEL);
387 388 389
		if (tmp_buf)
			memcpy(tmp_buf, p->buf, old_buf_len);
	} else {
390
		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
391
	}
392 393 394 395 396 397 398 399
	if (!tmp_buf)
		return -ENOMEM;
	p->buf = tmp_buf;
	/*
	 * The real size of the buffer is bigger, this will let the fast path
	 * happen most of the time
	 */
	p->buf_len = ksize(p->buf);
400

401 402 403 404 405 406 407 408 409 410 411 412
	if (p->reversed) {
		tmp_buf = p->buf + old_buf_len - path_len - 1;
		p->end = p->buf + p->buf_len - 1;
		p->start = p->end - path_len;
		memmove(p->start, tmp_buf, path_len + 1);
	} else {
		p->start = p->buf;
		p->end = p->start + path_len;
	}
	return 0;
}

413 414
static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
				   char **prepared)
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
{
	int ret;
	int new_len;

	new_len = p->end - p->start + name_len;
	if (p->start != p->end)
		new_len++;
	ret = fs_path_ensure_buf(p, new_len);
	if (ret < 0)
		goto out;

	if (p->reversed) {
		if (p->start != p->end)
			*--p->start = '/';
		p->start -= name_len;
430
		*prepared = p->start;
431 432 433
	} else {
		if (p->start != p->end)
			*p->end++ = '/';
434
		*prepared = p->end;
435 436 437 438 439 440 441 442 443 444 445
		p->end += name_len;
		*p->end = 0;
	}

out:
	return ret;
}

static int fs_path_add(struct fs_path *p, const char *name, int name_len)
{
	int ret;
446
	char *prepared;
447

448
	ret = fs_path_prepare_for_add(p, name_len, &prepared);
449 450
	if (ret < 0)
		goto out;
451
	memcpy(prepared, name, name_len);
452 453 454 455 456 457 458 459

out:
	return ret;
}

static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
{
	int ret;
460
	char *prepared;
461

462
	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
463 464
	if (ret < 0)
		goto out;
465
	memcpy(prepared, p2->start, p2->end - p2->start);
466 467 468 469 470 471 472 473 474 475

out:
	return ret;
}

static int fs_path_add_from_extent_buffer(struct fs_path *p,
					  struct extent_buffer *eb,
					  unsigned long off, int len)
{
	int ret;
476
	char *prepared;
477

478
	ret = fs_path_prepare_for_add(p, len, &prepared);
479 480 481
	if (ret < 0)
		goto out;

482
	read_extent_buffer(eb, prepared, off, len);
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

out:
	return ret;
}

static int fs_path_copy(struct fs_path *p, struct fs_path *from)
{
	int ret;

	p->reversed = from->reversed;
	fs_path_reset(p);

	ret = fs_path_add_path(p, from);

	return ret;
}


static void fs_path_unreverse(struct fs_path *p)
{
	char *tmp;
	int len;

	if (!p->reversed)
		return;

	tmp = p->start;
	len = p->end - p->start;
	p->start = p->buf;
	p->end = p->start + len;
	memmove(p->start, tmp, len + 1);
	p->reversed = 0;
}

static struct btrfs_path *alloc_path_for_send(void)
{
	struct btrfs_path *path;

	path = btrfs_alloc_path();
	if (!path)
		return NULL;
	path->search_commit_root = 1;
	path->skip_locking = 1;
526
	path->need_commit_sem = 1;
527 528 529
	return path;
}

530
static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
531 532 533 534 535
{
	int ret;
	u32 pos = 0;

	while (pos < len) {
536
		ret = kernel_write(filp, buf + pos, len - pos, off);
537 538 539 540 541
		/* TODO handle that correctly */
		/*if (ret == -ERESTARTSYS) {
			continue;
		}*/
		if (ret < 0)
542
			return ret;
543
		if (ret == 0) {
544
			return -EIO;
545 546 547 548
		}
		pos += ret;
	}

549
	return 0;
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
}

static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
{
	struct btrfs_tlv_header *hdr;
	int total_len = sizeof(*hdr) + len;
	int left = sctx->send_max_size - sctx->send_size;

	if (unlikely(left < total_len))
		return -EOVERFLOW;

	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
	hdr->tlv_type = cpu_to_le16(attr);
	hdr->tlv_len = cpu_to_le16(len);
	memcpy(hdr + 1, data, len);
	sctx->send_size += total_len;

	return 0;
}

D
David Sterba 已提交
570 571 572 573 574 575 576
#define TLV_PUT_DEFINE_INT(bits) \
	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
			u##bits attr, u##bits value)			\
	{								\
		__le##bits __tmp = cpu_to_le##bits(value);		\
		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
	}
577

D
David Sterba 已提交
578
TLV_PUT_DEFINE_INT(64)
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603

static int tlv_put_string(struct send_ctx *sctx, u16 attr,
			  const char *str, int len)
{
	if (len == -1)
		len = strlen(str);
	return tlv_put(sctx, attr, str, len);
}

static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
			const u8 *uuid)
{
	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
}

static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
				  struct extent_buffer *eb,
				  struct btrfs_timespec *ts)
{
	struct btrfs_timespec bts;
	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
	return tlv_put(sctx, attr, &bts, sizeof(bts));
}


L
Liu Bo 已提交
604
#define TLV_PUT(sctx, attrtype, data, attrlen) \
605
	do { \
L
Liu Bo 已提交
606
		ret = tlv_put(sctx, attrtype, data, attrlen); \
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)

#define TLV_PUT_INT(sctx, attrtype, bits, value) \
	do { \
		ret = tlv_put_u##bits(sctx, attrtype, value); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)

#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
#define TLV_PUT_STRING(sctx, attrtype, str, len) \
	do { \
		ret = tlv_put_string(sctx, attrtype, str, len); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)
#define TLV_PUT_PATH(sctx, attrtype, p) \
	do { \
		ret = tlv_put_string(sctx, attrtype, p->start, \
			p->end - p->start); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while(0)
#define TLV_PUT_UUID(sctx, attrtype, uuid) \
	do { \
		ret = tlv_put_uuid(sctx, attrtype, uuid); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)
#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
	do { \
		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)

static int send_header(struct send_ctx *sctx)
{
	struct btrfs_stream_header hdr;

	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);

655 656
	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
					&sctx->send_off);
657 658 659 660 661 662 663 664 665
}

/*
 * For each command/item we want to send to userspace, we call this function.
 */
static int begin_cmd(struct send_ctx *sctx, int cmd)
{
	struct btrfs_cmd_header *hdr;

666
	if (WARN_ON(!sctx->send_buf))
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
		return -EINVAL;

	BUG_ON(sctx->send_size);

	sctx->send_size += sizeof(*hdr);
	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
	hdr->cmd = cpu_to_le16(cmd);

	return 0;
}

static int send_cmd(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_cmd_header *hdr;
	u32 crc;

	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
	hdr->crc = 0;

688
	crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
689 690
	hdr->crc = cpu_to_le32(crc);

691 692
	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
					&sctx->send_off);
693 694 695 696 697 698 699 700 701 702 703 704 705 706

	sctx->total_send_size += sctx->send_size;
	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
	sctx->send_size = 0;

	return ret;
}

/*
 * Sends a move instruction to user space
 */
static int send_rename(struct send_ctx *sctx,
		     struct fs_path *from, struct fs_path *to)
{
707
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
708 709
	int ret;

710
	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731

	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

/*
 * Sends a link instruction to user space
 */
static int send_link(struct send_ctx *sctx,
		     struct fs_path *path, struct fs_path *lnk)
{
732
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
733 734
	int ret;

735
	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

/*
 * Sends an unlink instruction to user space
 */
static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
{
756
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
757 758
	int ret;

759
	btrfs_debug(fs_info, "send_unlink %s", path->start);
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778

	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

/*
 * Sends a rmdir instruction to user space
 */
static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
{
779
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
780 781
	int ret;

782
	btrfs_debug(fs_info, "send_rmdir %s", path->start);
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

/*
 * Helper function to retrieve some fields from an inode item.
 */
800 801 802
static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
			  u64 *gid, u64 *rdev)
803 804 805 806 807 808 809 810 811 812
{
	int ret;
	struct btrfs_inode_item *ii;
	struct btrfs_key key;

	key.objectid = ino;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret) {
813 814 815
		if (ret > 0)
			ret = -ENOENT;
		return ret;
816 817 818 819 820 821 822 823 824 825 826 827 828 829
	}

	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
			struct btrfs_inode_item);
	if (size)
		*size = btrfs_inode_size(path->nodes[0], ii);
	if (gen)
		*gen = btrfs_inode_generation(path->nodes[0], ii);
	if (mode)
		*mode = btrfs_inode_mode(path->nodes[0], ii);
	if (uid)
		*uid = btrfs_inode_uid(path->nodes[0], ii);
	if (gid)
		*gid = btrfs_inode_gid(path->nodes[0], ii);
830 831
	if (rdev)
		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
832

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
	return ret;
}

static int get_inode_info(struct btrfs_root *root,
			  u64 ino, u64 *size, u64 *gen,
			  u64 *mode, u64 *uid, u64 *gid,
			  u64 *rdev)
{
	struct btrfs_path *path;
	int ret;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;
	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
			       rdev);
849 850 851 852 853 854 855 856 857
	btrfs_free_path(path);
	return ret;
}

typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
				   struct fs_path *p,
				   void *ctx);

/*
858 859
 * Helper function to iterate the entries in ONE btrfs_inode_ref or
 * btrfs_inode_extref.
860 861 862
 * The iterate callback may return a non zero value to stop iteration. This can
 * be a negative value for error codes or 1 to simply stop it.
 *
863
 * path must point to the INODE_REF or INODE_EXTREF when called.
864
 */
865
static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
866 867 868
			     struct btrfs_key *found_key, int resolve,
			     iterate_inode_ref_t iterate, void *ctx)
{
869
	struct extent_buffer *eb = path->nodes[0];
870 871
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
872
	struct btrfs_inode_extref *extref;
873 874
	struct btrfs_path *tmp_path;
	struct fs_path *p;
875
	u32 cur = 0;
876
	u32 total;
877
	int slot = path->slots[0];
878 879 880
	u32 name_len;
	char *start;
	int ret = 0;
881
	int num = 0;
882
	int index;
883 884 885 886
	u64 dir;
	unsigned long name_off;
	unsigned long elem_size;
	unsigned long ptr;
887

888
	p = fs_path_alloc_reversed();
889 890 891 892 893
	if (!p)
		return -ENOMEM;

	tmp_path = alloc_path_for_send();
	if (!tmp_path) {
894
		fs_path_free(p);
895 896 897 898
		return -ENOMEM;
	}


899 900 901
	if (found_key->type == BTRFS_INODE_REF_KEY) {
		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
						    struct btrfs_inode_ref);
902
		item = btrfs_item_nr(slot);
903 904 905 906 907 908 909 910
		total = btrfs_item_size(eb, item);
		elem_size = sizeof(*iref);
	} else {
		ptr = btrfs_item_ptr_offset(eb, slot);
		total = btrfs_item_size_nr(eb, slot);
		elem_size = sizeof(*extref);
	}

911 912 913
	while (cur < total) {
		fs_path_reset(p);

914 915 916 917 918 919 920 921 922 923 924 925 926 927
		if (found_key->type == BTRFS_INODE_REF_KEY) {
			iref = (struct btrfs_inode_ref *)(ptr + cur);
			name_len = btrfs_inode_ref_name_len(eb, iref);
			name_off = (unsigned long)(iref + 1);
			index = btrfs_inode_ref_index(eb, iref);
			dir = found_key->offset;
		} else {
			extref = (struct btrfs_inode_extref *)(ptr + cur);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			name_off = (unsigned long)&extref->name;
			index = btrfs_inode_extref_index(eb, extref);
			dir = btrfs_inode_extref_parent(eb, extref);
		}

928
		if (resolve) {
929 930 931
			start = btrfs_ref_to_path(root, tmp_path, name_len,
						  name_off, eb, dir,
						  p->buf, p->buf_len);
932 933 934 935 936 937 938 939 940 941
			if (IS_ERR(start)) {
				ret = PTR_ERR(start);
				goto out;
			}
			if (start < p->buf) {
				/* overflow , try again with larger buffer */
				ret = fs_path_ensure_buf(p,
						p->buf_len + p->buf - start);
				if (ret < 0)
					goto out;
942 943 944 945
				start = btrfs_ref_to_path(root, tmp_path,
							  name_len, name_off,
							  eb, dir,
							  p->buf, p->buf_len);
946 947 948 949 950 951 952 953
				if (IS_ERR(start)) {
					ret = PTR_ERR(start);
					goto out;
				}
				BUG_ON(start < p->buf);
			}
			p->start = start;
		} else {
954 955
			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
							     name_len);
956 957 958 959
			if (ret < 0)
				goto out;
		}

960 961
		cur += elem_size + name_len;
		ret = iterate(num, dir, index, p, ctx);
962 963 964 965 966 967 968
		if (ret)
			goto out;
		num++;
	}

out:
	btrfs_free_path(tmp_path);
969
	fs_path_free(p);
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
	return ret;
}

typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
				  const char *name, int name_len,
				  const char *data, int data_len,
				  u8 type, void *ctx);

/*
 * Helper function to iterate the entries in ONE btrfs_dir_item.
 * The iterate callback may return a non zero value to stop iteration. This can
 * be a negative value for error codes or 1 to simply stop it.
 *
 * path must point to the dir item when called.
 */
985
static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
986 987 988 989 990 991 992 993
			    iterate_dir_item_t iterate, void *ctx)
{
	int ret = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_dir_item *di;
	struct btrfs_key di_key;
	char *buf = NULL;
994
	int buf_len;
995 996 997 998 999 1000 1001 1002 1003
	u32 name_len;
	u32 data_len;
	u32 cur;
	u32 len;
	u32 total;
	int slot;
	int num;
	u8 type;

1004 1005 1006 1007 1008 1009 1010
	/*
	 * Start with a small buffer (1 page). If later we end up needing more
	 * space, which can happen for xattrs on a fs with a leaf size greater
	 * then the page size, attempt to increase the buffer. Typically xattr
	 * values are small.
	 */
	buf_len = PATH_MAX;
1011
	buf = kmalloc(buf_len, GFP_KERNEL);
1012 1013 1014 1015 1016 1017 1018
	if (!buf) {
		ret = -ENOMEM;
		goto out;
	}

	eb = path->nodes[0];
	slot = path->slots[0];
1019
	item = btrfs_item_nr(slot);
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
	cur = 0;
	len = 0;
	total = btrfs_item_size(eb, item);

	num = 0;
	while (cur < total) {
		name_len = btrfs_dir_name_len(eb, di);
		data_len = btrfs_dir_data_len(eb, di);
		type = btrfs_dir_type(eb, di);
		btrfs_dir_item_key_to_cpu(eb, di, &di_key);

1032 1033 1034 1035 1036
		if (type == BTRFS_FT_XATTR) {
			if (name_len > XATTR_NAME_MAX) {
				ret = -ENAMETOOLONG;
				goto out;
			}
1037 1038
			if (name_len + data_len >
					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1039 1040 1041 1042 1043 1044 1045
				ret = -E2BIG;
				goto out;
			}
		} else {
			/*
			 * Path too long
			 */
1046
			if (name_len + data_len > PATH_MAX) {
1047 1048 1049
				ret = -ENAMETOOLONG;
				goto out;
			}
1050 1051
		}

1052 1053 1054 1055 1056 1057 1058
		if (name_len + data_len > buf_len) {
			buf_len = name_len + data_len;
			if (is_vmalloc_addr(buf)) {
				vfree(buf);
				buf = NULL;
			} else {
				char *tmp = krealloc(buf, buf_len,
1059
						GFP_KERNEL | __GFP_NOWARN);
1060 1061 1062 1063 1064 1065

				if (!tmp)
					kfree(buf);
				buf = tmp;
			}
			if (!buf) {
1066
				buf = kvmalloc(buf_len, GFP_KERNEL);
1067 1068 1069 1070 1071 1072 1073
				if (!buf) {
					ret = -ENOMEM;
					goto out;
				}
			}
		}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
				name_len + data_len);

		len = sizeof(*di) + name_len + data_len;
		di = (struct btrfs_dir_item *)((char *)di + len);
		cur += len;

		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
				data_len, type, ctx);
		if (ret < 0)
			goto out;
		if (ret) {
			ret = 0;
			goto out;
		}

		num++;
	}

out:
1094
	kvfree(buf);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	return ret;
}

static int __copy_first_ref(int num, u64 dir, int index,
			    struct fs_path *p, void *ctx)
{
	int ret;
	struct fs_path *pt = ctx;

	ret = fs_path_copy(pt, p);
	if (ret < 0)
		return ret;

	/* we want the first only */
	return 1;
}

/*
 * Retrieve the first path of an inode. If an inode has more then one
 * ref/hardlink, this is ignored.
 */
1116
static int get_inode_path(struct btrfs_root *root,
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
			  u64 ino, struct fs_path *path)
{
	int ret;
	struct btrfs_key key, found_key;
	struct btrfs_path *p;

	p = alloc_path_for_send();
	if (!p)
		return -ENOMEM;

	fs_path_reset(path);

	key.objectid = ino;
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = 0;

	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
	if (ret < 0)
		goto out;
	if (ret) {
		ret = 1;
		goto out;
	}
	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
	if (found_key.objectid != ino ||
1142 1143
	    (found_key.type != BTRFS_INODE_REF_KEY &&
	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1144 1145 1146 1147
		ret = -ENOENT;
		goto out;
	}

1148 1149
	ret = iterate_inode_ref(root, p, &found_key, 1,
				__copy_first_ref, path);
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	if (ret < 0)
		goto out;
	ret = 0;

out:
	btrfs_free_path(p);
	return ret;
}

struct backref_ctx {
	struct send_ctx *sctx;

1162
	struct btrfs_path *path;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	/* number of total found references */
	u64 found;

	/*
	 * used for clones found in send_root. clones found behind cur_objectid
	 * and cur_offset are not considered as allowed clones.
	 */
	u64 cur_objectid;
	u64 cur_offset;

	/* may be truncated in case it's the last extent in a file */
	u64 extent_len;

1176 1177 1178
	/* data offset in the file extent item */
	u64 data_offset;

1179
	/* Just to check for bugs in backref resolving */
1180
	int found_itself;
1181 1182 1183 1184
};

static int __clone_root_cmp_bsearch(const void *key, const void *elt)
{
1185
	u64 root = (u64)(uintptr_t)key;
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	struct clone_root *cr = (struct clone_root *)elt;

	if (root < cr->root->objectid)
		return -1;
	if (root > cr->root->objectid)
		return 1;
	return 0;
}

static int __clone_root_cmp_sort(const void *e1, const void *e2)
{
	struct clone_root *cr1 = (struct clone_root *)e1;
	struct clone_root *cr2 = (struct clone_root *)e2;

	if (cr1->root->objectid < cr2->root->objectid)
		return -1;
	if (cr1->root->objectid > cr2->root->objectid)
		return 1;
	return 0;
}

/*
 * Called for every backref that is found for the current extent.
1209
 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1210 1211 1212 1213 1214 1215 1216 1217 1218
 */
static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
{
	struct backref_ctx *bctx = ctx_;
	struct clone_root *found;
	int ret;
	u64 i_size;

	/* First check if the root is in the list of accepted clone sources */
1219
	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1220 1221 1222 1223 1224 1225 1226 1227 1228
			bctx->sctx->clone_roots_cnt,
			sizeof(struct clone_root),
			__clone_root_cmp_bsearch);
	if (!found)
		return 0;

	if (found->root == bctx->sctx->send_root &&
	    ino == bctx->cur_objectid &&
	    offset == bctx->cur_offset) {
1229
		bctx->found_itself = 1;
1230 1231 1232
	}

	/*
1233
	 * There are inodes that have extents that lie behind its i_size. Don't
1234 1235
	 * accept clones from these extents.
	 */
1236 1237 1238
	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
			       NULL, NULL, NULL);
	btrfs_release_path(bctx->path);
1239 1240 1241
	if (ret < 0)
		return ret;

1242
	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		return 0;

	/*
	 * Make sure we don't consider clones from send_root that are
	 * behind the current inode/offset.
	 */
	if (found->root == bctx->sctx->send_root) {
		/*
		 * TODO for the moment we don't accept clones from the inode
		 * that is currently send. We may change this when
		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
		 * file.
		 */
		if (ino >= bctx->cur_objectid)
			return 0;
	}

	bctx->found++;
	found->found_refs++;
	if (ino < found->ino) {
		found->ino = ino;
		found->offset = offset;
	} else if (found->ino == ino) {
		/*
		 * same extent found more then once in the same file.
		 */
		if (found->offset > offset + bctx->extent_len)
			found->offset = offset;
	}

	return 0;
}

/*
1277 1278 1279 1280 1281 1282
 * Given an inode, offset and extent item, it finds a good clone for a clone
 * instruction. Returns -ENOENT when none could be found. The function makes
 * sure that the returned clone is usable at the point where sending is at the
 * moment. This means, that no clones are accepted which lie behind the current
 * inode+offset.
 *
1283 1284 1285 1286 1287 1288 1289 1290
 * path must point to the extent item when called.
 */
static int find_extent_clone(struct send_ctx *sctx,
			     struct btrfs_path *path,
			     u64 ino, u64 data_offset,
			     u64 ino_size,
			     struct clone_root **found)
{
1291
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1292 1293 1294
	int ret;
	int extent_type;
	u64 logical;
1295
	u64 disk_byte;
1296 1297
	u64 num_bytes;
	u64 extent_item_pos;
1298
	u64 flags = 0;
1299 1300
	struct btrfs_file_extent_item *fi;
	struct extent_buffer *eb = path->nodes[0];
1301
	struct backref_ctx *backref_ctx = NULL;
1302 1303 1304
	struct clone_root *cur_clone_root;
	struct btrfs_key found_key;
	struct btrfs_path *tmp_path;
1305
	int compressed;
1306 1307 1308 1309 1310 1311
	u32 i;

	tmp_path = alloc_path_for_send();
	if (!tmp_path)
		return -ENOMEM;

1312 1313 1314
	/* We only use this path under the commit sem */
	tmp_path->need_commit_sem = 0;

1315
	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1316 1317 1318 1319 1320
	if (!backref_ctx) {
		ret = -ENOMEM;
		goto out;
	}

1321 1322
	backref_ctx->path = tmp_path;

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	if (data_offset >= ino_size) {
		/*
		 * There may be extents that lie behind the file's size.
		 * I at least had this in combination with snapshotting while
		 * writing large files.
		 */
		ret = 0;
		goto out;
	}

	fi = btrfs_item_ptr(eb, path->slots[0],
			struct btrfs_file_extent_item);
	extent_type = btrfs_file_extent_type(eb, fi);
	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
		ret = -ENOENT;
		goto out;
	}
1340
	compressed = btrfs_file_extent_compression(eb, fi);
1341 1342

	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1343 1344
	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
	if (disk_byte == 0) {
1345 1346 1347
		ret = -ENOENT;
		goto out;
	}
1348
	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1349

1350 1351
	down_read(&fs_info->commit_root_sem);
	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1352
				  &found_key, &flags);
1353
	up_read(&fs_info->commit_root_sem);
1354 1355 1356 1357
	btrfs_release_path(tmp_path);

	if (ret < 0)
		goto out;
1358
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
		ret = -EIO;
		goto out;
	}

	/*
	 * Setup the clone roots.
	 */
	for (i = 0; i < sctx->clone_roots_cnt; i++) {
		cur_clone_root = sctx->clone_roots + i;
		cur_clone_root->ino = (u64)-1;
		cur_clone_root->offset = 0;
		cur_clone_root->found_refs = 0;
	}

1373 1374 1375 1376 1377 1378
	backref_ctx->sctx = sctx;
	backref_ctx->found = 0;
	backref_ctx->cur_objectid = ino;
	backref_ctx->cur_offset = data_offset;
	backref_ctx->found_itself = 0;
	backref_ctx->extent_len = num_bytes;
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	/*
	 * For non-compressed extents iterate_extent_inodes() gives us extent
	 * offsets that already take into account the data offset, but not for
	 * compressed extents, since the offset is logical and not relative to
	 * the physical extent locations. We must take this into account to
	 * avoid sending clone offsets that go beyond the source file's size,
	 * which would result in the clone ioctl failing with -EINVAL on the
	 * receiving end.
	 */
	if (compressed == BTRFS_COMPRESS_NONE)
		backref_ctx->data_offset = 0;
	else
		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1392 1393 1394 1395 1396 1397 1398

	/*
	 * The last extent of a file may be too large due to page alignment.
	 * We need to adjust extent_len in this case so that the checks in
	 * __iterate_backrefs work.
	 */
	if (data_offset + num_bytes >= ino_size)
1399
		backref_ctx->extent_len = ino_size - data_offset;
1400 1401 1402 1403

	/*
	 * Now collect all backrefs.
	 */
1404 1405 1406 1407
	if (compressed == BTRFS_COMPRESS_NONE)
		extent_item_pos = logical - found_key.objectid;
	else
		extent_item_pos = 0;
1408 1409
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
				    extent_item_pos, 1, __iterate_backrefs,
1410
				    backref_ctx, false);
1411

1412 1413 1414
	if (ret < 0)
		goto out;

1415
	if (!backref_ctx->found_itself) {
1416 1417
		/* found a bug in backref code? */
		ret = -EIO;
1418
		btrfs_err(fs_info,
J
Jeff Mahoney 已提交
1419
			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1420
			  ino, data_offset, disk_byte, found_key.objectid);
1421 1422 1423
		goto out;
	}

1424 1425 1426
	btrfs_debug(fs_info,
		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
		    data_offset, ino, num_bytes, logical);
1427

1428
	if (!backref_ctx->found)
1429
		btrfs_debug(fs_info, "no clones found");
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

	cur_clone_root = NULL;
	for (i = 0; i < sctx->clone_roots_cnt; i++) {
		if (sctx->clone_roots[i].found_refs) {
			if (!cur_clone_root)
				cur_clone_root = sctx->clone_roots + i;
			else if (sctx->clone_roots[i].root == sctx->send_root)
				/* prefer clones from send_root over others */
				cur_clone_root = sctx->clone_roots + i;
		}

	}

	if (cur_clone_root) {
		*found = cur_clone_root;
		ret = 0;
	} else {
		ret = -ENOENT;
	}

out:
	btrfs_free_path(tmp_path);
1452
	kfree(backref_ctx);
1453 1454 1455
	return ret;
}

1456
static int read_symlink(struct btrfs_root *root,
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
			u64 ino,
			struct fs_path *dest)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_file_extent_item *ei;
	u8 type;
	u8 compression;
	unsigned long off;
	int len;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = 0;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	if (ret) {
		/*
		 * An empty symlink inode. Can happen in rare error paths when
		 * creating a symlink (transaction committed before the inode
		 * eviction handler removed the symlink inode items and a crash
		 * happened in between or the subvol was snapshoted in between).
		 * Print an informative message to dmesg/syslog so that the user
		 * can delete the symlink.
		 */
		btrfs_err(root->fs_info,
			  "Found empty symlink inode %llu at root %llu",
			  ino, root->root_key.objectid);
		ret = -EIO;
		goto out;
	}
1494 1495 1496 1497 1498 1499 1500 1501 1502

	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
			struct btrfs_file_extent_item);
	type = btrfs_file_extent_type(path->nodes[0], ei);
	compression = btrfs_file_extent_compression(path->nodes[0], ei);
	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
	BUG_ON(compression);

	off = btrfs_file_extent_inline_start(ei);
1503
	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531

	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);

out:
	btrfs_free_path(path);
	return ret;
}

/*
 * Helper function to generate a file name that is unique in the root of
 * send_root and parent_root. This is used to generate names for orphan inodes.
 */
static int gen_unique_name(struct send_ctx *sctx,
			   u64 ino, u64 gen,
			   struct fs_path *dest)
{
	int ret = 0;
	struct btrfs_path *path;
	struct btrfs_dir_item *di;
	char tmp[64];
	int len;
	u64 idx = 0;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	while (1) {
1532
		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1533
				ino, gen, idx);
1534
		ASSERT(len < sizeof(tmp));
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
				path, BTRFS_FIRST_FREE_OBJECTID,
				tmp, strlen(tmp), 0);
		btrfs_release_path(path);
		if (IS_ERR(di)) {
			ret = PTR_ERR(di);
			goto out;
		}
		if (di) {
			/* not unique, try again */
			idx++;
			continue;
		}

		if (!sctx->parent_root) {
			/* unique */
			ret = 0;
			break;
		}

		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
				path, BTRFS_FIRST_FREE_OBJECTID,
				tmp, strlen(tmp), 0);
		btrfs_release_path(path);
		if (IS_ERR(di)) {
			ret = PTR_ERR(di);
			goto out;
		}
		if (di) {
			/* not unique, try again */
			idx++;
			continue;
		}
		/* unique */
		break;
	}

	ret = fs_path_add(dest, tmp, strlen(tmp));

out:
	btrfs_free_path(path);
	return ret;
}

enum inode_state {
	inode_state_no_change,
	inode_state_will_create,
	inode_state_did_create,
	inode_state_will_delete,
	inode_state_did_delete,
};

static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
{
	int ret;
	int left_ret;
	int right_ret;
	u64 left_gen;
	u64 right_gen;

	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1597
			NULL, NULL);
1598 1599 1600 1601 1602 1603 1604 1605
	if (ret < 0 && ret != -ENOENT)
		goto out;
	left_ret = ret;

	if (!sctx->parent_root) {
		right_ret = -ENOENT;
	} else {
		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1606
				NULL, NULL, NULL, NULL);
1607 1608 1609 1610 1611 1612
		if (ret < 0 && ret != -ENOENT)
			goto out;
		right_ret = ret;
	}

	if (!left_ret && !right_ret) {
1613
		if (left_gen == gen && right_gen == gen) {
1614
			ret = inode_state_no_change;
1615
		} else if (left_gen == gen) {
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
			if (ino < sctx->send_progress)
				ret = inode_state_did_create;
			else
				ret = inode_state_will_create;
		} else if (right_gen == gen) {
			if (ino < sctx->send_progress)
				ret = inode_state_did_delete;
			else
				ret = inode_state_will_delete;
		} else  {
			ret = -ENOENT;
		}
	} else if (!left_ret) {
		if (left_gen == gen) {
			if (ino < sctx->send_progress)
				ret = inode_state_did_create;
			else
				ret = inode_state_will_create;
		} else {
			ret = -ENOENT;
		}
	} else if (!right_ret) {
		if (right_gen == gen) {
			if (ino < sctx->send_progress)
				ret = inode_state_did_delete;
			else
				ret = inode_state_will_delete;
		} else {
			ret = -ENOENT;
		}
	} else {
		ret = -ENOENT;
	}

out:
	return ret;
}

static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
{
	int ret;

1658 1659 1660
	if (ino == BTRFS_FIRST_FREE_OBJECTID)
		return 1;

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	ret = get_cur_inode_state(sctx, ino, gen);
	if (ret < 0)
		goto out;

	if (ret == inode_state_no_change ||
	    ret == inode_state_did_create ||
	    ret == inode_state_will_delete)
		ret = 1;
	else
		ret = 0;

out:
	return ret;
}

/*
 * Helper function to lookup a dir item in a dir.
 */
static int lookup_dir_item_inode(struct btrfs_root *root,
				 u64 dir, const char *name, int name_len,
				 u64 *found_inode,
				 u8 *found_type)
{
	int ret = 0;
	struct btrfs_dir_item *di;
	struct btrfs_key key;
	struct btrfs_path *path;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	di = btrfs_lookup_dir_item(NULL, root, path,
			dir, name, name_len, 0);
	if (!di) {
		ret = -ENOENT;
		goto out;
	}
	if (IS_ERR(di)) {
		ret = PTR_ERR(di);
		goto out;
	}
	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1704 1705 1706 1707
	if (key.type == BTRFS_ROOT_ITEM_KEY) {
		ret = -ENOENT;
		goto out;
	}
1708 1709 1710 1711 1712 1713 1714 1715
	*found_inode = key.objectid;
	*found_type = btrfs_dir_type(path->nodes[0], di);

out:
	btrfs_free_path(path);
	return ret;
}

1716 1717 1718 1719
/*
 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
 * generation of the parent dir and the name of the dir entry.
 */
1720
static int get_first_ref(struct btrfs_root *root, u64 ino,
1721 1722 1723 1724 1725 1726 1727
			 u64 *dir, u64 *dir_gen, struct fs_path *name)
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_path *path;
	int len;
1728
	u64 parent_dir;
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = ino;
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = 0;

	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
	if (ret < 0)
		goto out;
	if (!ret)
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				path->slots[0]);
1744 1745 1746
	if (ret || found_key.objectid != ino ||
	    (found_key.type != BTRFS_INODE_REF_KEY &&
	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1747 1748 1749 1750
		ret = -ENOENT;
		goto out;
	}

1751
	if (found_key.type == BTRFS_INODE_REF_KEY) {
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
		struct btrfs_inode_ref *iref;
		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
				      struct btrfs_inode_ref);
		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
						     (unsigned long)(iref + 1),
						     len);
		parent_dir = found_key.offset;
	} else {
		struct btrfs_inode_extref *extref;
		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
					struct btrfs_inode_extref);
		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
					(unsigned long)&extref->name, len);
		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
	}
1769 1770 1771 1772
	if (ret < 0)
		goto out;
	btrfs_release_path(path);

1773 1774 1775 1776 1777 1778
	if (dir_gen) {
		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
				     NULL, NULL, NULL);
		if (ret < 0)
			goto out;
	}
1779

1780
	*dir = parent_dir;
1781 1782 1783 1784 1785 1786

out:
	btrfs_free_path(path);
	return ret;
}

1787
static int is_first_ref(struct btrfs_root *root,
1788 1789 1790 1791 1792 1793 1794
			u64 ino, u64 dir,
			const char *name, int name_len)
{
	int ret;
	struct fs_path *tmp_name;
	u64 tmp_dir;

1795
	tmp_name = fs_path_alloc();
1796 1797 1798
	if (!tmp_name)
		return -ENOMEM;

1799
	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1800 1801 1802
	if (ret < 0)
		goto out;

1803
	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1804 1805 1806 1807
		ret = 0;
		goto out;
	}

1808
	ret = !memcmp(tmp_name->start, name, name_len);
1809 1810

out:
1811
	fs_path_free(tmp_name);
1812 1813 1814
	return ret;
}

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
/*
 * Used by process_recorded_refs to determine if a new ref would overwrite an
 * already existing ref. In case it detects an overwrite, it returns the
 * inode/gen in who_ino/who_gen.
 * When an overwrite is detected, process_recorded_refs does proper orphanizing
 * to make sure later references to the overwritten inode are possible.
 * Orphanizing is however only required for the first ref of an inode.
 * process_recorded_refs does an additional is_first_ref check to see if
 * orphanizing is really required.
 */
1825 1826
static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
			      const char *name, int name_len,
1827
			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1828 1829
{
	int ret = 0;
1830
	u64 gen;
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	u64 other_inode = 0;
	u8 other_type = 0;

	if (!sctx->parent_root)
		goto out;

	ret = is_inode_existent(sctx, dir, dir_gen);
	if (ret <= 0)
		goto out;

1841 1842
	/*
	 * If we have a parent root we need to verify that the parent dir was
1843
	 * not deleted and then re-created, if it was then we have no overwrite
1844 1845
	 * and we can just unlink this entry.
	 */
1846
	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
				     NULL, NULL, NULL);
		if (ret < 0 && ret != -ENOENT)
			goto out;
		if (ret) {
			ret = 0;
			goto out;
		}
		if (gen != dir_gen)
			goto out;
	}

1859 1860 1861 1862 1863 1864 1865 1866 1867
	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
			&other_inode, &other_type);
	if (ret < 0 && ret != -ENOENT)
		goto out;
	if (ret) {
		ret = 0;
		goto out;
	}

1868 1869 1870 1871 1872
	/*
	 * Check if the overwritten ref was already processed. If yes, the ref
	 * was already unlinked/moved, so we can safely assume that we will not
	 * overwrite anything at this point in time.
	 */
1873 1874
	if (other_inode > sctx->send_progress ||
	    is_waiting_for_move(sctx, other_inode)) {
1875
		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1876
				who_gen, who_mode, NULL, NULL, NULL);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
		if (ret < 0)
			goto out;

		ret = 1;
		*who_ino = other_inode;
	} else {
		ret = 0;
	}

out:
	return ret;
}

1890 1891 1892 1893 1894 1895 1896
/*
 * Checks if the ref was overwritten by an already processed inode. This is
 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
 * thus the orphan name needs be used.
 * process_recorded_refs also uses it to avoid unlinking of refs that were
 * overwritten.
 */
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
static int did_overwrite_ref(struct send_ctx *sctx,
			    u64 dir, u64 dir_gen,
			    u64 ino, u64 ino_gen,
			    const char *name, int name_len)
{
	int ret = 0;
	u64 gen;
	u64 ow_inode;
	u8 other_type;

	if (!sctx->parent_root)
		goto out;

	ret = is_inode_existent(sctx, dir, dir_gen);
	if (ret <= 0)
		goto out;

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
				     NULL, NULL, NULL);
		if (ret < 0 && ret != -ENOENT)
			goto out;
		if (ret) {
			ret = 0;
			goto out;
		}
		if (gen != dir_gen)
			goto out;
	}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	/* check if the ref was overwritten by another ref */
	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
			&ow_inode, &other_type);
	if (ret < 0 && ret != -ENOENT)
		goto out;
	if (ret) {
		/* was never and will never be overwritten */
		ret = 0;
		goto out;
	}

	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1939
			NULL, NULL);
1940 1941 1942 1943 1944 1945 1946 1947
	if (ret < 0)
		goto out;

	if (ow_inode == ino && gen == ino_gen) {
		ret = 0;
		goto out;
	}

1948 1949 1950
	/*
	 * We know that it is or will be overwritten. Check this now.
	 * The current inode being processed might have been the one that caused
1951 1952
	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
	 * the current inode being processed.
1953
	 */
1954 1955 1956
	if ((ow_inode < sctx->send_progress) ||
	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
	     gen == sctx->cur_inode_gen))
1957 1958 1959 1960 1961 1962 1963 1964
		ret = 1;
	else
		ret = 0;

out:
	return ret;
}

1965 1966 1967 1968 1969
/*
 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
 * that got overwritten. This is used by process_recorded_refs to determine
 * if it has to use the path as returned by get_cur_path or the orphan name.
 */
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
{
	int ret = 0;
	struct fs_path *name = NULL;
	u64 dir;
	u64 dir_gen;

	if (!sctx->parent_root)
		goto out;

1980
	name = fs_path_alloc();
1981 1982 1983
	if (!name)
		return -ENOMEM;

1984
	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1985 1986 1987 1988 1989 1990 1991
	if (ret < 0)
		goto out;

	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
			name->start, fs_path_len(name));

out:
1992
	fs_path_free(name);
1993 1994 1995
	return ret;
}

1996 1997 1998 1999
/*
 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
 * so we need to do some special handling in case we have clashes. This function
 * takes care of this with the help of name_cache_entry::radix_list.
2000
 * In case of error, nce is kfreed.
2001
 */
2002 2003 2004 2005
static int name_cache_insert(struct send_ctx *sctx,
			     struct name_cache_entry *nce)
{
	int ret = 0;
2006 2007 2008 2009 2010
	struct list_head *nce_head;

	nce_head = radix_tree_lookup(&sctx->name_cache,
			(unsigned long)nce->ino);
	if (!nce_head) {
2011
		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2012 2013
		if (!nce_head) {
			kfree(nce);
2014
			return -ENOMEM;
2015
		}
2016
		INIT_LIST_HEAD(nce_head);
2017

2018
		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2019 2020 2021
		if (ret < 0) {
			kfree(nce_head);
			kfree(nce);
2022
			return ret;
2023
		}
2024
	}
2025
	list_add_tail(&nce->radix_list, nce_head);
2026 2027 2028 2029 2030 2031 2032 2033 2034
	list_add_tail(&nce->list, &sctx->name_cache_list);
	sctx->name_cache_size++;

	return ret;
}

static void name_cache_delete(struct send_ctx *sctx,
			      struct name_cache_entry *nce)
{
2035
	struct list_head *nce_head;
2036

2037 2038
	nce_head = radix_tree_lookup(&sctx->name_cache,
			(unsigned long)nce->ino);
2039 2040 2041 2042 2043
	if (!nce_head) {
		btrfs_err(sctx->send_root->fs_info,
	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
			nce->ino, sctx->name_cache_size);
	}
2044

2045
	list_del(&nce->radix_list);
2046 2047
	list_del(&nce->list);
	sctx->name_cache_size--;
2048

2049 2050 2051 2052
	/*
	 * We may not get to the final release of nce_head if the lookup fails
	 */
	if (nce_head && list_empty(nce_head)) {
2053 2054 2055
		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
		kfree(nce_head);
	}
2056 2057 2058 2059 2060
}

static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
						    u64 ino, u64 gen)
{
2061 2062
	struct list_head *nce_head;
	struct name_cache_entry *cur;
2063

2064 2065
	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
	if (!nce_head)
2066 2067
		return NULL;

2068 2069 2070 2071
	list_for_each_entry(cur, nce_head, radix_list) {
		if (cur->ino == ino && cur->gen == gen)
			return cur;
	}
2072 2073 2074
	return NULL;
}

2075 2076 2077 2078
/*
 * Removes the entry from the list and adds it back to the end. This marks the
 * entry as recently used so that name_cache_clean_unused does not remove it.
 */
2079 2080 2081 2082 2083 2084
static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
{
	list_del(&nce->list);
	list_add_tail(&nce->list, &sctx->name_cache_list);
}

2085 2086 2087
/*
 * Remove some entries from the beginning of name_cache_list.
 */
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
static void name_cache_clean_unused(struct send_ctx *sctx)
{
	struct name_cache_entry *nce;

	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
		return;

	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
		nce = list_entry(sctx->name_cache_list.next,
				struct name_cache_entry, list);
		name_cache_delete(sctx, nce);
		kfree(nce);
	}
}

static void name_cache_free(struct send_ctx *sctx)
{
	struct name_cache_entry *nce;

2107 2108 2109
	while (!list_empty(&sctx->name_cache_list)) {
		nce = list_entry(sctx->name_cache_list.next,
				struct name_cache_entry, list);
2110
		name_cache_delete(sctx, nce);
2111
		kfree(nce);
2112 2113 2114
	}
}

2115 2116 2117 2118 2119 2120 2121 2122
/*
 * Used by get_cur_path for each ref up to the root.
 * Returns 0 if it succeeded.
 * Returns 1 if the inode is not existent or got overwritten. In that case, the
 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
 * Returns <0 in case of error.
 */
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
static int __get_cur_name_and_parent(struct send_ctx *sctx,
				     u64 ino, u64 gen,
				     u64 *parent_ino,
				     u64 *parent_gen,
				     struct fs_path *dest)
{
	int ret;
	int nce_ret;
	struct name_cache_entry *nce = NULL;

2133 2134 2135 2136 2137
	/*
	 * First check if we already did a call to this function with the same
	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
	 * return the cached result.
	 */
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
	nce = name_cache_search(sctx, ino, gen);
	if (nce) {
		if (ino < sctx->send_progress && nce->need_later_update) {
			name_cache_delete(sctx, nce);
			kfree(nce);
			nce = NULL;
		} else {
			name_cache_used(sctx, nce);
			*parent_ino = nce->parent_ino;
			*parent_gen = nce->parent_gen;
			ret = fs_path_add(dest, nce->name, nce->name_len);
			if (ret < 0)
				goto out;
			ret = nce->ret;
			goto out;
		}
	}

2156 2157 2158 2159 2160
	/*
	 * If the inode is not existent yet, add the orphan name and return 1.
	 * This should only happen for the parent dir that we determine in
	 * __record_new_ref
	 */
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
	ret = is_inode_existent(sctx, ino, gen);
	if (ret < 0)
		goto out;

	if (!ret) {
		ret = gen_unique_name(sctx, ino, gen, dest);
		if (ret < 0)
			goto out;
		ret = 1;
		goto out_cache;
	}

2173 2174 2175 2176
	/*
	 * Depending on whether the inode was already processed or not, use
	 * send_root or parent_root for ref lookup.
	 */
2177
	if (ino < sctx->send_progress)
2178 2179
		ret = get_first_ref(sctx->send_root, ino,
				    parent_ino, parent_gen, dest);
2180
	else
2181 2182
		ret = get_first_ref(sctx->parent_root, ino,
				    parent_ino, parent_gen, dest);
2183 2184 2185
	if (ret < 0)
		goto out;

2186 2187 2188 2189
	/*
	 * Check if the ref was overwritten by an inode's ref that was processed
	 * earlier. If yes, treat as orphan and return 1.
	 */
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
			dest->start, dest->end - dest->start);
	if (ret < 0)
		goto out;
	if (ret) {
		fs_path_reset(dest);
		ret = gen_unique_name(sctx, ino, gen, dest);
		if (ret < 0)
			goto out;
		ret = 1;
	}

out_cache:
2203 2204 2205
	/*
	 * Store the result of the lookup in the name cache.
	 */
2206
	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
	if (!nce) {
		ret = -ENOMEM;
		goto out;
	}

	nce->ino = ino;
	nce->gen = gen;
	nce->parent_ino = *parent_ino;
	nce->parent_gen = *parent_gen;
	nce->name_len = fs_path_len(dest);
	nce->ret = ret;
	strcpy(nce->name, dest->start);

	if (ino < sctx->send_progress)
		nce->need_later_update = 0;
	else
		nce->need_later_update = 1;

	nce_ret = name_cache_insert(sctx, nce);
	if (nce_ret < 0)
		ret = nce_ret;
	name_cache_clean_unused(sctx);

out:
	return ret;
}

/*
 * Magic happens here. This function returns the first ref to an inode as it
 * would look like while receiving the stream at this point in time.
 * We walk the path up to the root. For every inode in between, we check if it
 * was already processed/sent. If yes, we continue with the parent as found
 * in send_root. If not, we continue with the parent as found in parent_root.
 * If we encounter an inode that was deleted at this point in time, we use the
 * inodes "orphan" name instead of the real name and stop. Same with new inodes
 * that were not created yet and overwritten inodes/refs.
 *
 * When do we have have orphan inodes:
 * 1. When an inode is freshly created and thus no valid refs are available yet
 * 2. When a directory lost all it's refs (deleted) but still has dir items
 *    inside which were not processed yet (pending for move/delete). If anyone
 *    tried to get the path to the dir items, it would get a path inside that
 *    orphan directory.
 * 3. When an inode is moved around or gets new links, it may overwrite the ref
 *    of an unprocessed inode. If in that case the first ref would be
 *    overwritten, the overwritten inode gets "orphanized". Later when we
 *    process this overwritten inode, it is restored at a new place by moving
 *    the orphan inode.
 *
 * sctx->send_progress tells this function at which point in time receiving
 * would be.
 */
static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
			struct fs_path *dest)
{
	int ret = 0;
	struct fs_path *name = NULL;
	u64 parent_inode = 0;
	u64 parent_gen = 0;
	int stop = 0;

2268
	name = fs_path_alloc();
2269 2270 2271 2272 2273 2274 2275 2276 2277
	if (!name) {
		ret = -ENOMEM;
		goto out;
	}

	dest->reversed = 1;
	fs_path_reset(dest);

	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2278 2279
		struct waiting_dir_move *wdm;

2280 2281
		fs_path_reset(name);

2282 2283 2284 2285 2286 2287 2288 2289
		if (is_waiting_for_rm(sctx, ino)) {
			ret = gen_unique_name(sctx, ino, gen, name);
			if (ret < 0)
				goto out;
			ret = fs_path_add_path(dest, name);
			break;
		}

2290 2291 2292 2293 2294
		wdm = get_waiting_dir_move(sctx, ino);
		if (wdm && wdm->orphanized) {
			ret = gen_unique_name(sctx, ino, gen, name);
			stop = 1;
		} else if (wdm) {
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
			ret = get_first_ref(sctx->parent_root, ino,
					    &parent_inode, &parent_gen, name);
		} else {
			ret = __get_cur_name_and_parent(sctx, ino, gen,
							&parent_inode,
							&parent_gen, name);
			if (ret)
				stop = 1;
		}

2305 2306
		if (ret < 0)
			goto out;
2307

2308 2309 2310 2311 2312 2313 2314 2315 2316
		ret = fs_path_add_path(dest, name);
		if (ret < 0)
			goto out;

		ino = parent_inode;
		gen = parent_gen;
	}

out:
2317
	fs_path_free(name);
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
	if (!ret)
		fs_path_unreverse(dest);
	return ret;
}

/*
 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
 */
static int send_subvol_begin(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_root *send_root = sctx->send_root;
	struct btrfs_root *parent_root = sctx->parent_root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_root_ref *ref;
	struct extent_buffer *leaf;
	char *name = NULL;
	int namelen;

2338
	path = btrfs_alloc_path();
2339 2340 2341
	if (!path)
		return -ENOMEM;

2342
	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
	if (!name) {
		btrfs_free_path(path);
		return -ENOMEM;
	}

	key.objectid = send_root->objectid;
	key.type = BTRFS_ROOT_BACKREF_KEY;
	key.offset = 0;

	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
				&key, path, 1, 0);
	if (ret < 0)
		goto out;
	if (ret) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
	    key.objectid != send_root->objectid) {
		ret = -ENOENT;
		goto out;
	}
	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
	namelen = btrfs_root_ref_name_len(leaf, ref);
	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
	btrfs_release_path(path);

	if (parent_root) {
		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
		if (ret < 0)
			goto out;
	} else {
		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
		if (ret < 0)
			goto out;
	}

	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2384 2385 2386 2387 2388 2389 2390 2391

	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
			    sctx->send_root->root_item.received_uuid);
	else
		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
			    sctx->send_root->root_item.uuid);

2392
	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2393
		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2394
	if (parent_root) {
2395 2396 2397 2398 2399 2400
		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
				     parent_root->root_item.received_uuid);
		else
			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
				     parent_root->root_item.uuid);
2401
		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2402
			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	}

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	btrfs_free_path(path);
	kfree(name);
	return ret;
}

static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
{
2416
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2417 2418 2419
	int ret = 0;
	struct fs_path *p;

2420
	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2421

2422
	p = fs_path_alloc();
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, ino, gen, p);
	if (ret < 0)
		goto out;
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
2440
	fs_path_free(p);
2441 2442 2443 2444 2445
	return ret;
}

static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
{
2446
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2447 2448 2449
	int ret = 0;
	struct fs_path *p;

2450
	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2451

2452
	p = fs_path_alloc();
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, ino, gen, p);
	if (ret < 0)
		goto out;
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
2470
	fs_path_free(p);
2471 2472 2473 2474 2475
	return ret;
}

static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
{
2476
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2477 2478 2479
	int ret = 0;
	struct fs_path *p;

2480 2481
	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
		    ino, uid, gid);
2482

2483
	p = fs_path_alloc();
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, ino, gen, p);
	if (ret < 0)
		goto out;
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
2502
	fs_path_free(p);
2503 2504 2505 2506 2507
	return ret;
}

static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
{
2508
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2509 2510 2511 2512 2513 2514 2515 2516
	int ret = 0;
	struct fs_path *p = NULL;
	struct btrfs_inode_item *ii;
	struct btrfs_path *path = NULL;
	struct extent_buffer *eb;
	struct btrfs_key key;
	int slot;

2517
	btrfs_debug(fs_info, "send_utimes %llu", ino);
2518

2519
	p = fs_path_alloc();
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
	if (!p)
		return -ENOMEM;

	path = alloc_path_for_send();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	key.objectid = ino;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;
	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2533 2534
	if (ret > 0)
		ret = -ENOENT;
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
	if (ret < 0)
		goto out;

	eb = path->nodes[0];
	slot = path->slots[0];
	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);

	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, ino, gen, p);
	if (ret < 0)
		goto out;
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2550 2551 2552
	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2553
	/* TODO Add otime support when the otime patches get into upstream */
2554 2555 2556 2557 2558

	ret = send_cmd(sctx);

tlv_put_failure:
out:
2559
	fs_path_free(p);
2560 2561 2562 2563 2564 2565 2566 2567 2568
	btrfs_free_path(path);
	return ret;
}

/*
 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
 * a valid path yet because we did not process the refs yet. So, the inode
 * is created as orphan.
 */
2569
static int send_create_inode(struct send_ctx *sctx, u64 ino)
2570
{
2571
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2572 2573 2574
	int ret = 0;
	struct fs_path *p;
	int cmd;
2575
	u64 gen;
2576
	u64 mode;
2577
	u64 rdev;
2578

2579
	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2580

2581
	p = fs_path_alloc();
2582 2583 2584
	if (!p)
		return -ENOMEM;

L
Liu Bo 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
	if (ino != sctx->cur_ino) {
		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
				     NULL, NULL, &rdev);
		if (ret < 0)
			goto out;
	} else {
		gen = sctx->cur_inode_gen;
		mode = sctx->cur_inode_mode;
		rdev = sctx->cur_inode_rdev;
	}
2595

2596
	if (S_ISREG(mode)) {
2597
		cmd = BTRFS_SEND_C_MKFILE;
2598
	} else if (S_ISDIR(mode)) {
2599
		cmd = BTRFS_SEND_C_MKDIR;
2600
	} else if (S_ISLNK(mode)) {
2601
		cmd = BTRFS_SEND_C_SYMLINK;
2602
	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2603
		cmd = BTRFS_SEND_C_MKNOD;
2604
	} else if (S_ISFIFO(mode)) {
2605
		cmd = BTRFS_SEND_C_MKFIFO;
2606
	} else if (S_ISSOCK(mode)) {
2607
		cmd = BTRFS_SEND_C_MKSOCK;
2608
	} else {
2609
		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2610
				(int)(mode & S_IFMT));
2611
		ret = -EOPNOTSUPP;
2612 2613 2614 2615 2616 2617 2618
		goto out;
	}

	ret = begin_cmd(sctx, cmd);
	if (ret < 0)
		goto out;

2619
	ret = gen_unique_name(sctx, ino, gen, p);
2620 2621 2622 2623
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2624
	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2625 2626 2627

	if (S_ISLNK(mode)) {
		fs_path_reset(p);
2628
		ret = read_symlink(sctx->send_root, ino, p);
2629 2630 2631 2632 2633
		if (ret < 0)
			goto out;
		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2634 2635
		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2636 2637 2638 2639 2640 2641 2642 2643 2644
	}

	ret = send_cmd(sctx);
	if (ret < 0)
		goto out;


tlv_put_failure:
out:
2645
	fs_path_free(p);
2646 2647 2648
	return ret;
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
/*
 * We need some special handling for inodes that get processed before the parent
 * directory got created. See process_recorded_refs for details.
 * This function does the check if we already created the dir out of order.
 */
static int did_create_dir(struct send_ctx *sctx, u64 dir)
{
	int ret = 0;
	struct btrfs_path *path = NULL;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_key di_key;
	struct extent_buffer *eb;
	struct btrfs_dir_item *di;
	int slot;

	path = alloc_path_for_send();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	key.objectid = dir;
	key.type = BTRFS_DIR_INDEX_KEY;
	key.offset = 0;
2674 2675 2676 2677
	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

2678
	while (1) {
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
		eb = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(sctx->send_root, path);
			if (ret < 0) {
				goto out;
			} else if (ret > 0) {
				ret = 0;
				break;
			}
			continue;
2690
		}
2691 2692 2693

		btrfs_item_key_to_cpu(eb, &found_key, slot);
		if (found_key.objectid != key.objectid ||
2694 2695 2696 2697 2698 2699 2700 2701
		    found_key.type != key.type) {
			ret = 0;
			goto out;
		}

		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
		btrfs_dir_item_key_to_cpu(eb, di, &di_key);

2702 2703
		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
		    di_key.objectid < sctx->send_progress) {
2704 2705 2706 2707
			ret = 1;
			goto out;
		}

2708
		path->slots[0]++;
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
	}

out:
	btrfs_free_path(path);
	return ret;
}

/*
 * Only creates the inode if it is:
 * 1. Not a directory
 * 2. Or a directory which was not created already due to out of order
 *    directories. See did_create_dir and process_recorded_refs for details.
 */
static int send_create_inode_if_needed(struct send_ctx *sctx)
{
	int ret;

	if (S_ISDIR(sctx->cur_inode_mode)) {
		ret = did_create_dir(sctx, sctx->cur_ino);
		if (ret < 0)
			goto out;
		if (ret) {
			ret = 0;
			goto out;
		}
	}

	ret = send_create_inode(sctx, sctx->cur_ino);
	if (ret < 0)
		goto out;

out:
	return ret;
}

2744 2745 2746 2747 2748 2749 2750 2751 2752
struct recorded_ref {
	struct list_head list;
	char *name;
	struct fs_path *full_path;
	u64 dir;
	u64 dir_gen;
	int name_len;
};

2753 2754 2755 2756 2757 2758 2759
static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
{
	ref->full_path = path;
	ref->name = (char *)kbasename(ref->full_path->start);
	ref->name_len = ref->full_path->end - ref->name;
}

2760 2761 2762 2763 2764
/*
 * We need to process new refs before deleted refs, but compare_tree gives us
 * everything mixed. So we first record all refs and later process them.
 * This function is a helper to record one ref.
 */
2765
static int __record_ref(struct list_head *head, u64 dir,
2766 2767 2768 2769
		      u64 dir_gen, struct fs_path *path)
{
	struct recorded_ref *ref;

2770
	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2771 2772 2773 2774 2775
	if (!ref)
		return -ENOMEM;

	ref->dir = dir;
	ref->dir_gen = dir_gen;
2776
	set_ref_path(ref, path);
2777 2778 2779 2780
	list_add_tail(&ref->list, head);
	return 0;
}

2781 2782 2783 2784
static int dup_ref(struct recorded_ref *ref, struct list_head *list)
{
	struct recorded_ref *new;

2785
	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
	if (!new)
		return -ENOMEM;

	new->dir = ref->dir;
	new->dir_gen = ref->dir_gen;
	new->full_path = NULL;
	INIT_LIST_HEAD(&new->list);
	list_add_tail(&new->list, list);
	return 0;
}

2797
static void __free_recorded_refs(struct list_head *head)
2798 2799 2800
{
	struct recorded_ref *cur;

2801 2802
	while (!list_empty(head)) {
		cur = list_entry(head->next, struct recorded_ref, list);
2803
		fs_path_free(cur->full_path);
2804
		list_del(&cur->list);
2805 2806 2807 2808 2809 2810
		kfree(cur);
	}
}

static void free_recorded_refs(struct send_ctx *sctx)
{
2811 2812
	__free_recorded_refs(&sctx->new_refs);
	__free_recorded_refs(&sctx->deleted_refs);
2813 2814 2815
}

/*
2816
 * Renames/moves a file/dir to its orphan name. Used when the first
2817 2818 2819 2820 2821 2822 2823 2824 2825
 * ref of an unprocessed inode gets overwritten and for all non empty
 * directories.
 */
static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
			  struct fs_path *path)
{
	int ret;
	struct fs_path *orphan;

2826
	orphan = fs_path_alloc();
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
	if (!orphan)
		return -ENOMEM;

	ret = gen_unique_name(sctx, ino, gen, orphan);
	if (ret < 0)
		goto out;

	ret = send_rename(sctx, path, orphan);

out:
2837
	fs_path_free(orphan);
2838 2839 2840
	return ret;
}

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
static struct orphan_dir_info *
add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
{
	struct rb_node **p = &sctx->orphan_dirs.rb_node;
	struct rb_node *parent = NULL;
	struct orphan_dir_info *entry, *odi;

	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct orphan_dir_info, node);
		if (dir_ino < entry->ino) {
			p = &(*p)->rb_left;
		} else if (dir_ino > entry->ino) {
			p = &(*p)->rb_right;
		} else {
			return entry;
		}
	}

2860 2861 2862 2863 2864
	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
	if (!odi)
		return ERR_PTR(-ENOMEM);
	odi->ino = dir_ino;
	odi->gen = 0;
2865
	odi->last_dir_index_offset = 0;
2866

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
	rb_link_node(&odi->node, parent, p);
	rb_insert_color(&odi->node, &sctx->orphan_dirs);
	return odi;
}

static struct orphan_dir_info *
get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
{
	struct rb_node *n = sctx->orphan_dirs.rb_node;
	struct orphan_dir_info *entry;

	while (n) {
		entry = rb_entry(n, struct orphan_dir_info, node);
		if (dir_ino < entry->ino)
			n = n->rb_left;
		else if (dir_ino > entry->ino)
			n = n->rb_right;
		else
			return entry;
	}
	return NULL;
}

static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
{
	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);

	return odi != NULL;
}

static void free_orphan_dir_info(struct send_ctx *sctx,
				 struct orphan_dir_info *odi)
{
	if (!odi)
		return;
	rb_erase(&odi->node, &sctx->orphan_dirs);
	kfree(odi);
}

2906 2907 2908 2909 2910
/*
 * Returns 1 if a directory can be removed at this point in time.
 * We check this by iterating all dir items and checking if the inode behind
 * the dir item was already processed.
 */
2911 2912
static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
		     u64 send_progress)
2913 2914 2915 2916 2917 2918 2919 2920
{
	int ret = 0;
	struct btrfs_root *root = sctx->parent_root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_key loc;
	struct btrfs_dir_item *di;
2921
	struct orphan_dir_info *odi = NULL;
2922

2923 2924 2925 2926 2927 2928
	/*
	 * Don't try to rmdir the top/root subvolume dir.
	 */
	if (dir == BTRFS_FIRST_FREE_OBJECTID)
		return 0;

2929 2930 2931 2932 2933 2934 2935
	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = dir;
	key.type = BTRFS_DIR_INDEX_KEY;
	key.offset = 0;
2936 2937 2938 2939 2940

	odi = get_orphan_dir_info(sctx, dir);
	if (odi)
		key.offset = odi->last_dir_index_offset;

2941 2942 2943
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
2944 2945

	while (1) {
2946 2947
		struct waiting_dir_move *dm;

2948 2949 2950 2951 2952 2953 2954
		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto out;
			else if (ret > 0)
				break;
			continue;
2955
		}
2956 2957 2958 2959
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
		if (found_key.objectid != key.objectid ||
		    found_key.type != key.type)
2960 2961 2962 2963 2964 2965
			break;

		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
				struct btrfs_dir_item);
		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);

2966 2967 2968 2969 2970 2971 2972 2973
		dm = get_waiting_dir_move(sctx, loc.objectid);
		if (dm) {
			odi = add_orphan_dir_info(sctx, dir);
			if (IS_ERR(odi)) {
				ret = PTR_ERR(odi);
				goto out;
			}
			odi->gen = dir_gen;
2974
			odi->last_dir_index_offset = found_key.offset;
2975 2976 2977 2978 2979
			dm->rmdir_ino = dir;
			ret = 0;
			goto out;
		}

2980
		if (loc.objectid > send_progress) {
2981 2982 2983 2984 2985 2986 2987
			odi = add_orphan_dir_info(sctx, dir);
			if (IS_ERR(odi)) {
				ret = PTR_ERR(odi);
				goto out;
			}
			odi->gen = dir_gen;
			odi->last_dir_index_offset = found_key.offset;
2988 2989 2990 2991
			ret = 0;
			goto out;
		}

2992
		path->slots[0]++;
2993
	}
2994
	free_orphan_dir_info(sctx, odi);
2995 2996 2997 2998 2999 3000 3001 3002

	ret = 1;

out:
	btrfs_free_path(path);
	return ret;
}

3003 3004
static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
{
3005
	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3006

3007
	return entry != NULL;
3008 3009
}

3010
static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3011 3012 3013 3014 3015
{
	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
	struct rb_node *parent = NULL;
	struct waiting_dir_move *entry, *dm;

3016
	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3017 3018 3019
	if (!dm)
		return -ENOMEM;
	dm->ino = ino;
3020
	dm->rmdir_ino = 0;
3021
	dm->orphanized = orphanized;
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040

	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct waiting_dir_move, node);
		if (ino < entry->ino) {
			p = &(*p)->rb_left;
		} else if (ino > entry->ino) {
			p = &(*p)->rb_right;
		} else {
			kfree(dm);
			return -EEXIST;
		}
	}

	rb_link_node(&dm->node, parent, p);
	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
	return 0;
}

3041 3042
static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3043 3044 3045 3046 3047 3048
{
	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
	struct waiting_dir_move *entry;

	while (n) {
		entry = rb_entry(n, struct waiting_dir_move, node);
3049
		if (ino < entry->ino)
3050
			n = n->rb_left;
3051
		else if (ino > entry->ino)
3052
			n = n->rb_right;
3053 3054
		else
			return entry;
3055
	}
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
	return NULL;
}

static void free_waiting_dir_move(struct send_ctx *sctx,
				  struct waiting_dir_move *dm)
{
	if (!dm)
		return;
	rb_erase(&dm->node, &sctx->waiting_dir_moves);
	kfree(dm);
3066 3067
}

3068 3069 3070
static int add_pending_dir_move(struct send_ctx *sctx,
				u64 ino,
				u64 ino_gen,
3071 3072
				u64 parent_ino,
				struct list_head *new_refs,
3073 3074
				struct list_head *deleted_refs,
				const bool is_orphan)
3075 3076 3077
{
	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
	struct rb_node *parent = NULL;
C
Chris Mason 已提交
3078
	struct pending_dir_move *entry = NULL, *pm;
3079 3080 3081 3082
	struct recorded_ref *cur;
	int exists = 0;
	int ret;

3083
	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3084 3085 3086
	if (!pm)
		return -ENOMEM;
	pm->parent_ino = parent_ino;
3087 3088
	pm->ino = ino;
	pm->gen = ino_gen;
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
	INIT_LIST_HEAD(&pm->list);
	INIT_LIST_HEAD(&pm->update_refs);
	RB_CLEAR_NODE(&pm->node);

	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct pending_dir_move, node);
		if (parent_ino < entry->parent_ino) {
			p = &(*p)->rb_left;
		} else if (parent_ino > entry->parent_ino) {
			p = &(*p)->rb_right;
		} else {
			exists = 1;
			break;
		}
	}

3106
	list_for_each_entry(cur, deleted_refs, list) {
3107 3108 3109 3110
		ret = dup_ref(cur, &pm->update_refs);
		if (ret < 0)
			goto out;
	}
3111
	list_for_each_entry(cur, new_refs, list) {
3112 3113 3114 3115 3116
		ret = dup_ref(cur, &pm->update_refs);
		if (ret < 0)
			goto out;
	}

3117
	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
	if (ret)
		goto out;

	if (exists) {
		list_add_tail(&pm->list, &entry->list);
	} else {
		rb_link_node(&pm->node, parent, p);
		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
	}
	ret = 0;
out:
	if (ret) {
		__free_recorded_refs(&pm->update_refs);
		kfree(pm);
	}
	return ret;
}

static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
						      u64 parent_ino)
{
	struct rb_node *n = sctx->pending_dir_moves.rb_node;
	struct pending_dir_move *entry;

	while (n) {
		entry = rb_entry(n, struct pending_dir_move, node);
		if (parent_ino < entry->parent_ino)
			n = n->rb_left;
		else if (parent_ino > entry->parent_ino)
			n = n->rb_right;
		else
			return entry;
	}
	return NULL;
}

3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
static int path_loop(struct send_ctx *sctx, struct fs_path *name,
		     u64 ino, u64 gen, u64 *ancestor_ino)
{
	int ret = 0;
	u64 parent_inode = 0;
	u64 parent_gen = 0;
	u64 start_ino = ino;

	*ancestor_ino = 0;
	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
		fs_path_reset(name);

		if (is_waiting_for_rm(sctx, ino))
			break;
		if (is_waiting_for_move(sctx, ino)) {
			if (*ancestor_ino == 0)
				*ancestor_ino = ino;
			ret = get_first_ref(sctx->parent_root, ino,
					    &parent_inode, &parent_gen, name);
		} else {
			ret = __get_cur_name_and_parent(sctx, ino, gen,
							&parent_inode,
							&parent_gen, name);
			if (ret > 0) {
				ret = 0;
				break;
			}
		}
		if (ret < 0)
			break;
		if (parent_inode == start_ino) {
			ret = 1;
			if (*ancestor_ino == 0)
				*ancestor_ino = ino;
			break;
		}
		ino = parent_inode;
		gen = parent_gen;
	}
	return ret;
}

3196 3197 3198 3199
static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
{
	struct fs_path *from_path = NULL;
	struct fs_path *to_path = NULL;
3200
	struct fs_path *name = NULL;
3201 3202
	u64 orig_progress = sctx->send_progress;
	struct recorded_ref *cur;
3203
	u64 parent_ino, parent_gen;
3204 3205
	struct waiting_dir_move *dm = NULL;
	u64 rmdir_ino = 0;
3206 3207
	u64 ancestor;
	bool is_orphan;
3208 3209
	int ret;

3210
	name = fs_path_alloc();
3211
	from_path = fs_path_alloc();
3212 3213 3214 3215
	if (!name || !from_path) {
		ret = -ENOMEM;
		goto out;
	}
3216

3217 3218 3219
	dm = get_waiting_dir_move(sctx, pm->ino);
	ASSERT(dm);
	rmdir_ino = dm->rmdir_ino;
3220
	is_orphan = dm->orphanized;
3221
	free_waiting_dir_move(sctx, dm);
3222

3223
	if (is_orphan) {
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
		ret = gen_unique_name(sctx, pm->ino,
				      pm->gen, from_path);
	} else {
		ret = get_first_ref(sctx->parent_root, pm->ino,
				    &parent_ino, &parent_gen, name);
		if (ret < 0)
			goto out;
		ret = get_cur_path(sctx, parent_ino, parent_gen,
				   from_path);
		if (ret < 0)
			goto out;
		ret = fs_path_add_path(from_path, name);
	}
3237 3238
	if (ret < 0)
		goto out;
3239

3240
	sctx->send_progress = sctx->cur_ino + 1;
3241
	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3242 3243
	if (ret < 0)
		goto out;
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
	if (ret) {
		LIST_HEAD(deleted_refs);
		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
					   &pm->update_refs, &deleted_refs,
					   is_orphan);
		if (ret < 0)
			goto out;
		if (rmdir_ino) {
			dm = get_waiting_dir_move(sctx, pm->ino);
			ASSERT(dm);
			dm->rmdir_ino = rmdir_ino;
		}
		goto out;
	}
3259 3260
	fs_path_reset(name);
	to_path = name;
3261
	name = NULL;
3262 3263 3264 3265 3266 3267 3268 3269
	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
	if (ret < 0)
		goto out;

	ret = send_rename(sctx, from_path, to_path);
	if (ret < 0)
		goto out;

3270 3271
	if (rmdir_ino) {
		struct orphan_dir_info *odi;
3272
		u64 gen;
3273 3274 3275 3276 3277 3278

		odi = get_orphan_dir_info(sctx, rmdir_ino);
		if (!odi) {
			/* already deleted */
			goto finish;
		}
3279 3280 3281
		gen = odi->gen;

		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
		if (ret < 0)
			goto out;
		if (!ret)
			goto finish;

		name = fs_path_alloc();
		if (!name) {
			ret = -ENOMEM;
			goto out;
		}
3292
		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3293 3294 3295 3296 3297 3298 3299 3300
		if (ret < 0)
			goto out;
		ret = send_rmdir(sctx, name);
		if (ret < 0)
			goto out;
	}

finish:
3301 3302 3303 3304 3305 3306 3307 3308 3309
	ret = send_utimes(sctx, pm->ino, pm->gen);
	if (ret < 0)
		goto out;

	/*
	 * After rename/move, need to update the utimes of both new parent(s)
	 * and old parent(s).
	 */
	list_for_each_entry(cur, &pm->update_refs, list) {
3310 3311 3312 3313 3314 3315 3316
		/*
		 * The parent inode might have been deleted in the send snapshot
		 */
		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
				     NULL, NULL, NULL, NULL, NULL);
		if (ret == -ENOENT) {
			ret = 0;
3317
			continue;
3318 3319 3320 3321
		}
		if (ret < 0)
			goto out;

3322 3323 3324 3325 3326 3327
		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
		if (ret < 0)
			goto out;
	}

out:
3328
	fs_path_free(name);
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
	fs_path_free(from_path);
	fs_path_free(to_path);
	sctx->send_progress = orig_progress;

	return ret;
}

static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
{
	if (!list_empty(&m->list))
		list_del(&m->list);
	if (!RB_EMPTY_NODE(&m->node))
		rb_erase(&m->node, &sctx->pending_dir_moves);
	__free_recorded_refs(&m->update_refs);
	kfree(m);
}

static void tail_append_pending_moves(struct pending_dir_move *moves,
				      struct list_head *stack)
{
	if (list_empty(&moves->list)) {
		list_add_tail(&moves->list, stack);
	} else {
		LIST_HEAD(list);
		list_splice_init(&moves->list, &list);
		list_add_tail(&moves->list, stack);
		list_splice_tail(&list, stack);
	}
}

static int apply_children_dir_moves(struct send_ctx *sctx)
{
	struct pending_dir_move *pm;
	struct list_head stack;
	u64 parent_ino = sctx->cur_ino;
	int ret = 0;

	pm = get_pending_dir_moves(sctx, parent_ino);
	if (!pm)
		return 0;

	INIT_LIST_HEAD(&stack);
	tail_append_pending_moves(pm, &stack);

	while (!list_empty(&stack)) {
		pm = list_first_entry(&stack, struct pending_dir_move, list);
		parent_ino = pm->ino;
		ret = apply_dir_move(sctx, pm);
		free_pending_move(sctx, pm);
		if (ret)
			goto out;
		pm = get_pending_dir_moves(sctx, parent_ino);
		if (pm)
			tail_append_pending_moves(pm, &stack);
	}
	return 0;

out:
	while (!list_empty(&stack)) {
		pm = list_first_entry(&stack, struct pending_dir_move, list);
		free_pending_move(sctx, pm);
	}
	return ret;
}

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
/*
 * We might need to delay a directory rename even when no ancestor directory
 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
 * renamed. This happens when we rename a directory to the old name (the name
 * in the parent root) of some other unrelated directory that got its rename
 * delayed due to some ancestor with higher number that got renamed.
 *
 * Example:
 *
 * Parent snapshot:
 * .                                       (ino 256)
 * |---- a/                                (ino 257)
 * |     |---- file                        (ino 260)
 * |
 * |---- b/                                (ino 258)
 * |---- c/                                (ino 259)
 *
 * Send snapshot:
 * .                                       (ino 256)
 * |---- a/                                (ino 258)
 * |---- x/                                (ino 259)
 *       |---- y/                          (ino 257)
 *             |----- file                 (ino 260)
 *
 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
 * must issue is:
 *
 * 1 - rename 259 from 'c' to 'x'
 * 2 - rename 257 from 'a' to 'x/y'
 * 3 - rename 258 from 'b' to 'a'
 *
 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
 * be done right away and < 0 on error.
 */
static int wait_for_dest_dir_move(struct send_ctx *sctx,
				  struct recorded_ref *parent_ref,
				  const bool is_orphan)
{
3434
	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3435 3436 3437 3438 3439 3440 3441
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key di_key;
	struct btrfs_dir_item *di;
	u64 left_gen;
	u64 right_gen;
	int ret = 0;
3442
	struct waiting_dir_move *wdm;
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462

	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
		return 0;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = parent_ref->dir;
	key.type = BTRFS_DIR_ITEM_KEY;
	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);

	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
	if (ret < 0) {
		goto out;
	} else if (ret > 0) {
		ret = 0;
		goto out;
	}

3463 3464
	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
				       parent_ref->name_len);
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
	if (!di) {
		ret = 0;
		goto out;
	}
	/*
	 * di_key.objectid has the number of the inode that has a dentry in the
	 * parent directory with the same name that sctx->cur_ino is being
	 * renamed to. We need to check if that inode is in the send root as
	 * well and if it is currently marked as an inode with a pending rename,
	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
	 * that it happens after that other inode is renamed.
	 */
	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
		ret = 0;
		goto out;
	}

	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
			     &left_gen, NULL, NULL, NULL, NULL);
	if (ret < 0)
		goto out;
	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
			     &right_gen, NULL, NULL, NULL, NULL);
	if (ret < 0) {
		if (ret == -ENOENT)
			ret = 0;
		goto out;
	}

	/* Different inode, no need to delay the rename of sctx->cur_ino */
	if (right_gen != left_gen) {
		ret = 0;
		goto out;
	}

3501 3502
	wdm = get_waiting_dir_move(sctx, di_key.objectid);
	if (wdm && !wdm->orphanized) {
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
		ret = add_pending_dir_move(sctx,
					   sctx->cur_ino,
					   sctx->cur_inode_gen,
					   di_key.objectid,
					   &sctx->new_refs,
					   &sctx->deleted_refs,
					   is_orphan);
		if (!ret)
			ret = 1;
	}
out:
	btrfs_free_path(path);
	return ret;
}

3518
/*
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
 * Check if inode ino2, or any of its ancestors, is inode ino1.
 * Return 1 if true, 0 if false and < 0 on error.
 */
static int check_ino_in_path(struct btrfs_root *root,
			     const u64 ino1,
			     const u64 ino1_gen,
			     const u64 ino2,
			     const u64 ino2_gen,
			     struct fs_path *fs_path)
{
	u64 ino = ino2;

	if (ino1 == ino2)
		return ino1_gen == ino2_gen;

	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
		u64 parent;
		u64 parent_gen;
		int ret;

		fs_path_reset(fs_path);
		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
		if (ret < 0)
			return ret;
		if (parent == ino1)
			return parent_gen == ino1_gen;
		ino = parent;
	}
	return 0;
}

/*
 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
 * possible path (in case ino2 is not a directory and has multiple hard links).
3553 3554 3555 3556 3557 3558 3559 3560
 * Return 1 if true, 0 if false and < 0 on error.
 */
static int is_ancestor(struct btrfs_root *root,
		       const u64 ino1,
		       const u64 ino1_gen,
		       const u64 ino2,
		       struct fs_path *fs_path)
{
3561
	bool free_fs_path = false;
3562
	int ret = 0;
3563 3564
	struct btrfs_path *path = NULL;
	struct btrfs_key key;
3565 3566 3567 3568 3569

	if (!fs_path) {
		fs_path = fs_path_alloc();
		if (!fs_path)
			return -ENOMEM;
3570
		free_fs_path = true;
3571
	}
3572

3573 3574 3575 3576 3577
	path = alloc_path_for_send();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}
3578

3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
	key.objectid = ino2;
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

	while (true) {
		struct extent_buffer *leaf = path->nodes[0];
		int slot = path->slots[0];
		u32 cur_offset = 0;
		u32 item_size;

		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto out;
			if (ret > 0)
				break;
			continue;
3600
		}
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638

		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid != ino2)
			break;
		if (key.type != BTRFS_INODE_REF_KEY &&
		    key.type != BTRFS_INODE_EXTREF_KEY)
			break;

		item_size = btrfs_item_size_nr(leaf, slot);
		while (cur_offset < item_size) {
			u64 parent;
			u64 parent_gen;

			if (key.type == BTRFS_INODE_EXTREF_KEY) {
				unsigned long ptr;
				struct btrfs_inode_extref *extref;

				ptr = btrfs_item_ptr_offset(leaf, slot);
				extref = (struct btrfs_inode_extref *)
					(ptr + cur_offset);
				parent = btrfs_inode_extref_parent(leaf,
								   extref);
				cur_offset += sizeof(*extref);
				cur_offset += btrfs_inode_extref_name_len(leaf,
								  extref);
			} else {
				parent = key.offset;
				cur_offset = item_size;
			}

			ret = get_inode_info(root, parent, NULL, &parent_gen,
					     NULL, NULL, NULL, NULL);
			if (ret < 0)
				goto out;
			ret = check_ino_in_path(root, ino1, ino1_gen,
						parent, parent_gen, fs_path);
			if (ret)
				goto out;
3639
		}
3640
		path->slots[0]++;
3641
	}
3642
	ret = 0;
3643
 out:
3644 3645
	btrfs_free_path(path);
	if (free_fs_path)
3646 3647
		fs_path_free(fs_path);
	return ret;
3648 3649
}

3650
static int wait_for_parent_move(struct send_ctx *sctx,
3651 3652
				struct recorded_ref *parent_ref,
				const bool is_orphan)
3653
{
3654
	int ret = 0;
3655
	u64 ino = parent_ref->dir;
3656
	u64 ino_gen = parent_ref->dir_gen;
3657 3658 3659 3660 3661 3662
	u64 parent_ino_before, parent_ino_after;
	struct fs_path *path_before = NULL;
	struct fs_path *path_after = NULL;
	int len1, len2;

	path_after = fs_path_alloc();
3663 3664
	path_before = fs_path_alloc();
	if (!path_after || !path_before) {
3665 3666 3667 3668
		ret = -ENOMEM;
		goto out;
	}

3669
	/*
3670 3671 3672
	 * Our current directory inode may not yet be renamed/moved because some
	 * ancestor (immediate or not) has to be renamed/moved first. So find if
	 * such ancestor exists and make sure our own rename/move happens after
3673 3674
	 * that ancestor is processed to avoid path build infinite loops (done
	 * at get_cur_path()).
3675
	 */
3676
	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3677 3678
		u64 parent_ino_after_gen;

3679
		if (is_waiting_for_move(sctx, ino)) {
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
			/*
			 * If the current inode is an ancestor of ino in the
			 * parent root, we need to delay the rename of the
			 * current inode, otherwise don't delayed the rename
			 * because we can end up with a circular dependency
			 * of renames, resulting in some directories never
			 * getting the respective rename operations issued in
			 * the send stream or getting into infinite path build
			 * loops.
			 */
			ret = is_ancestor(sctx->parent_root,
					  sctx->cur_ino, sctx->cur_inode_gen,
					  ino, path_before);
3693 3694
			if (ret)
				break;
3695
		}
3696 3697 3698 3699 3700

		fs_path_reset(path_before);
		fs_path_reset(path_after);

		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3701
				    &parent_ino_after_gen, path_after);
3702 3703 3704 3705
		if (ret < 0)
			goto out;
		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
				    NULL, path_before);
3706
		if (ret < 0 && ret != -ENOENT) {
3707
			goto out;
3708
		} else if (ret == -ENOENT) {
3709
			ret = 0;
3710
			break;
3711 3712 3713 3714
		}

		len1 = fs_path_len(path_before);
		len2 = fs_path_len(path_after);
3715 3716 3717
		if (ino > sctx->cur_ino &&
		    (parent_ino_before != parent_ino_after || len1 != len2 ||
		     memcmp(path_before->start, path_after->start, len1))) {
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
			u64 parent_ino_gen;

			ret = get_inode_info(sctx->parent_root, ino, NULL,
					     &parent_ino_gen, NULL, NULL, NULL,
					     NULL);
			if (ret < 0)
				goto out;
			if (ino_gen == parent_ino_gen) {
				ret = 1;
				break;
			}
3729 3730
		}
		ino = parent_ino_after;
3731
		ino_gen = parent_ino_after_gen;
3732 3733
	}

3734 3735 3736 3737
out:
	fs_path_free(path_before);
	fs_path_free(path_after);

3738 3739 3740 3741 3742 3743
	if (ret == 1) {
		ret = add_pending_dir_move(sctx,
					   sctx->cur_ino,
					   sctx->cur_inode_gen,
					   ino,
					   &sctx->new_refs,
3744
					   &sctx->deleted_refs,
3745
					   is_orphan);
3746 3747 3748 3749
		if (!ret)
			ret = 1;
	}

3750 3751 3752
	return ret;
}

3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
{
	int ret;
	struct fs_path *new_path;

	/*
	 * Our reference's name member points to its full_path member string, so
	 * we use here a new path.
	 */
	new_path = fs_path_alloc();
	if (!new_path)
		return -ENOMEM;

	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
	if (ret < 0) {
		fs_path_free(new_path);
		return ret;
	}
	ret = fs_path_add(new_path, ref->name, ref->name_len);
	if (ret < 0) {
		fs_path_free(new_path);
		return ret;
	}

	fs_path_free(ref->full_path);
	set_ref_path(ref, new_path);

	return 0;
}

3783 3784 3785
/*
 * This does all the move/link/unlink/rmdir magic.
 */
3786
static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3787
{
3788
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3789 3790
	int ret = 0;
	struct recorded_ref *cur;
3791
	struct recorded_ref *cur2;
3792
	struct list_head check_dirs;
3793
	struct fs_path *valid_path = NULL;
3794
	u64 ow_inode = 0;
3795
	u64 ow_gen;
3796
	u64 ow_mode;
3797 3798
	int did_overwrite = 0;
	int is_orphan = 0;
3799
	u64 last_dir_ino_rm = 0;
3800
	bool can_rename = true;
3801
	bool orphanized_dir = false;
3802
	bool orphanized_ancestor = false;
3803

3804
	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3805

3806 3807 3808 3809 3810
	/*
	 * This should never happen as the root dir always has the same ref
	 * which is always '..'
	 */
	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3811
	INIT_LIST_HEAD(&check_dirs);
3812

3813
	valid_path = fs_path_alloc();
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
	if (!valid_path) {
		ret = -ENOMEM;
		goto out;
	}

	/*
	 * First, check if the first ref of the current inode was overwritten
	 * before. If yes, we know that the current inode was already orphanized
	 * and thus use the orphan name. If not, we can use get_cur_path to
	 * get the path of the first ref as it would like while receiving at
	 * this point in time.
	 * New inodes are always orphan at the beginning, so force to use the
	 * orphan name in this case.
	 * The first ref is stored in valid_path and will be updated if it
	 * gets moved around.
	 */
	if (!sctx->cur_inode_new) {
		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
				sctx->cur_inode_gen);
		if (ret < 0)
			goto out;
		if (ret)
			did_overwrite = 1;
	}
	if (sctx->cur_inode_new || did_overwrite) {
		ret = gen_unique_name(sctx, sctx->cur_ino,
				sctx->cur_inode_gen, valid_path);
		if (ret < 0)
			goto out;
		is_orphan = 1;
	} else {
		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				valid_path);
		if (ret < 0)
			goto out;
	}

	list_for_each_entry(cur, &sctx->new_refs, list) {
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
		/*
		 * We may have refs where the parent directory does not exist
		 * yet. This happens if the parent directories inum is higher
		 * the the current inum. To handle this case, we create the
		 * parent directory out of order. But we need to check if this
		 * did already happen before due to other refs in the same dir.
		 */
		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
		if (ret < 0)
			goto out;
		if (ret == inode_state_will_create) {
			ret = 0;
			/*
			 * First check if any of the current inodes refs did
			 * already create the dir.
			 */
			list_for_each_entry(cur2, &sctx->new_refs, list) {
				if (cur == cur2)
					break;
				if (cur2->dir == cur->dir) {
					ret = 1;
					break;
				}
			}

			/*
			 * If that did not happen, check if a previous inode
			 * did already create the dir.
			 */
			if (!ret)
				ret = did_create_dir(sctx, cur->dir);
			if (ret < 0)
				goto out;
			if (!ret) {
				ret = send_create_inode(sctx, cur->dir);
				if (ret < 0)
					goto out;
			}
		}

3892 3893 3894 3895 3896 3897 3898 3899
		/*
		 * Check if this new ref would overwrite the first ref of
		 * another unprocessed inode. If yes, orphanize the
		 * overwritten inode. If we find an overwritten ref that is
		 * not the first ref, simply unlink it.
		 */
		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
				cur->name, cur->name_len,
3900
				&ow_inode, &ow_gen, &ow_mode);
3901 3902 3903
		if (ret < 0)
			goto out;
		if (ret) {
3904 3905 3906
			ret = is_first_ref(sctx->parent_root,
					   ow_inode, cur->dir, cur->name,
					   cur->name_len);
3907 3908 3909
			if (ret < 0)
				goto out;
			if (ret) {
3910
				struct name_cache_entry *nce;
3911
				struct waiting_dir_move *wdm;
3912

3913 3914 3915 3916
				ret = orphanize_inode(sctx, ow_inode, ow_gen,
						cur->full_path);
				if (ret < 0)
					goto out;
3917 3918
				if (S_ISDIR(ow_mode))
					orphanized_dir = true;
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932

				/*
				 * If ow_inode has its rename operation delayed
				 * make sure that its orphanized name is used in
				 * the source path when performing its rename
				 * operation.
				 */
				if (is_waiting_for_move(sctx, ow_inode)) {
					wdm = get_waiting_dir_move(sctx,
								   ow_inode);
					ASSERT(wdm);
					wdm->orphanized = true;
				}

3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
				/*
				 * Make sure we clear our orphanized inode's
				 * name from the name cache. This is because the
				 * inode ow_inode might be an ancestor of some
				 * other inode that will be orphanized as well
				 * later and has an inode number greater than
				 * sctx->send_progress. We need to prevent
				 * future name lookups from using the old name
				 * and get instead the orphan name.
				 */
				nce = name_cache_search(sctx, ow_inode, ow_gen);
				if (nce) {
					name_cache_delete(sctx, nce);
					kfree(nce);
				}
3948 3949 3950 3951 3952 3953 3954 3955

				/*
				 * ow_inode might currently be an ancestor of
				 * cur_ino, therefore compute valid_path (the
				 * current path of cur_ino) again because it
				 * might contain the pre-orphanization name of
				 * ow_inode, which is no longer valid.
				 */
3956 3957 3958 3959
				ret = is_ancestor(sctx->parent_root,
						  ow_inode, ow_gen,
						  sctx->cur_ino, NULL);
				if (ret > 0) {
3960
					orphanized_ancestor = true;
3961 3962 3963 3964 3965
					fs_path_reset(valid_path);
					ret = get_cur_path(sctx, sctx->cur_ino,
							   sctx->cur_inode_gen,
							   valid_path);
				}
3966 3967
				if (ret < 0)
					goto out;
3968 3969 3970 3971 3972 3973 3974
			} else {
				ret = send_unlink(sctx, cur->full_path);
				if (ret < 0)
					goto out;
			}
		}

3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
			if (ret < 0)
				goto out;
			if (ret == 1) {
				can_rename = false;
				*pending_move = 1;
			}
		}

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
		    can_rename) {
			ret = wait_for_parent_move(sctx, cur, is_orphan);
			if (ret < 0)
				goto out;
			if (ret == 1) {
				can_rename = false;
				*pending_move = 1;
			}
		}

3996 3997 3998 3999 4000
		/*
		 * link/move the ref to the new place. If we have an orphan
		 * inode, move it and update valid_path. If not, link or move
		 * it depending on the inode mode.
		 */
4001
		if (is_orphan && can_rename) {
4002 4003 4004 4005 4006 4007 4008
			ret = send_rename(sctx, valid_path, cur->full_path);
			if (ret < 0)
				goto out;
			is_orphan = 0;
			ret = fs_path_copy(valid_path, cur->full_path);
			if (ret < 0)
				goto out;
4009
		} else if (can_rename) {
4010 4011 4012 4013 4014 4015
			if (S_ISDIR(sctx->cur_inode_mode)) {
				/*
				 * Dirs can't be linked, so move it. For moved
				 * dirs, we always have one new and one deleted
				 * ref. The deleted ref is ignored later.
				 */
4016 4017 4018 4019 4020
				ret = send_rename(sctx, valid_path,
						  cur->full_path);
				if (!ret)
					ret = fs_path_copy(valid_path,
							   cur->full_path);
4021 4022 4023
				if (ret < 0)
					goto out;
			} else {
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
				/*
				 * We might have previously orphanized an inode
				 * which is an ancestor of our current inode,
				 * so our reference's full path, which was
				 * computed before any such orphanizations, must
				 * be updated.
				 */
				if (orphanized_dir) {
					ret = update_ref_path(sctx, cur);
					if (ret < 0)
						goto out;
				}
4036 4037 4038 4039 4040 4041
				ret = send_link(sctx, cur->full_path,
						valid_path);
				if (ret < 0)
					goto out;
			}
		}
4042
		ret = dup_ref(cur, &check_dirs);
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
		if (ret < 0)
			goto out;
	}

	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
		/*
		 * Check if we can already rmdir the directory. If not,
		 * orphanize it. For every dir item inside that gets deleted
		 * later, we do this check again and rmdir it then if possible.
		 * See the use of check_dirs for more details.
		 */
4054 4055
		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				sctx->cur_ino);
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
		if (ret < 0)
			goto out;
		if (ret) {
			ret = send_rmdir(sctx, valid_path);
			if (ret < 0)
				goto out;
		} else if (!is_orphan) {
			ret = orphanize_inode(sctx, sctx->cur_ino,
					sctx->cur_inode_gen, valid_path);
			if (ret < 0)
				goto out;
			is_orphan = 1;
		}

		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4071
			ret = dup_ref(cur, &check_dirs);
4072 4073 4074
			if (ret < 0)
				goto out;
		}
4075 4076 4077 4078 4079 4080 4081
	} else if (S_ISDIR(sctx->cur_inode_mode) &&
		   !list_empty(&sctx->deleted_refs)) {
		/*
		 * We have a moved dir. Add the old parent to check_dirs
		 */
		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
				list);
4082
		ret = dup_ref(cur, &check_dirs);
4083 4084
		if (ret < 0)
			goto out;
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
		/*
		 * We have a non dir inode. Go through all deleted refs and
		 * unlink them if they were not already overwritten by other
		 * inodes.
		 */
		list_for_each_entry(cur, &sctx->deleted_refs, list) {
			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
					sctx->cur_ino, sctx->cur_inode_gen,
					cur->name, cur->name_len);
			if (ret < 0)
				goto out;
			if (!ret) {
4098 4099 4100 4101 4102 4103 4104 4105
				/*
				 * If we orphanized any ancestor before, we need
				 * to recompute the full path for deleted names,
				 * since any such path was computed before we
				 * processed any references and orphanized any
				 * ancestor inode.
				 */
				if (orphanized_ancestor) {
4106 4107
					ret = update_ref_path(sctx, cur);
					if (ret < 0)
4108 4109
						goto out;
				}
4110 4111 4112
				ret = send_unlink(sctx, cur->full_path);
				if (ret < 0)
					goto out;
4113
			}
4114
			ret = dup_ref(cur, &check_dirs);
4115 4116 4117 4118 4119 4120 4121
			if (ret < 0)
				goto out;
		}
		/*
		 * If the inode is still orphan, unlink the orphan. This may
		 * happen when a previous inode did overwrite the first ref
		 * of this inode and no new refs were added for the current
4122 4123 4124
		 * inode. Unlinking does not mean that the inode is deleted in
		 * all cases. There may still be links to this inode in other
		 * places.
4125
		 */
4126
		if (is_orphan) {
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
			ret = send_unlink(sctx, valid_path);
			if (ret < 0)
				goto out;
		}
	}

	/*
	 * We did collect all parent dirs where cur_inode was once located. We
	 * now go through all these dirs and check if they are pending for
	 * deletion and if it's finally possible to perform the rmdir now.
	 * We also update the inode stats of the parent dirs here.
	 */
4139
	list_for_each_entry(cur, &check_dirs, list) {
4140 4141 4142 4143 4144
		/*
		 * In case we had refs into dirs that were not processed yet,
		 * we don't need to do the utime and rmdir logic for these dirs.
		 * The dir will be processed later.
		 */
4145
		if (cur->dir > sctx->cur_ino)
4146 4147
			continue;

4148
		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4149 4150 4151 4152 4153 4154
		if (ret < 0)
			goto out;

		if (ret == inode_state_did_create ||
		    ret == inode_state_no_change) {
			/* TODO delayed utimes */
4155
			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4156 4157
			if (ret < 0)
				goto out;
4158 4159
		} else if (ret == inode_state_did_delete &&
			   cur->dir != last_dir_ino_rm) {
4160 4161
			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
					sctx->cur_ino);
4162 4163 4164
			if (ret < 0)
				goto out;
			if (ret) {
4165 4166
				ret = get_cur_path(sctx, cur->dir,
						   cur->dir_gen, valid_path);
4167 4168 4169 4170 4171
				if (ret < 0)
					goto out;
				ret = send_rmdir(sctx, valid_path);
				if (ret < 0)
					goto out;
4172
				last_dir_ino_rm = cur->dir;
4173 4174 4175 4176 4177 4178 4179
			}
		}
	}

	ret = 0;

out:
4180
	__free_recorded_refs(&check_dirs);
4181
	free_recorded_refs(sctx);
4182
	fs_path_free(valid_path);
4183 4184 4185
	return ret;
}

4186 4187
static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
		      void *ctx, struct list_head *refs)
4188 4189 4190 4191 4192 4193
{
	int ret = 0;
	struct send_ctx *sctx = ctx;
	struct fs_path *p;
	u64 gen;

4194
	p = fs_path_alloc();
4195 4196 4197
	if (!p)
		return -ENOMEM;

4198
	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4199
			NULL, NULL);
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, dir, gen, p);
	if (ret < 0)
		goto out;
	ret = fs_path_add_path(p, name);
	if (ret < 0)
		goto out;

4210
	ret = __record_ref(refs, dir, gen, p);
4211 4212 4213

out:
	if (ret)
4214
		fs_path_free(p);
4215 4216 4217
	return ret;
}

4218 4219 4220 4221 4222
static int __record_new_ref(int num, u64 dir, int index,
			    struct fs_path *name,
			    void *ctx)
{
	struct send_ctx *sctx = ctx;
4223
	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4224 4225 4226
}


4227 4228 4229 4230 4231
static int __record_deleted_ref(int num, u64 dir, int index,
				struct fs_path *name,
				void *ctx)
{
	struct send_ctx *sctx = ctx;
4232 4233
	return record_ref(sctx->parent_root, dir, name, ctx,
			  &sctx->deleted_refs);
4234 4235 4236 4237 4238 4239
}

static int record_new_ref(struct send_ctx *sctx)
{
	int ret;

4240 4241
	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
				sctx->cmp_key, 0, __record_new_ref, sctx);
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
	if (ret < 0)
		goto out;
	ret = 0;

out:
	return ret;
}

static int record_deleted_ref(struct send_ctx *sctx)
{
	int ret;

4254 4255
	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
	if (ret < 0)
		goto out;
	ret = 0;

out:
	return ret;
}

struct find_ref_ctx {
	u64 dir;
4266 4267
	u64 dir_gen;
	struct btrfs_root *root;
4268 4269 4270 4271 4272 4273 4274 4275 4276
	struct fs_path *name;
	int found_idx;
};

static int __find_iref(int num, u64 dir, int index,
		       struct fs_path *name,
		       void *ctx_)
{
	struct find_ref_ctx *ctx = ctx_;
4277 4278
	u64 dir_gen;
	int ret;
4279 4280 4281

	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
		/*
		 * To avoid doing extra lookups we'll only do this if everything
		 * else matches.
		 */
		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
				     NULL, NULL, NULL);
		if (ret)
			return ret;
		if (dir_gen != ctx->dir_gen)
			return 0;
4292 4293 4294 4295 4296 4297
		ctx->found_idx = num;
		return 1;
	}
	return 0;
}

4298
static int find_iref(struct btrfs_root *root,
4299 4300
		     struct btrfs_path *path,
		     struct btrfs_key *key,
4301
		     u64 dir, u64 dir_gen, struct fs_path *name)
4302 4303 4304 4305 4306 4307
{
	int ret;
	struct find_ref_ctx ctx;

	ctx.dir = dir;
	ctx.name = name;
4308
	ctx.dir_gen = dir_gen;
4309
	ctx.found_idx = -1;
4310
	ctx.root = root;
4311

4312
	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
	if (ret < 0)
		return ret;

	if (ctx.found_idx == -1)
		return -ENOENT;

	return ctx.found_idx;
}

static int __record_changed_new_ref(int num, u64 dir, int index,
				    struct fs_path *name,
				    void *ctx)
{
4326
	u64 dir_gen;
4327 4328 4329
	int ret;
	struct send_ctx *sctx = ctx;

4330 4331 4332 4333 4334
	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
			     NULL, NULL, NULL);
	if (ret)
		return ret;

4335
	ret = find_iref(sctx->parent_root, sctx->right_path,
4336
			sctx->cmp_key, dir, dir_gen, name);
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
	if (ret == -ENOENT)
		ret = __record_new_ref(num, dir, index, name, sctx);
	else if (ret > 0)
		ret = 0;

	return ret;
}

static int __record_changed_deleted_ref(int num, u64 dir, int index,
					struct fs_path *name,
					void *ctx)
{
4349
	u64 dir_gen;
4350 4351 4352
	int ret;
	struct send_ctx *sctx = ctx;

4353 4354 4355 4356 4357
	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
			     NULL, NULL, NULL);
	if (ret)
		return ret;

4358
	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4359
			dir, dir_gen, name);
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
	if (ret == -ENOENT)
		ret = __record_deleted_ref(num, dir, index, name, sctx);
	else if (ret > 0)
		ret = 0;

	return ret;
}

static int record_changed_ref(struct send_ctx *sctx)
{
	int ret = 0;

4372
	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4373 4374 4375
			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
	if (ret < 0)
		goto out;
4376
	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
	if (ret < 0)
		goto out;
	ret = 0;

out:
	return ret;
}

/*
 * Record and process all refs at once. Needed when an inode changes the
 * generation number, which means that it was deleted and recreated.
 */
static int process_all_refs(struct send_ctx *sctx,
			    enum btrfs_compare_tree_result cmd)
{
	int ret;
	struct btrfs_root *root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	int slot;
	iterate_inode_ref_t cb;
4401
	int pending_move = 0;
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	if (cmd == BTRFS_COMPARE_TREE_NEW) {
		root = sctx->send_root;
		cb = __record_new_ref;
	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
		root = sctx->parent_root;
		cb = __record_deleted_ref;
	} else {
4414 4415 4416 4417
		btrfs_err(sctx->send_root->fs_info,
				"Wrong command %d in process_all_refs", cmd);
		ret = -EINVAL;
		goto out;
4418 4419 4420 4421 4422
	}

	key.objectid = sctx->cmp_key->objectid;
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = 0;
4423 4424 4425
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
4426

4427
	while (1) {
4428 4429
		eb = path->nodes[0];
		slot = path->slots[0];
4430 4431 4432 4433 4434 4435 4436 4437 4438
		if (slot >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto out;
			else if (ret > 0)
				break;
			continue;
		}

4439 4440 4441
		btrfs_item_key_to_cpu(eb, &found_key, slot);

		if (found_key.objectid != key.objectid ||
4442 4443
		    (found_key.type != BTRFS_INODE_REF_KEY &&
		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4444 4445
			break;

4446
		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4447 4448 4449
		if (ret < 0)
			goto out;

4450
		path->slots[0]++;
4451
	}
4452
	btrfs_release_path(path);
4453

4454 4455 4456 4457 4458
	/*
	 * We don't actually care about pending_move as we are simply
	 * re-creating this inode and will be rename'ing it into place once we
	 * rename the parent directory.
	 */
4459
	ret = process_recorded_refs(sctx, &pending_move);
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
out:
	btrfs_free_path(path);
	return ret;
}

static int send_set_xattr(struct send_ctx *sctx,
			  struct fs_path *path,
			  const char *name, int name_len,
			  const char *data, int data_len)
{
	int ret = 0;

	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

static int send_remove_xattr(struct send_ctx *sctx,
			  struct fs_path *path,
			  const char *name, int name_len)
{
	int ret = 0;

	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

static int __process_new_xattr(int num, struct btrfs_key *di_key,
			       const char *name, int name_len,
			       const char *data, int data_len,
			       u8 type, void *ctx)
{
	int ret;
	struct send_ctx *sctx = ctx;
	struct fs_path *p;
4515
	struct posix_acl_xattr_header dummy_acl;
4516

4517
	p = fs_path_alloc();
4518 4519 4520 4521
	if (!p)
		return -ENOMEM;

	/*
4522
	 * This hack is needed because empty acls are stored as zero byte
4523
	 * data in xattrs. Problem with that is, that receiving these zero byte
4524
	 * acls will fail later. To fix this, we send a dummy acl list that
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
	 * only contains the version number and no entries.
	 */
	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
		if (data_len == 0) {
			dummy_acl.a_version =
					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
			data = (char *)&dummy_acl;
			data_len = sizeof(dummy_acl);
		}
	}

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);

out:
4544
	fs_path_free(p);
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
	return ret;
}

static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
				   const char *name, int name_len,
				   const char *data, int data_len,
				   u8 type, void *ctx)
{
	int ret;
	struct send_ctx *sctx = ctx;
	struct fs_path *p;

4557
	p = fs_path_alloc();
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
	if (!p)
		return -ENOMEM;

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	ret = send_remove_xattr(sctx, p, name, name_len);

out:
4568
	fs_path_free(p);
4569 4570 4571 4572 4573 4574 4575
	return ret;
}

static int process_new_xattr(struct send_ctx *sctx)
{
	int ret = 0;

4576
	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4577
			       __process_new_xattr, sctx);
4578 4579 4580 4581 4582 4583

	return ret;
}

static int process_deleted_xattr(struct send_ctx *sctx)
{
4584
	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4585
				__process_deleted_xattr, sctx);
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
}

struct find_xattr_ctx {
	const char *name;
	int name_len;
	int found_idx;
	char *found_data;
	int found_data_len;
};

static int __find_xattr(int num, struct btrfs_key *di_key,
			const char *name, int name_len,
			const char *data, int data_len,
			u8 type, void *vctx)
{
	struct find_xattr_ctx *ctx = vctx;

	if (name_len == ctx->name_len &&
	    strncmp(name, ctx->name, name_len) == 0) {
		ctx->found_idx = num;
		ctx->found_data_len = data_len;
4607
		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4608 4609 4610 4611 4612 4613 4614
		if (!ctx->found_data)
			return -ENOMEM;
		return 1;
	}
	return 0;
}

4615
static int find_xattr(struct btrfs_root *root,
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
		      struct btrfs_path *path,
		      struct btrfs_key *key,
		      const char *name, int name_len,
		      char **data, int *data_len)
{
	int ret;
	struct find_xattr_ctx ctx;

	ctx.name = name;
	ctx.name_len = name_len;
	ctx.found_idx = -1;
	ctx.found_data = NULL;
	ctx.found_data_len = 0;

4630
	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
	if (ret < 0)
		return ret;

	if (ctx.found_idx == -1)
		return -ENOENT;
	if (data) {
		*data = ctx.found_data;
		*data_len = ctx.found_data_len;
	} else {
		kfree(ctx.found_data);
	}
	return ctx.found_idx;
}


static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
				       const char *name, int name_len,
				       const char *data, int data_len,
				       u8 type, void *ctx)
{
	int ret;
	struct send_ctx *sctx = ctx;
	char *found_data = NULL;
	int found_data_len  = 0;

4656 4657 4658
	ret = find_xattr(sctx->parent_root, sctx->right_path,
			 sctx->cmp_key, name, name_len, &found_data,
			 &found_data_len);
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
	if (ret == -ENOENT) {
		ret = __process_new_xattr(num, di_key, name, name_len, data,
				data_len, type, ctx);
	} else if (ret >= 0) {
		if (data_len != found_data_len ||
		    memcmp(data, found_data, data_len)) {
			ret = __process_new_xattr(num, di_key, name, name_len,
					data, data_len, type, ctx);
		} else {
			ret = 0;
		}
	}

	kfree(found_data);
	return ret;
}

static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
					   const char *name, int name_len,
					   const char *data, int data_len,
					   u8 type, void *ctx)
{
	int ret;
	struct send_ctx *sctx = ctx;

4684 4685
	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
			 name, name_len, NULL, NULL);
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
	if (ret == -ENOENT)
		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
				data_len, type, ctx);
	else if (ret >= 0)
		ret = 0;

	return ret;
}

static int process_changed_xattr(struct send_ctx *sctx)
{
	int ret = 0;

4699
	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4700
			__process_changed_new_xattr, sctx);
4701 4702
	if (ret < 0)
		goto out;
4703
	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4704
			__process_changed_deleted_xattr, sctx);
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728

out:
	return ret;
}

static int process_all_new_xattrs(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_root *root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	int slot;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	root = sctx->send_root;

	key.objectid = sctx->cmp_key->objectid;
	key.type = BTRFS_XATTR_ITEM_KEY;
	key.offset = 0;
4729 4730 4731
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
4732

4733
	while (1) {
4734 4735
		eb = path->nodes[0];
		slot = path->slots[0];
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
		if (slot >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0) {
				goto out;
			} else if (ret > 0) {
				ret = 0;
				break;
			}
			continue;
		}
4746

4747
		btrfs_item_key_to_cpu(eb, &found_key, slot);
4748 4749 4750 4751 4752 4753
		if (found_key.objectid != key.objectid ||
		    found_key.type != key.type) {
			ret = 0;
			goto out;
		}

4754
		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4755 4756 4757
		if (ret < 0)
			goto out;

4758
		path->slots[0]++;
4759 4760 4761 4762 4763 4764 4765
	}

out:
	btrfs_free_path(path);
	return ret;
}

J
Josef Bacik 已提交
4766 4767 4768 4769 4770 4771 4772 4773
static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
{
	struct btrfs_root *root = sctx->send_root;
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct inode *inode;
	struct page *page;
	char *addr;
	struct btrfs_key key;
4774
	pgoff_t index = offset >> PAGE_SHIFT;
J
Josef Bacik 已提交
4775
	pgoff_t last_index;
4776
	unsigned pg_offset = offset & ~PAGE_MASK;
J
Josef Bacik 已提交
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
	ssize_t ret = 0;

	key.objectid = sctx->cur_ino;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	if (offset + len > i_size_read(inode)) {
		if (offset > i_size_read(inode))
			len = 0;
		else
			len = offset - i_size_read(inode);
	}
	if (len == 0)
		goto out;

4796
	last_index = (offset + len - 1) >> PAGE_SHIFT;
L
Liu Bo 已提交
4797 4798 4799 4800 4801

	/* initial readahead */
	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
	file_ra_state_init(&sctx->ra, inode->i_mapping);

J
Josef Bacik 已提交
4802 4803
	while (index <= last_index) {
		unsigned cur_len = min_t(unsigned, len,
4804
					 PAGE_SIZE - pg_offset);
4805 4806

		page = find_lock_page(inode->i_mapping, index);
J
Josef Bacik 已提交
4807
		if (!page) {
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
				NULL, index, last_index + 1 - index);

			page = find_or_create_page(inode->i_mapping, index,
					GFP_KERNEL);
			if (!page) {
				ret = -ENOMEM;
				break;
			}
		}

		if (PageReadahead(page)) {
			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
				NULL, page, index, last_index + 1 - index);
J
Josef Bacik 已提交
4822 4823 4824 4825 4826 4827 4828
		}

		if (!PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
			if (!PageUptodate(page)) {
				unlock_page(page);
4829
				put_page(page);
J
Josef Bacik 已提交
4830 4831 4832 4833 4834 4835 4836 4837 4838
				ret = -EIO;
				break;
			}
		}

		addr = kmap(page);
		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
		kunmap(page);
		unlock_page(page);
4839
		put_page(page);
J
Josef Bacik 已提交
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
		index++;
		pg_offset = 0;
		len -= cur_len;
		ret += cur_len;
	}
out:
	iput(inode);
	return ret;
}

4850 4851 4852 4853 4854 4855
/*
 * Read some bytes from the current inode/file and send a write command to
 * user space.
 */
static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
{
4856
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4857 4858
	int ret = 0;
	struct fs_path *p;
J
Josef Bacik 已提交
4859
	ssize_t num_read = 0;
4860

4861
	p = fs_path_alloc();
4862 4863 4864
	if (!p)
		return -ENOMEM;

4865
	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4866

J
Josef Bacik 已提交
4867 4868 4869 4870
	num_read = fill_read_buf(sctx, offset, len);
	if (num_read <= 0) {
		if (num_read < 0)
			ret = num_read;
4871
		goto out;
J
Josef Bacik 已提交
4872
	}
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883

	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4884
	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4885 4886 4887 4888 4889

	ret = send_cmd(sctx);

tlv_put_failure:
out:
4890
	fs_path_free(p);
4891 4892
	if (ret < 0)
		return ret;
4893
	return num_read;
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
}

/*
 * Send a clone command to user space.
 */
static int send_clone(struct send_ctx *sctx,
		      u64 offset, u32 len,
		      struct clone_root *clone_root)
{
	int ret = 0;
	struct fs_path *p;
	u64 gen;

4907 4908 4909 4910
	btrfs_debug(sctx->send_root->fs_info,
		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
		    offset, len, clone_root->root->objectid, clone_root->ino,
		    clone_root->offset);
4911

4912
	p = fs_path_alloc();
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);

4928
	if (clone_root->root == sctx->send_root) {
4929
		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4930
				&gen, NULL, NULL, NULL, NULL);
4931 4932 4933 4934
		if (ret < 0)
			goto out;
		ret = get_cur_path(sctx, clone_root->ino, gen, p);
	} else {
4935
		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4936 4937 4938 4939
	}
	if (ret < 0)
		goto out;

4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
	/*
	 * If the parent we're using has a received_uuid set then use that as
	 * our clone source as that is what we will look for when doing a
	 * receive.
	 *
	 * This covers the case that we create a snapshot off of a received
	 * subvolume and then use that as the parent and try to receive on a
	 * different host.
	 */
	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
			     clone_root->root->root_item.received_uuid);
	else
		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
			     clone_root->root->root_item.uuid);
4955
	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4956
		    le64_to_cpu(clone_root->root->root_item.ctransid));
4957 4958 4959 4960 4961 4962 4963 4964
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
			clone_root->offset);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
4965
	fs_path_free(p);
4966 4967 4968
	return ret;
}

4969 4970 4971 4972 4973 4974 4975 4976 4977
/*
 * Send an update extent command to user space.
 */
static int send_update_extent(struct send_ctx *sctx,
			      u64 offset, u32 len)
{
	int ret = 0;
	struct fs_path *p;

4978
	p = fs_path_alloc();
4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
4998
	fs_path_free(p);
4999 5000 5001
	return ret;
}

5002 5003 5004 5005 5006 5007 5008
static int send_hole(struct send_ctx *sctx, u64 end)
{
	struct fs_path *p = NULL;
	u64 offset = sctx->cur_inode_last_extent;
	u64 len;
	int ret = 0;

5009 5010 5011
	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
		return send_update_extent(sctx, offset, end - offset);

5012 5013 5014
	p = fs_path_alloc();
	if (!p)
		return -ENOMEM;
5015 5016 5017
	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto tlv_put_failure;
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
	while (offset < end) {
		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);

		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
		if (ret < 0)
			break;
		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
		ret = send_cmd(sctx);
		if (ret < 0)
			break;
		offset += len;
	}
5033
	sctx->cur_inode_next_write_offset = offset;
5034 5035 5036 5037 5038
tlv_put_failure:
	fs_path_free(p);
	return ret;
}

5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
static int send_extent_data(struct send_ctx *sctx,
			    const u64 offset,
			    const u64 len)
{
	u64 sent = 0;

	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
		return send_update_extent(sctx, offset, len);

	while (sent < len) {
		u64 size = len - sent;
		int ret;

		if (size > BTRFS_SEND_READ_SIZE)
			size = BTRFS_SEND_READ_SIZE;
		ret = send_write(sctx, offset + sent, size);
		if (ret < 0)
			return ret;
		if (!ret)
			break;
		sent += ret;
	}
	return 0;
}

static int clone_range(struct send_ctx *sctx,
		       struct clone_root *clone_root,
		       const u64 disk_byte,
		       u64 data_offset,
		       u64 offset,
		       u64 len)
{
	struct btrfs_path *path;
	struct btrfs_key key;
	int ret;

5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
	/*
	 * Prevent cloning from a zero offset with a length matching the sector
	 * size because in some scenarios this will make the receiver fail.
	 *
	 * For example, if in the source filesystem the extent at offset 0
	 * has a length of sectorsize and it was written using direct IO, then
	 * it can never be an inline extent (even if compression is enabled).
	 * Then this extent can be cloned in the original filesystem to a non
	 * zero file offset, but it may not be possible to clone in the
	 * destination filesystem because it can be inlined due to compression
	 * on the destination filesystem (as the receiver's write operations are
	 * always done using buffered IO). The same happens when the original
	 * filesystem does not have compression enabled but the destination
	 * filesystem has.
	 */
	if (clone_root->offset == 0 &&
	    len == sctx->send_root->fs_info->sectorsize)
		return send_extent_data(sctx, offset, len);

5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	/*
	 * We can't send a clone operation for the entire range if we find
	 * extent items in the respective range in the source file that
	 * refer to different extents or if we find holes.
	 * So check for that and do a mix of clone and regular write/copy
	 * operations if needed.
	 *
	 * Example:
	 *
	 * mkfs.btrfs -f /dev/sda
	 * mount /dev/sda /mnt
	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
	 * cp --reflink=always /mnt/foo /mnt/bar
	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
	 * btrfs subvolume snapshot -r /mnt /mnt/snap
	 *
	 * If when we send the snapshot and we are processing file bar (which
	 * has a higher inode number than foo) we blindly send a clone operation
	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
	 * a file bar that matches the content of file foo - iow, doesn't match
	 * the content from bar in the original filesystem.
	 */
	key.objectid = clone_root->ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = clone_root->offset;
	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret > 0 && path->slots[0] > 0) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
		if (key.objectid == clone_root->ino &&
		    key.type == BTRFS_EXTENT_DATA_KEY)
			path->slots[0]--;
	}

	while (true) {
		struct extent_buffer *leaf = path->nodes[0];
		int slot = path->slots[0];
		struct btrfs_file_extent_item *ei;
		u8 type;
		u64 ext_len;
		u64 clone_len;

		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(clone_root->root, path);
			if (ret < 0)
				goto out;
			else if (ret > 0)
				break;
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, slot);

		/*
		 * We might have an implicit trailing hole (NO_HOLES feature
		 * enabled). We deal with it after leaving this loop.
		 */
		if (key.objectid != clone_root->ino ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
		type = btrfs_file_extent_type(leaf, ei);
		if (type == BTRFS_FILE_EXTENT_INLINE) {
			ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
5164
			ext_len = PAGE_ALIGN(ext_len);
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
		} else {
			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
		}

		if (key.offset + ext_len <= clone_root->offset)
			goto next;

		if (key.offset > clone_root->offset) {
			/* Implicit hole, NO_HOLES feature enabled. */
			u64 hole_len = key.offset - clone_root->offset;

			if (hole_len > len)
				hole_len = len;
			ret = send_extent_data(sctx, offset, hole_len);
			if (ret < 0)
				goto out;

			len -= hole_len;
			if (len == 0)
				break;
			offset += hole_len;
			clone_root->offset += hole_len;
			data_offset += hole_len;
		}

		if (key.offset >= clone_root->offset + len)
			break;

		clone_len = min_t(u64, ext_len, len);

		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
		    btrfs_file_extent_offset(leaf, ei) == data_offset)
			ret = send_clone(sctx, offset, clone_len, clone_root);
		else
			ret = send_extent_data(sctx, offset, clone_len);

		if (ret < 0)
			goto out;

		len -= clone_len;
		if (len == 0)
			break;
		offset += clone_len;
		clone_root->offset += clone_len;
		data_offset += clone_len;
next:
		path->slots[0]++;
	}

	if (len > 0)
		ret = send_extent_data(sctx, offset, len);
	else
		ret = 0;
out:
	btrfs_free_path(path);
	return ret;
}

5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
static int send_write_or_clone(struct send_ctx *sctx,
			       struct btrfs_path *path,
			       struct btrfs_key *key,
			       struct clone_root *clone_root)
{
	int ret = 0;
	struct btrfs_file_extent_item *ei;
	u64 offset = key->offset;
	u64 len;
	u8 type;
5233
	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5234 5235 5236 5237

	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
			struct btrfs_file_extent_item);
	type = btrfs_file_extent_type(path->nodes[0], ei);
5238
	if (type == BTRFS_FILE_EXTENT_INLINE) {
5239 5240
		len = btrfs_file_extent_inline_len(path->nodes[0],
						   path->slots[0], ei);
5241 5242 5243 5244 5245
		/*
		 * it is possible the inline item won't cover the whole page,
		 * but there may be items after this page.  Make
		 * sure to send the whole thing
		 */
5246
		len = PAGE_ALIGN(len);
5247
	} else {
5248
		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5249
	}
5250

5251 5252 5253 5254
	if (offset >= sctx->cur_inode_size) {
		ret = 0;
		goto out;
	}
5255 5256 5257 5258 5259 5260 5261
	if (offset + len > sctx->cur_inode_size)
		len = sctx->cur_inode_size - offset;
	if (len == 0) {
		ret = 0;
		goto out;
	}

5262
	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5263 5264 5265 5266 5267 5268 5269
		u64 disk_byte;
		u64 data_offset;

		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
				  offset, len);
5270
	} else {
5271
		ret = send_extent_data(sctx, offset, len);
5272
	}
5273
	sctx->cur_inode_next_write_offset = offset + len;
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
out:
	return ret;
}

static int is_extent_unchanged(struct send_ctx *sctx,
			       struct btrfs_path *left_path,
			       struct btrfs_key *ekey)
{
	int ret = 0;
	struct btrfs_key key;
	struct btrfs_path *path = NULL;
	struct extent_buffer *eb;
	int slot;
	struct btrfs_key found_key;
	struct btrfs_file_extent_item *ei;
	u64 left_disknr;
	u64 right_disknr;
	u64 left_offset;
	u64 right_offset;
	u64 left_offset_fixed;
	u64 left_len;
	u64 right_len;
5296 5297
	u64 left_gen;
	u64 right_gen;
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
	u8 left_type;
	u8 right_type;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	eb = left_path->nodes[0];
	slot = left_path->slots[0];
	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
	left_type = btrfs_file_extent_type(eb, ei);

	if (left_type != BTRFS_FILE_EXTENT_REG) {
		ret = 0;
		goto out;
	}
5314 5315 5316 5317
	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
	left_len = btrfs_file_extent_num_bytes(eb, ei);
	left_offset = btrfs_file_extent_offset(eb, ei);
	left_gen = btrfs_file_extent_generation(eb, ei);
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358

	/*
	 * Following comments will refer to these graphics. L is the left
	 * extents which we are checking at the moment. 1-8 are the right
	 * extents that we iterate.
	 *
	 *       |-----L-----|
	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
	 *
	 *       |-----L-----|
	 * |--1--|-2b-|...(same as above)
	 *
	 * Alternative situation. Happens on files where extents got split.
	 *       |-----L-----|
	 * |-----------7-----------|-6-|
	 *
	 * Alternative situation. Happens on files which got larger.
	 *       |-----L-----|
	 * |-8-|
	 * Nothing follows after 8.
	 */

	key.objectid = ekey->objectid;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = ekey->offset;
	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret) {
		ret = 0;
		goto out;
	}

	/*
	 * Handle special case where the right side has no extents at all.
	 */
	eb = path->nodes[0];
	slot = path->slots[0];
	btrfs_item_key_to_cpu(eb, &found_key, slot);
	if (found_key.objectid != key.objectid ||
	    found_key.type != key.type) {
5359 5360
		/* If we're a hole then just pretend nothing changed */
		ret = (left_disknr) ? 0 : 1;
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
		goto out;
	}

	/*
	 * We're now on 2a, 2b or 7.
	 */
	key = found_key;
	while (key.offset < ekey->offset + left_len) {
		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		right_type = btrfs_file_extent_type(eb, ei);
5371 5372
		if (right_type != BTRFS_FILE_EXTENT_REG &&
		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5373 5374 5375 5376
			ret = 0;
			goto out;
		}

5377 5378 5379 5380 5381 5382
		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
			right_len = btrfs_file_extent_inline_len(eb, slot, ei);
			right_len = PAGE_ALIGN(right_len);
		} else {
			right_len = btrfs_file_extent_num_bytes(eb, ei);
		}
5383

5384 5385 5386 5387
		/*
		 * Are we at extent 8? If yes, we know the extent is changed.
		 * This may only happen on the first iteration.
		 */
5388
		if (found_key.offset + right_len <= ekey->offset) {
5389 5390
			/* If we're a hole just pretend nothing changed */
			ret = (left_disknr) ? 0 : 1;
5391 5392 5393
			goto out;
		}

5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
		/*
		 * We just wanted to see if when we have an inline extent, what
		 * follows it is a regular extent (wanted to check the above
		 * condition for inline extents too). This should normally not
		 * happen but it's possible for example when we have an inline
		 * compressed extent representing data with a size matching
		 * the page size (currently the same as sector size).
		 */
		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
			ret = 0;
			goto out;
		}

5407 5408 5409 5410
		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
		right_offset = btrfs_file_extent_offset(eb, ei);
		right_gen = btrfs_file_extent_generation(eb, ei);

5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
		left_offset_fixed = left_offset;
		if (key.offset < ekey->offset) {
			/* Fix the right offset for 2a and 7. */
			right_offset += ekey->offset - key.offset;
		} else {
			/* Fix the left offset for all behind 2a and 2b */
			left_offset_fixed += key.offset - ekey->offset;
		}

		/*
		 * Check if we have the same extent.
		 */
5423
		if (left_disknr != right_disknr ||
5424 5425
		    left_offset_fixed != right_offset ||
		    left_gen != right_gen) {
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
			ret = 0;
			goto out;
		}

		/*
		 * Go to the next extent.
		 */
		ret = btrfs_next_item(sctx->parent_root, path);
		if (ret < 0)
			goto out;
		if (!ret) {
			eb = path->nodes[0];
			slot = path->slots[0];
			btrfs_item_key_to_cpu(eb, &found_key, slot);
		}
		if (ret || found_key.objectid != key.objectid ||
		    found_key.type != key.type) {
			key.offset += right_len;
			break;
5445 5446 5447 5448
		}
		if (found_key.offset != key.offset + right_len) {
			ret = 0;
			goto out;
5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
		}
		key = found_key;
	}

	/*
	 * We're now behind the left extent (treat as unchanged) or at the end
	 * of the right side (treat as changed).
	 */
	if (key.offset >= ekey->offset + left_len)
		ret = 1;
	else
		ret = 0;


out:
	btrfs_free_path(path);
	return ret;
}

5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
static int get_last_extent(struct send_ctx *sctx, u64 offset)
{
	struct btrfs_path *path;
	struct btrfs_root *root = sctx->send_root;
	struct btrfs_file_extent_item *fi;
	struct btrfs_key key;
	u64 extent_end;
	u8 type;
	int ret;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	sctx->cur_inode_last_extent = 0;

	key.objectid = sctx->cur_ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = offset;
	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
	if (ret < 0)
		goto out;
	ret = 0;
	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
		goto out;

	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
			    struct btrfs_file_extent_item);
	type = btrfs_file_extent_type(path->nodes[0], fi);
	if (type == BTRFS_FILE_EXTENT_INLINE) {
5499 5500
		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
							path->slots[0], fi);
5501
		extent_end = ALIGN(key.offset + size,
5502
				   sctx->send_root->fs_info->sectorsize);
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
	} else {
		extent_end = key.offset +
			btrfs_file_extent_num_bytes(path->nodes[0], fi);
	}
	sctx->cur_inode_last_extent = extent_end;
out:
	btrfs_free_path(path);
	return ret;
}

5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
static int range_is_hole_in_parent(struct send_ctx *sctx,
				   const u64 start,
				   const u64 end)
{
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_root *root = sctx->parent_root;
	u64 search_start = start;
	int ret;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = sctx->cur_ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = search_start;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret > 0 && path->slots[0] > 0)
		path->slots[0]--;

	while (search_start < end) {
		struct extent_buffer *leaf = path->nodes[0];
		int slot = path->slots[0];
		struct btrfs_file_extent_item *fi;
		u64 extent_end;

		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto out;
			else if (ret > 0)
				break;
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid < sctx->cur_ino ||
		    key.type < BTRFS_EXTENT_DATA_KEY)
			goto next;
		if (key.objectid > sctx->cur_ino ||
		    key.type > BTRFS_EXTENT_DATA_KEY ||
		    key.offset >= end)
			break;

		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
		if (btrfs_file_extent_type(leaf, fi) ==
		    BTRFS_FILE_EXTENT_INLINE) {
			u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);

			extent_end = ALIGN(key.offset + size,
					   root->fs_info->sectorsize);
		} else {
			extent_end = key.offset +
				btrfs_file_extent_num_bytes(leaf, fi);
		}
		if (extent_end <= start)
			goto next;
		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
			search_start = extent_end;
			goto next;
		}
		ret = 0;
		goto out;
next:
		path->slots[0]++;
	}
	ret = 1;
out:
	btrfs_free_path(path);
	return ret;
}

5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
			   struct btrfs_key *key)
{
	struct btrfs_file_extent_item *fi;
	u64 extent_end;
	u8 type;
	int ret = 0;

	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
		return 0;

	if (sctx->cur_inode_last_extent == (u64)-1) {
		ret = get_last_extent(sctx, key->offset - 1);
		if (ret)
			return ret;
	}

	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
			    struct btrfs_file_extent_item);
	type = btrfs_file_extent_type(path->nodes[0], fi);
	if (type == BTRFS_FILE_EXTENT_INLINE) {
5609 5610
		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
							path->slots[0], fi);
5611
		extent_end = ALIGN(key->offset + size,
5612
				   sctx->send_root->fs_info->sectorsize);
5613 5614 5615 5616
	} else {
		extent_end = key->offset +
			btrfs_file_extent_num_bytes(path->nodes[0], fi);
	}
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631

	if (path->slots[0] == 0 &&
	    sctx->cur_inode_last_extent < key->offset) {
		/*
		 * We might have skipped entire leafs that contained only
		 * file extent items for our current inode. These leafs have
		 * a generation number smaller (older) than the one in the
		 * current leaf and the leaf our last extent came from, and
		 * are located between these 2 leafs.
		 */
		ret = get_last_extent(sctx, key->offset - 1);
		if (ret)
			return ret;
	}

5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
	if (sctx->cur_inode_last_extent < key->offset) {
		ret = range_is_hole_in_parent(sctx,
					      sctx->cur_inode_last_extent,
					      key->offset);
		if (ret < 0)
			return ret;
		else if (ret == 0)
			ret = send_hole(sctx, key->offset);
		else
			ret = 0;
	}
5643 5644 5645 5646
	sctx->cur_inode_last_extent = extent_end;
	return ret;
}

5647 5648 5649 5650 5651
static int process_extent(struct send_ctx *sctx,
			  struct btrfs_path *path,
			  struct btrfs_key *key)
{
	struct clone_root *found_clone = NULL;
5652
	int ret = 0;
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662

	if (S_ISLNK(sctx->cur_inode_mode))
		return 0;

	if (sctx->parent_root && !sctx->cur_inode_new) {
		ret = is_extent_unchanged(sctx, path, key);
		if (ret < 0)
			goto out;
		if (ret) {
			ret = 0;
5663
			goto out_hole;
5664
		}
5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
	} else {
		struct btrfs_file_extent_item *ei;
		u8 type;

		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
				    struct btrfs_file_extent_item);
		type = btrfs_file_extent_type(path->nodes[0], ei);
		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
		    type == BTRFS_FILE_EXTENT_REG) {
			/*
			 * The send spec does not have a prealloc command yet,
			 * so just leave a hole for prealloc'ed extents until
			 * we have enough commands queued up to justify rev'ing
			 * the send spec.
			 */
			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
				ret = 0;
				goto out;
			}

			/* Have a hole, just skip it. */
			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
				ret = 0;
				goto out;
			}
		}
5691 5692 5693 5694 5695 5696 5697 5698
	}

	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
			sctx->cur_inode_size, &found_clone);
	if (ret != -ENOENT && ret < 0)
		goto out;

	ret = send_write_or_clone(sctx, path, key, found_clone);
5699 5700 5701 5702
	if (ret)
		goto out;
out_hole:
	ret = maybe_send_hole(sctx, path, key);
5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
out:
	return ret;
}

static int process_all_extents(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_root *root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	int slot;

	root = sctx->send_root;
	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = sctx->cmp_key->objectid;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = 0;
5725 5726 5727
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
5728

5729
	while (1) {
5730 5731
		eb = path->nodes[0];
		slot = path->slots[0];
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743

		if (slot >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0) {
				goto out;
			} else if (ret > 0) {
				ret = 0;
				break;
			}
			continue;
		}

5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
		btrfs_item_key_to_cpu(eb, &found_key, slot);

		if (found_key.objectid != key.objectid ||
		    found_key.type != key.type) {
			ret = 0;
			goto out;
		}

		ret = process_extent(sctx, path, &found_key);
		if (ret < 0)
			goto out;

5756
		path->slots[0]++;
5757 5758 5759 5760 5761 5762 5763
	}

out:
	btrfs_free_path(path);
	return ret;
}

5764 5765 5766
static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
					   int *pending_move,
					   int *refs_processed)
5767 5768 5769 5770 5771 5772
{
	int ret = 0;

	if (sctx->cur_ino == 0)
		goto out;
	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5773
	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5774 5775 5776 5777
		goto out;
	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
		goto out;

5778
	ret = process_recorded_refs(sctx, pending_move);
5779 5780 5781
	if (ret < 0)
		goto out;

5782
	*refs_processed = 1;
5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
out:
	return ret;
}

static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
{
	int ret = 0;
	u64 left_mode;
	u64 left_uid;
	u64 left_gid;
	u64 right_mode;
	u64 right_uid;
	u64 right_gid;
	int need_chmod = 0;
	int need_chown = 0;
5798
	int need_truncate = 1;
5799 5800
	int pending_move = 0;
	int refs_processed = 0;
5801

5802 5803
	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
					      &refs_processed);
5804 5805 5806
	if (ret < 0)
		goto out;

5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
	/*
	 * We have processed the refs and thus need to advance send_progress.
	 * Now, calls to get_cur_xxx will take the updated refs of the current
	 * inode into account.
	 *
	 * On the other hand, if our current inode is a directory and couldn't
	 * be moved/renamed because its parent was renamed/moved too and it has
	 * a higher inode number, we can only move/rename our current inode
	 * after we moved/renamed its parent. Therefore in this case operate on
	 * the old path (pre move/rename) of our current inode, and the
	 * move/rename will be performed later.
	 */
	if (refs_processed && !pending_move)
		sctx->send_progress = sctx->cur_ino + 1;

5822 5823 5824 5825 5826 5827
	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
		goto out;
	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
		goto out;

	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5828
			&left_mode, &left_uid, &left_gid, NULL);
5829 5830 5831
	if (ret < 0)
		goto out;

5832 5833 5834
	if (!sctx->parent_root || sctx->cur_inode_new) {
		need_chown = 1;
		if (!S_ISLNK(sctx->cur_inode_mode))
5835
			need_chmod = 1;
5836 5837
		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
			need_truncate = 0;
5838
	} else {
5839 5840
		u64 old_size;

5841
		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5842
				&old_size, NULL, &right_mode, &right_uid,
5843 5844 5845
				&right_gid, NULL);
		if (ret < 0)
			goto out;
5846

5847 5848 5849 5850
		if (left_uid != right_uid || left_gid != right_gid)
			need_chown = 1;
		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
			need_chmod = 1;
5851 5852 5853 5854
		if ((old_size == sctx->cur_inode_size) ||
		    (sctx->cur_inode_size > old_size &&
		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
			need_truncate = 0;
5855 5856 5857
	}

	if (S_ISREG(sctx->cur_inode_mode)) {
5858
		if (need_send_hole(sctx)) {
5859 5860 5861
			if (sctx->cur_inode_last_extent == (u64)-1 ||
			    sctx->cur_inode_last_extent <
			    sctx->cur_inode_size) {
5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872
				ret = get_last_extent(sctx, (u64)-1);
				if (ret)
					goto out;
			}
			if (sctx->cur_inode_last_extent <
			    sctx->cur_inode_size) {
				ret = send_hole(sctx, sctx->cur_inode_size);
				if (ret)
					goto out;
			}
		}
5873 5874 5875 5876 5877 5878 5879
		if (need_truncate) {
			ret = send_truncate(sctx, sctx->cur_ino,
					    sctx->cur_inode_gen,
					    sctx->cur_inode_size);
			if (ret < 0)
				goto out;
		}
5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895
	}

	if (need_chown) {
		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				left_uid, left_gid);
		if (ret < 0)
			goto out;
	}
	if (need_chmod) {
		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				left_mode);
		if (ret < 0)
			goto out;
	}

	/*
5896 5897
	 * If other directory inodes depended on our current directory
	 * inode's move/rename, now do their move/rename operations.
5898
	 */
5899 5900 5901 5902
	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
		ret = apply_children_dir_moves(sctx);
		if (ret)
			goto out;
5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
		/*
		 * Need to send that every time, no matter if it actually
		 * changed between the two trees as we have done changes to
		 * the inode before. If our inode is a directory and it's
		 * waiting to be moved/renamed, we will send its utimes when
		 * it's moved/renamed, therefore we don't need to do it here.
		 */
		sctx->send_progress = sctx->cur_ino + 1;
		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
		if (ret < 0)
			goto out;
5914 5915
	}

5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
out:
	return ret;
}

static int changed_inode(struct send_ctx *sctx,
			 enum btrfs_compare_tree_result result)
{
	int ret = 0;
	struct btrfs_key *key = sctx->cmp_key;
	struct btrfs_inode_item *left_ii = NULL;
	struct btrfs_inode_item *right_ii = NULL;
	u64 left_gen = 0;
	u64 right_gen = 0;

	sctx->cur_ino = key->objectid;
	sctx->cur_inode_new_gen = 0;
5932
	sctx->cur_inode_last_extent = (u64)-1;
5933
	sctx->cur_inode_next_write_offset = 0;
5934 5935 5936 5937 5938 5939

	/*
	 * Set send_progress to current inode. This will tell all get_cur_xxx
	 * functions that the current inode's refs are not updated yet. Later,
	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
	 */
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
	sctx->send_progress = sctx->cur_ino;

	if (result == BTRFS_COMPARE_TREE_NEW ||
	    result == BTRFS_COMPARE_TREE_CHANGED) {
		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
				sctx->left_path->slots[0],
				struct btrfs_inode_item);
		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
				left_ii);
	} else {
		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
				sctx->right_path->slots[0],
				struct btrfs_inode_item);
		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
				right_ii);
	}
	if (result == BTRFS_COMPARE_TREE_CHANGED) {
		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
				sctx->right_path->slots[0],
				struct btrfs_inode_item);

		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
				right_ii);
5963 5964 5965 5966 5967 5968 5969 5970

		/*
		 * The cur_ino = root dir case is special here. We can't treat
		 * the inode as deleted+reused because it would generate a
		 * stream that tries to delete/mkdir the root dir.
		 */
		if (left_gen != right_gen &&
		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981
			sctx->cur_inode_new_gen = 1;
	}

	if (result == BTRFS_COMPARE_TREE_NEW) {
		sctx->cur_inode_gen = left_gen;
		sctx->cur_inode_new = 1;
		sctx->cur_inode_deleted = 0;
		sctx->cur_inode_size = btrfs_inode_size(
				sctx->left_path->nodes[0], left_ii);
		sctx->cur_inode_mode = btrfs_inode_mode(
				sctx->left_path->nodes[0], left_ii);
L
Liu Bo 已提交
5982 5983
		sctx->cur_inode_rdev = btrfs_inode_rdev(
				sctx->left_path->nodes[0], left_ii);
5984
		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5985
			ret = send_create_inode_if_needed(sctx);
5986 5987 5988 5989 5990 5991 5992 5993 5994
	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
		sctx->cur_inode_gen = right_gen;
		sctx->cur_inode_new = 0;
		sctx->cur_inode_deleted = 1;
		sctx->cur_inode_size = btrfs_inode_size(
				sctx->right_path->nodes[0], right_ii);
		sctx->cur_inode_mode = btrfs_inode_mode(
				sctx->right_path->nodes[0], right_ii);
	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5995 5996 5997 5998 5999 6000 6001
		/*
		 * We need to do some special handling in case the inode was
		 * reported as changed with a changed generation number. This
		 * means that the original inode was deleted and new inode
		 * reused the same inum. So we have to treat the old inode as
		 * deleted and the new one as new.
		 */
6002
		if (sctx->cur_inode_new_gen) {
6003 6004 6005
			/*
			 * First, process the inode as if it was deleted.
			 */
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017
			sctx->cur_inode_gen = right_gen;
			sctx->cur_inode_new = 0;
			sctx->cur_inode_deleted = 1;
			sctx->cur_inode_size = btrfs_inode_size(
					sctx->right_path->nodes[0], right_ii);
			sctx->cur_inode_mode = btrfs_inode_mode(
					sctx->right_path->nodes[0], right_ii);
			ret = process_all_refs(sctx,
					BTRFS_COMPARE_TREE_DELETED);
			if (ret < 0)
				goto out;

6018 6019 6020
			/*
			 * Now process the inode as if it was new.
			 */
6021 6022 6023 6024 6025 6026 6027
			sctx->cur_inode_gen = left_gen;
			sctx->cur_inode_new = 1;
			sctx->cur_inode_deleted = 0;
			sctx->cur_inode_size = btrfs_inode_size(
					sctx->left_path->nodes[0], left_ii);
			sctx->cur_inode_mode = btrfs_inode_mode(
					sctx->left_path->nodes[0], left_ii);
L
Liu Bo 已提交
6028 6029
			sctx->cur_inode_rdev = btrfs_inode_rdev(
					sctx->left_path->nodes[0], left_ii);
6030
			ret = send_create_inode_if_needed(sctx);
6031 6032 6033 6034 6035 6036
			if (ret < 0)
				goto out;

			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
			if (ret < 0)
				goto out;
6037 6038 6039 6040 6041
			/*
			 * Advance send_progress now as we did not get into
			 * process_recorded_refs_if_needed in the new_gen case.
			 */
			sctx->send_progress = sctx->cur_ino + 1;
6042 6043 6044 6045 6046

			/*
			 * Now process all extents and xattrs of the inode as if
			 * they were all new.
			 */
6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
			ret = process_all_extents(sctx);
			if (ret < 0)
				goto out;
			ret = process_all_new_xattrs(sctx);
			if (ret < 0)
				goto out;
		} else {
			sctx->cur_inode_gen = left_gen;
			sctx->cur_inode_new = 0;
			sctx->cur_inode_new_gen = 0;
			sctx->cur_inode_deleted = 0;
			sctx->cur_inode_size = btrfs_inode_size(
					sctx->left_path->nodes[0], left_ii);
			sctx->cur_inode_mode = btrfs_inode_mode(
					sctx->left_path->nodes[0], left_ii);
		}
	}

out:
	return ret;
}

6069 6070 6071 6072 6073 6074 6075 6076 6077 6078
/*
 * We have to process new refs before deleted refs, but compare_trees gives us
 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
 * first and later process them in process_recorded_refs.
 * For the cur_inode_new_gen case, we skip recording completely because
 * changed_inode did already initiate processing of refs. The reason for this is
 * that in this case, compare_tree actually compares the refs of 2 different
 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
 * refs of the right tree as deleted and all refs of the left tree as new.
 */
6079 6080 6081 6082 6083
static int changed_ref(struct send_ctx *sctx,
		       enum btrfs_compare_tree_result result)
{
	int ret = 0;

6084 6085 6086 6087
	if (sctx->cur_ino != sctx->cmp_key->objectid) {
		inconsistent_snapshot_error(sctx, result, "reference");
		return -EIO;
	}
6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101

	if (!sctx->cur_inode_new_gen &&
	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
		if (result == BTRFS_COMPARE_TREE_NEW)
			ret = record_new_ref(sctx);
		else if (result == BTRFS_COMPARE_TREE_DELETED)
			ret = record_deleted_ref(sctx);
		else if (result == BTRFS_COMPARE_TREE_CHANGED)
			ret = record_changed_ref(sctx);
	}

	return ret;
}

6102 6103 6104 6105 6106
/*
 * Process new/deleted/changed xattrs. We skip processing in the
 * cur_inode_new_gen case because changed_inode did already initiate processing
 * of xattrs. The reason is the same as in changed_ref
 */
6107 6108 6109 6110 6111
static int changed_xattr(struct send_ctx *sctx,
			 enum btrfs_compare_tree_result result)
{
	int ret = 0;

6112 6113 6114 6115
	if (sctx->cur_ino != sctx->cmp_key->objectid) {
		inconsistent_snapshot_error(sctx, result, "xattr");
		return -EIO;
	}
6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128

	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
		if (result == BTRFS_COMPARE_TREE_NEW)
			ret = process_new_xattr(sctx);
		else if (result == BTRFS_COMPARE_TREE_DELETED)
			ret = process_deleted_xattr(sctx);
		else if (result == BTRFS_COMPARE_TREE_CHANGED)
			ret = process_changed_xattr(sctx);
	}

	return ret;
}

6129 6130 6131 6132 6133
/*
 * Process new/deleted/changed extents. We skip processing in the
 * cur_inode_new_gen case because changed_inode did already initiate processing
 * of extents. The reason is the same as in changed_ref
 */
6134 6135 6136 6137 6138
static int changed_extent(struct send_ctx *sctx,
			  enum btrfs_compare_tree_result result)
{
	int ret = 0;

6139
	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197

		if (result == BTRFS_COMPARE_TREE_CHANGED) {
			struct extent_buffer *leaf_l;
			struct extent_buffer *leaf_r;
			struct btrfs_file_extent_item *ei_l;
			struct btrfs_file_extent_item *ei_r;

			leaf_l = sctx->left_path->nodes[0];
			leaf_r = sctx->right_path->nodes[0];
			ei_l = btrfs_item_ptr(leaf_l,
					      sctx->left_path->slots[0],
					      struct btrfs_file_extent_item);
			ei_r = btrfs_item_ptr(leaf_r,
					      sctx->right_path->slots[0],
					      struct btrfs_file_extent_item);

			/*
			 * We may have found an extent item that has changed
			 * only its disk_bytenr field and the corresponding
			 * inode item was not updated. This case happens due to
			 * very specific timings during relocation when a leaf
			 * that contains file extent items is COWed while
			 * relocation is ongoing and its in the stage where it
			 * updates data pointers. So when this happens we can
			 * safely ignore it since we know it's the same extent,
			 * but just at different logical and physical locations
			 * (when an extent is fully replaced with a new one, we
			 * know the generation number must have changed too,
			 * since snapshot creation implies committing the current
			 * transaction, and the inode item must have been updated
			 * as well).
			 * This replacement of the disk_bytenr happens at
			 * relocation.c:replace_file_extents() through
			 * relocation.c:btrfs_reloc_cow_block().
			 */
			if (btrfs_file_extent_generation(leaf_l, ei_l) ==
			    btrfs_file_extent_generation(leaf_r, ei_r) &&
			    btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
			    btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
			    btrfs_file_extent_compression(leaf_l, ei_l) ==
			    btrfs_file_extent_compression(leaf_r, ei_r) &&
			    btrfs_file_extent_encryption(leaf_l, ei_l) ==
			    btrfs_file_extent_encryption(leaf_r, ei_r) &&
			    btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
			    btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
			    btrfs_file_extent_type(leaf_l, ei_l) ==
			    btrfs_file_extent_type(leaf_r, ei_r) &&
			    btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
			    btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
			    btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
			    btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
			    btrfs_file_extent_offset(leaf_l, ei_l) ==
			    btrfs_file_extent_offset(leaf_r, ei_r) &&
			    btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
			    btrfs_file_extent_num_bytes(leaf_r, ei_r))
				return 0;
		}

6198 6199 6200
		inconsistent_snapshot_error(sctx, result, "extent");
		return -EIO;
	}
6201 6202 6203 6204 6205 6206 6207 6208 6209 6210

	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
		if (result != BTRFS_COMPARE_TREE_DELETED)
			ret = process_extent(sctx, sctx->left_path,
					sctx->cmp_key);
	}

	return ret;
}

6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268
static int dir_changed(struct send_ctx *sctx, u64 dir)
{
	u64 orig_gen, new_gen;
	int ret;

	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
			     NULL, NULL);
	if (ret)
		return ret;

	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
			     NULL, NULL, NULL);
	if (ret)
		return ret;

	return (orig_gen != new_gen) ? 1 : 0;
}

static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
			struct btrfs_key *key)
{
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	u64 dirid = 0, last_dirid = 0;
	unsigned long ptr;
	u32 item_size;
	u32 cur_offset = 0;
	int ref_name_len;
	int ret = 0;

	/* Easy case, just check this one dirid */
	if (key->type == BTRFS_INODE_REF_KEY) {
		dirid = key->offset;

		ret = dir_changed(sctx, dirid);
		goto out;
	}

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
	while (cur_offset < item_size) {
		extref = (struct btrfs_inode_extref *)(ptr +
						       cur_offset);
		dirid = btrfs_inode_extref_parent(leaf, extref);
		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
		cur_offset += ref_name_len + sizeof(*extref);
		if (dirid == last_dirid)
			continue;
		ret = dir_changed(sctx, dirid);
		if (ret)
			break;
		last_dirid = dirid;
	}
out:
	return ret;
}

6269 6270 6271 6272
/*
 * Updates compare related fields in sctx and simply forwards to the actual
 * changed_xxx functions.
 */
6273
static int changed_cb(struct btrfs_path *left_path,
6274 6275 6276 6277 6278 6279 6280 6281
		      struct btrfs_path *right_path,
		      struct btrfs_key *key,
		      enum btrfs_compare_tree_result result,
		      void *ctx)
{
	int ret = 0;
	struct send_ctx *sctx = ctx;

6282
	if (result == BTRFS_COMPARE_TREE_SAME) {
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292
		if (key->type == BTRFS_INODE_REF_KEY ||
		    key->type == BTRFS_INODE_EXTREF_KEY) {
			ret = compare_refs(sctx, left_path, key);
			if (!ret)
				return 0;
			if (ret < 0)
				return ret;
		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
			return maybe_send_hole(sctx, left_path, key);
		} else {
6293
			return 0;
6294
		}
6295 6296 6297 6298
		result = BTRFS_COMPARE_TREE_CHANGED;
		ret = 0;
	}

6299 6300 6301 6302 6303 6304 6305 6306
	sctx->left_path = left_path;
	sctx->right_path = right_path;
	sctx->cmp_key = key;

	ret = finish_inode_if_needed(sctx, 0);
	if (ret < 0)
		goto out;

6307 6308 6309 6310 6311
	/* Ignore non-FS objects */
	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
		goto out;

6312 6313
	if (key->type == BTRFS_INODE_ITEM_KEY)
		ret = changed_inode(sctx, result);
6314 6315
	else if (key->type == BTRFS_INODE_REF_KEY ||
		 key->type == BTRFS_INODE_EXTREF_KEY)
6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
		ret = changed_ref(sctx, result);
	else if (key->type == BTRFS_XATTR_ITEM_KEY)
		ret = changed_xattr(sctx, result);
	else if (key->type == BTRFS_EXTENT_DATA_KEY)
		ret = changed_extent(sctx, result);

out:
	return ret;
}

static int full_send_tree(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_root *send_root = sctx->send_root;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_path *path;
	struct extent_buffer *eb;
	int slot;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
	if (ret < 0)
		goto out;
	if (ret)
		goto out_finish;

	while (1) {
		eb = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(eb, &found_key, slot);

6355 6356
		ret = changed_cb(path, NULL, &found_key,
				 BTRFS_COMPARE_TREE_NEW, sctx);
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384
		if (ret < 0)
			goto out;

		key.objectid = found_key.objectid;
		key.type = found_key.type;
		key.offset = found_key.offset + 1;

		ret = btrfs_next_item(send_root, path);
		if (ret < 0)
			goto out;
		if (ret) {
			ret  = 0;
			break;
		}
	}

out_finish:
	ret = finish_inode_if_needed(sctx, 1);

out:
	btrfs_free_path(path);
	return ret;
}

static int send_subvol(struct send_ctx *sctx)
{
	int ret;

6385 6386 6387 6388 6389
	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
		ret = send_header(sctx);
		if (ret < 0)
			goto out;
	}
6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413

	ret = send_subvol_begin(sctx);
	if (ret < 0)
		goto out;

	if (sctx->parent_root) {
		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
				changed_cb, sctx);
		if (ret < 0)
			goto out;
		ret = finish_inode_if_needed(sctx, 1);
		if (ret < 0)
			goto out;
	} else {
		ret = full_send_tree(sctx);
		if (ret < 0)
			goto out;
	}

out:
	free_recorded_refs(sctx);
	return ret;
}

6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442
/*
 * If orphan cleanup did remove any orphans from a root, it means the tree
 * was modified and therefore the commit root is not the same as the current
 * root anymore. This is a problem, because send uses the commit root and
 * therefore can see inode items that don't exist in the current root anymore,
 * and for example make calls to btrfs_iget, which will do tree lookups based
 * on the current root and not on the commit root. Those lookups will fail,
 * returning a -ESTALE error, and making send fail with that error. So make
 * sure a send does not see any orphans we have just removed, and that it will
 * see the same inodes regardless of whether a transaction commit happened
 * before it started (meaning that the commit root will be the same as the
 * current root) or not.
 */
static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
{
	int i;
	struct btrfs_trans_handle *trans = NULL;

again:
	if (sctx->parent_root &&
	    sctx->parent_root->node != sctx->parent_root->commit_root)
		goto commit_trans;

	for (i = 0; i < sctx->clone_roots_cnt; i++)
		if (sctx->clone_roots[i].root->node !=
		    sctx->clone_roots[i].root->commit_root)
			goto commit_trans;

	if (trans)
6443
		return btrfs_end_transaction(trans);
6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455

	return 0;

commit_trans:
	/* Use any root, all fs roots will get their commit roots updated. */
	if (!trans) {
		trans = btrfs_join_transaction(sctx->send_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
		goto again;
	}

6456
	return btrfs_commit_transaction(trans);
6457 6458
}

6459 6460 6461 6462 6463 6464 6465 6466 6467 6468
static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
{
	spin_lock(&root->root_item_lock);
	root->send_in_progress--;
	/*
	 * Not much left to do, we don't know why it's unbalanced and
	 * can't blindly reset it to 0.
	 */
	if (root->send_in_progress < 0)
		btrfs_err(root->fs_info,
6469
			  "send_in_progress unbalanced %d root %llu",
6470
			  root->send_in_progress, root->root_key.objectid);
6471 6472 6473
	spin_unlock(&root->root_item_lock);
}

6474
long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
6475 6476
{
	int ret = 0;
6477 6478
	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
	struct btrfs_fs_info *fs_info = send_root->fs_info;
6479 6480 6481 6482 6483
	struct btrfs_root *clone_root;
	struct btrfs_key key;
	struct send_ctx *sctx = NULL;
	u32 i;
	u64 *clone_sources_tmp = NULL;
6484
	int clone_sources_to_rollback = 0;
6485
	unsigned alloc_size;
6486
	int sort_clone_roots = 0;
6487
	int index;
6488 6489 6490 6491

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

6492 6493
	/*
	 * The subvolume must remain read-only during send, protect against
6494
	 * making it RW. This also protects against deletion.
6495 6496 6497 6498 6499
	 */
	spin_lock(&send_root->root_item_lock);
	send_root->send_in_progress++;
	spin_unlock(&send_root->root_item_lock);

J
Josef Bacik 已提交
6500 6501 6502 6503 6504 6505
	/*
	 * This is done when we lookup the root, it should already be complete
	 * by the time we get here.
	 */
	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);

6506 6507 6508 6509 6510 6511 6512 6513 6514
	/*
	 * Userspace tools do the checks and warn the user if it's
	 * not RO.
	 */
	if (!btrfs_root_readonly(send_root)) {
		ret = -EPERM;
		goto out;
	}

6515 6516 6517 6518 6519
	/*
	 * Check that we don't overflow at later allocations, we request
	 * clone_sources_count + 1 items, and compare to unsigned long inside
	 * access_ok.
	 */
6520
	if (arg->clone_sources_count >
6521
	    ULONG_MAX / sizeof(struct clone_root) - 1) {
6522 6523 6524 6525
		ret = -EINVAL;
		goto out;
	}

6526
	if (!access_ok(VERIFY_READ, arg->clone_sources,
6527 6528
			sizeof(*arg->clone_sources) *
			arg->clone_sources_count)) {
6529 6530 6531 6532
		ret = -EFAULT;
		goto out;
	}

6533
	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6534 6535 6536 6537
		ret = -EINVAL;
		goto out;
	}

6538
	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6539 6540 6541 6542 6543 6544 6545
	if (!sctx) {
		ret = -ENOMEM;
		goto out;
	}

	INIT_LIST_HEAD(&sctx->new_refs);
	INIT_LIST_HEAD(&sctx->deleted_refs);
6546
	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6547 6548
	INIT_LIST_HEAD(&sctx->name_cache_list);

6549 6550
	sctx->flags = arg->flags;

6551
	sctx->send_filp = fget(arg->send_fd);
6552 6553
	if (!sctx->send_filp) {
		ret = -EBADF;
6554 6555 6556 6557
		goto out;
	}

	sctx->send_root = send_root;
6558 6559 6560 6561 6562 6563 6564 6565 6566
	/*
	 * Unlikely but possible, if the subvolume is marked for deletion but
	 * is slow to remove the directory entry, send can still be started
	 */
	if (btrfs_root_dead(sctx->send_root)) {
		ret = -EPERM;
		goto out;
	}

6567 6568 6569
	sctx->clone_roots_cnt = arg->clone_sources_count;

	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6570
	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6571
	if (!sctx->send_buf) {
6572 6573
		ret = -ENOMEM;
		goto out;
6574 6575
	}

6576
	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6577
	if (!sctx->read_buf) {
6578 6579
		ret = -ENOMEM;
		goto out;
6580 6581
	}

6582 6583
	sctx->pending_dir_moves = RB_ROOT;
	sctx->waiting_dir_moves = RB_ROOT;
6584
	sctx->orphan_dirs = RB_ROOT;
6585

6586 6587
	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);

6588
	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6589
	if (!sctx->clone_roots) {
6590 6591
		ret = -ENOMEM;
		goto out;
6592 6593
	}

6594 6595
	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);

6596
	if (arg->clone_sources_count) {
6597
		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6598
		if (!clone_sources_tmp) {
6599 6600
			ret = -ENOMEM;
			goto out;
6601 6602 6603
		}

		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6604
				alloc_size);
6605 6606 6607 6608 6609 6610 6611 6612 6613
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

		for (i = 0; i < arg->clone_sources_count; i++) {
			key.objectid = clone_sources_tmp[i];
			key.type = BTRFS_ROOT_ITEM_KEY;
			key.offset = (u64)-1;
6614 6615 6616

			index = srcu_read_lock(&fs_info->subvol_srcu);

6617 6618
			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
			if (IS_ERR(clone_root)) {
6619
				srcu_read_unlock(&fs_info->subvol_srcu, index);
6620 6621 6622
				ret = PTR_ERR(clone_root);
				goto out;
			}
6623
			spin_lock(&clone_root->root_item_lock);
6624 6625
			if (!btrfs_root_readonly(clone_root) ||
			    btrfs_root_dead(clone_root)) {
6626
				spin_unlock(&clone_root->root_item_lock);
6627
				srcu_read_unlock(&fs_info->subvol_srcu, index);
6628 6629 6630
				ret = -EPERM;
				goto out;
			}
6631
			clone_root->send_in_progress++;
6632
			spin_unlock(&clone_root->root_item_lock);
6633 6634
			srcu_read_unlock(&fs_info->subvol_srcu, index);

6635
			sctx->clone_roots[i].root = clone_root;
6636
			clone_sources_to_rollback = i + 1;
6637
		}
6638
		kvfree(clone_sources_tmp);
6639 6640 6641 6642 6643 6644 6645
		clone_sources_tmp = NULL;
	}

	if (arg->parent_root) {
		key.objectid = arg->parent_root;
		key.type = BTRFS_ROOT_ITEM_KEY;
		key.offset = (u64)-1;
6646 6647 6648

		index = srcu_read_lock(&fs_info->subvol_srcu);

6649
		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6650
		if (IS_ERR(sctx->parent_root)) {
6651
			srcu_read_unlock(&fs_info->subvol_srcu, index);
6652
			ret = PTR_ERR(sctx->parent_root);
6653 6654
			goto out;
		}
6655

6656 6657
		spin_lock(&sctx->parent_root->root_item_lock);
		sctx->parent_root->send_in_progress++;
6658 6659
		if (!btrfs_root_readonly(sctx->parent_root) ||
				btrfs_root_dead(sctx->parent_root)) {
6660
			spin_unlock(&sctx->parent_root->root_item_lock);
6661
			srcu_read_unlock(&fs_info->subvol_srcu, index);
6662 6663 6664 6665
			ret = -EPERM;
			goto out;
		}
		spin_unlock(&sctx->parent_root->root_item_lock);
6666 6667

		srcu_read_unlock(&fs_info->subvol_srcu, index);
6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680
	}

	/*
	 * Clones from send_root are allowed, but only if the clone source
	 * is behind the current send position. This is checked while searching
	 * for possible clone sources.
	 */
	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;

	/* We do a bsearch later */
	sort(sctx->clone_roots, sctx->clone_roots_cnt,
			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
			NULL);
6681
	sort_clone_roots = 1;
6682

6683 6684 6685 6686
	ret = ensure_commit_roots_uptodate(sctx);
	if (ret)
		goto out;

6687
	current->journal_info = BTRFS_SEND_TRANS_STUB;
6688
	ret = send_subvol(sctx);
6689
	current->journal_info = NULL;
6690 6691 6692
	if (ret < 0)
		goto out;

6693 6694 6695 6696 6697 6698 6699 6700
	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
		if (ret < 0)
			goto out;
		ret = send_cmd(sctx);
		if (ret < 0)
			goto out;
	}
6701 6702

out:
6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730
	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
		struct rb_node *n;
		struct pending_dir_move *pm;

		n = rb_first(&sctx->pending_dir_moves);
		pm = rb_entry(n, struct pending_dir_move, node);
		while (!list_empty(&pm->list)) {
			struct pending_dir_move *pm2;

			pm2 = list_first_entry(&pm->list,
					       struct pending_dir_move, list);
			free_pending_move(sctx, pm2);
		}
		free_pending_move(sctx, pm);
	}

	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
		struct rb_node *n;
		struct waiting_dir_move *dm;

		n = rb_first(&sctx->waiting_dir_moves);
		dm = rb_entry(n, struct waiting_dir_move, node);
		rb_erase(&dm->node, &sctx->waiting_dir_moves);
		kfree(dm);
	}

6731 6732 6733 6734 6735 6736 6737 6738 6739 6740
	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
		struct rb_node *n;
		struct orphan_dir_info *odi;

		n = rb_first(&sctx->orphan_dirs);
		odi = rb_entry(n, struct orphan_dir_info, node);
		free_orphan_dir_info(sctx, odi);
	}

6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751
	if (sort_clone_roots) {
		for (i = 0; i < sctx->clone_roots_cnt; i++)
			btrfs_root_dec_send_in_progress(
					sctx->clone_roots[i].root);
	} else {
		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
			btrfs_root_dec_send_in_progress(
					sctx->clone_roots[i].root);

		btrfs_root_dec_send_in_progress(send_root);
	}
6752 6753
	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
		btrfs_root_dec_send_in_progress(sctx->parent_root);
6754

6755
	kvfree(clone_sources_tmp);
6756 6757 6758 6759 6760

	if (sctx) {
		if (sctx->send_filp)
			fput(sctx->send_filp);

6761
		kvfree(sctx->clone_roots);
6762
		kvfree(sctx->send_buf);
6763
		kvfree(sctx->read_buf);
6764 6765 6766 6767 6768 6769 6770 6771

		name_cache_free(sctx);

		kfree(sctx);
	}

	return ret;
}