cgroup-defs.h 24.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * linux/cgroup-defs.h - basic definitions for cgroup
 *
 * This file provides basic type and interface.  Include this file directly
 * only if necessary to avoid cyclic dependencies.
 */
#ifndef _LINUX_CGROUP_DEFS_H
#define _LINUX_CGROUP_DEFS_H

#include <linux/limits.h>
#include <linux/list.h>
#include <linux/idr.h>
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/rcupdate.h>
16
#include <linux/refcount.h>
17
#include <linux/percpu-refcount.h>
18
#include <linux/percpu-rwsem.h>
19
#include <linux/u64_stats_sync.h>
20
#include <linux/workqueue.h>
21
#include <linux/bpf-cgroup.h>
22 23 24 25 26 27 28 29 30 31

#ifdef CONFIG_CGROUPS

struct cgroup;
struct cgroup_root;
struct cgroup_subsys;
struct cgroup_taskset;
struct kernfs_node;
struct kernfs_ops;
struct kernfs_open_file;
32
struct seq_file;
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

#define MAX_CGROUP_TYPE_NAMELEN 32
#define MAX_CGROUP_ROOT_NAMELEN 64
#define MAX_CFTYPE_NAME		64

/* define the enumeration of all cgroup subsystems */
#define SUBSYS(_x) _x ## _cgrp_id,
enum cgroup_subsys_id {
#include <linux/cgroup_subsys.h>
	CGROUP_SUBSYS_COUNT,
};
#undef SUBSYS

/* bits in struct cgroup_subsys_state flags field */
enum {
	CSS_NO_REF	= (1 << 0), /* no reference counting for this css */
	CSS_ONLINE	= (1 << 1), /* between ->css_online() and ->css_offline() */
	CSS_RELEASED	= (1 << 2), /* refcnt reached zero, released */
51
	CSS_VISIBLE	= (1 << 3), /* css is visible to userland */
52
	CSS_DYING	= (1 << 4), /* css is dying */
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
};

/* bits in struct cgroup flags field */
enum {
	/* Control Group requires release notifications to userspace */
	CGRP_NOTIFY_ON_RELEASE,
	/*
	 * Clone the parent's configuration when creating a new child
	 * cpuset cgroup.  For historical reasons, this option can be
	 * specified at mount time and thus is implemented here.
	 */
	CGRP_CPUSET_CLONE_CHILDREN,
};

/* cgroup_root->flags */
enum {
	CGRP_ROOT_NOPREFIX	= (1 << 1), /* mounted subsystems have no named prefix */
	CGRP_ROOT_XATTR		= (1 << 2), /* supports extended attributes */
71 72 73 74 75 76 77

	/*
	 * Consider namespaces as delegation boundaries.  If this flag is
	 * set, controller specific interface files in a namespace root
	 * aren't writeable from inside the namespace.
	 */
	CGRP_ROOT_NS_DELEGATE	= (1 << 3),
78 79 80 81 82

	/*
	 * Enable cpuset controller in v1 cgroup to use v2 behavior.
	 */
	CGRP_ROOT_CPUSET_V2_MODE = (1 << 4),
83 84 85 86 87 88
};

/* cftype->flags */
enum {
	CFTYPE_ONLY_ON_ROOT	= (1 << 0),	/* only create on root cgrp */
	CFTYPE_NOT_ON_ROOT	= (1 << 1),	/* don't create on root cgrp */
89 90
	CFTYPE_NS_DELEGATABLE	= (1 << 2),	/* writeable beyond delegation boundaries */

91
	CFTYPE_NO_PREFIX	= (1 << 3),	/* (DON'T USE FOR NEW FILES) no subsys prefix */
92
	CFTYPE_WORLD_WRITABLE	= (1 << 4),	/* (DON'T USE FOR NEW FILES) S_IWUGO */
93 94 95 96 97 98

	/* internal flags, do not use outside cgroup core proper */
	__CFTYPE_ONLY_ON_DFL	= (1 << 16),	/* only on default hierarchy */
	__CFTYPE_NOT_ON_DFL	= (1 << 17),	/* not on default hierarchy */
};

99 100 101 102 103 104 105 106 107 108
/*
 * cgroup_file is the handle for a file instance created in a cgroup which
 * is used, for example, to generate file changed notifications.  This can
 * be obtained by setting cftype->file_offset.
 */
struct cgroup_file {
	/* do not access any fields from outside cgroup core */
	struct kernfs_node *kn;
};

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/*
 * Per-subsystem/per-cgroup state maintained by the system.  This is the
 * fundamental structural building block that controllers deal with.
 *
 * Fields marked with "PI:" are public and immutable and may be accessed
 * directly without synchronization.
 */
struct cgroup_subsys_state {
	/* PI: the cgroup that this css is attached to */
	struct cgroup *cgroup;

	/* PI: the cgroup subsystem that this css is attached to */
	struct cgroup_subsys *ss;

	/* reference count - access via css_[try]get() and css_put() */
	struct percpu_ref refcnt;

	/* siblings list anchored at the parent's ->children */
	struct list_head sibling;
	struct list_head children;

	/*
	 * PI: Subsys-unique ID.  0 is unused and root is always 1.  The
	 * matching css can be looked up using css_from_id().
	 */
	int id;

	unsigned int flags;

	/*
	 * Monotonically increasing unique serial number which defines a
	 * uniform order among all csses.  It's guaranteed that all
	 * ->children lists are in the ascending order of ->serial_nr and
	 * used to allow interrupting and resuming iterations.
	 */
	u64 serial_nr;

146 147 148 149 150 151
	/*
	 * Incremented by online self and children.  Used to guarantee that
	 * parents are not offlined before their children.
	 */
	atomic_t online_cnt;

152 153 154
	/* percpu_ref killing and RCU release */
	struct rcu_head rcu_head;
	struct work_struct destroy_work;
155 156 157 158 159 160

	/*
	 * PI: the parent css.	Placed here for cache proximity to following
	 * fields of the containing structure.
	 */
	struct cgroup_subsys_state *parent;
161 162 163 164 165 166 167 168 169 170 171
};

/*
 * A css_set is a structure holding pointers to a set of
 * cgroup_subsys_state objects. This saves space in the task struct
 * object and speeds up fork()/exit(), since a single inc/dec and a
 * list_add()/del() can bump the reference count on the entire cgroup
 * set for a task.
 */
struct css_set {
	/*
T
Tejun Heo 已提交
172 173 174
	 * Set of subsystem states, one for each subsystem. This array is
	 * immutable after creation apart from the init_css_set during
	 * subsystem registration (at boot time).
175
	 */
T
Tejun Heo 已提交
176 177 178
	struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];

	/* reference count */
179
	refcount_t refcount;
T
Tejun Heo 已提交
180

181 182 183 184 185 186 187 188
	/*
	 * For a domain cgroup, the following points to self.  If threaded,
	 * to the matching cset of the nearest domain ancestor.  The
	 * dom_cset provides access to the domain cgroup and its csses to
	 * which domain level resource consumptions should be charged.
	 */
	struct css_set *dom_cset;

T
Tejun Heo 已提交
189 190
	/* the default cgroup associated with this css_set */
	struct cgroup *dfl_cgrp;
191

192 193 194
	/* internal task count, protected by css_set_lock */
	int nr_tasks;

195 196 197 198 199 200 201 202 203 204
	/*
	 * Lists running through all tasks using this cgroup group.
	 * mg_tasks lists tasks which belong to this cset but are in the
	 * process of being migrated out or in.  Protected by
	 * css_set_rwsem, but, during migration, once tasks are moved to
	 * mg_tasks, it can be read safely while holding cgroup_mutex.
	 */
	struct list_head tasks;
	struct list_head mg_tasks;

T
Tejun Heo 已提交
205 206 207
	/* all css_task_iters currently walking this cset */
	struct list_head task_iters;

208
	/*
T
Tejun Heo 已提交
209 210 211 212 213
	 * On the default hierarhcy, ->subsys[ssid] may point to a css
	 * attached to an ancestor instead of the cgroup this css_set is
	 * associated with.  The following node is anchored at
	 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
	 * iterate through all css's attached to a given cgroup.
214
	 */
T
Tejun Heo 已提交
215
	struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
216

217 218 219 220
	/* all threaded csets whose ->dom_cset points to this cset */
	struct list_head threaded_csets;
	struct list_head threaded_csets_node;

T
Tejun Heo 已提交
221 222 223 224 225
	/*
	 * List running through all cgroup groups in the same hash
	 * slot. Protected by css_set_lock
	 */
	struct hlist_node hlist;
226 227

	/*
T
Tejun Heo 已提交
228 229
	 * List of cgrp_cset_links pointing at cgroups referenced from this
	 * css_set.  Protected by css_set_lock.
230
	 */
T
Tejun Heo 已提交
231
	struct list_head cgrp_links;
232 233 234 235 236 237 238 239 240 241

	/*
	 * List of csets participating in the on-going migration either as
	 * source or destination.  Protected by cgroup_mutex.
	 */
	struct list_head mg_preload_node;
	struct list_head mg_node;

	/*
	 * If this cset is acting as the source of migration the following
242 243 244 245
	 * two fields are set.  mg_src_cgrp and mg_dst_cgrp are
	 * respectively the source and destination cgroups of the on-going
	 * migration.  mg_dst_cset is the destination cset the target tasks
	 * on this cset should be migrated to.  Protected by cgroup_mutex.
246 247
	 */
	struct cgroup *mg_src_cgrp;
248
	struct cgroup *mg_dst_cgrp;
249 250
	struct css_set *mg_dst_cset;

251 252 253
	/* dead and being drained, ignore for migration */
	bool dead;

254 255 256 257
	/* For RCU-protected deletion */
	struct rcu_head rcu_head;
};

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
/*
 * cgroup basic resource usage statistics.  Accounting is done per-cpu in
 * cgroup_cpu_stat which is then lazily propagated up the hierarchy on
 * reads.
 *
 * When a stat gets updated, the cgroup_cpu_stat and its ancestors are
 * linked into the updated tree.  On the following read, propagation only
 * considers and consumes the updated tree.  This makes reading O(the
 * number of descendants which have been active since last read) instead of
 * O(the total number of descendants).
 *
 * This is important because there can be a lot of (draining) cgroups which
 * aren't active and stat may be read frequently.  The combination can
 * become very expensive.  By propagating selectively, increasing reading
 * frequency decreases the cost of each read.
 */
struct cgroup_cpu_stat {
	/*
	 * ->sync protects all the current counters.  These are the only
	 * fields which get updated in the hot path.
	 */
	struct u64_stats_sync sync;
	struct task_cputime cputime;

	/*
	 * Snapshots at the last reading.  These are used to calculate the
	 * deltas to propagate to the global counters.
	 */
	struct task_cputime last_cputime;

	/*
	 * Child cgroups with stat updates on this cpu since the last read
	 * are linked on the parent's ->updated_children through
	 * ->updated_next.
	 *
	 * In addition to being more compact, singly-linked list pointing
	 * to the cgroup makes it unnecessary for each per-cpu struct to
	 * point back to the associated cgroup.
	 *
	 * Protected by per-cpu cgroup_cpu_stat_lock.
	 */
	struct cgroup *updated_children;	/* terminated by self cgroup */
	struct cgroup *updated_next;		/* NULL iff not on the list */
};

struct cgroup_stat {
	/* per-cpu statistics are collected into the folowing global counters */
	struct task_cputime cputime;
	struct prev_cputime prev_cputime;
};

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
struct cgroup {
	/* self css with NULL ->ss, points back to this cgroup */
	struct cgroup_subsys_state self;

	unsigned long flags;		/* "unsigned long" so bitops work */

	/*
	 * idr allocated in-hierarchy ID.
	 *
	 * ID 0 is not used, the ID of the root cgroup is always 1, and a
	 * new cgroup will be assigned with a smallest available ID.
	 *
	 * Allocating/Removing ID must be protected by cgroup_mutex.
	 */
	int id;

325 326 327 328 329 330 331 332
	/*
	 * The depth this cgroup is at.  The root is at depth zero and each
	 * step down the hierarchy increments the level.  This along with
	 * ancestor_ids[] can determine whether a given cgroup is a
	 * descendant of another without traversing the hierarchy.
	 */
	int level;

333 334 335
	/* Maximum allowed descent tree depth */
	int max_depth;

336 337 338 339
	/*
	 * Keep track of total numbers of visible and dying descent cgroups.
	 * Dying cgroups are cgroups which were deleted by a user,
	 * but are still existing because someone else is holding a reference.
340
	 * max_descendants is a maximum allowed number of descent cgroups.
341 342 343
	 */
	int nr_descendants;
	int nr_dying_descendants;
344
	int max_descendants;
345

346
	/*
347
	 * Each non-empty css_set associated with this cgroup contributes
348 349 350 351
	 * one to nr_populated_csets.  The counter is zero iff this cgroup
	 * doesn't have any tasks.
	 *
	 * All children which have non-zero nr_populated_csets and/or
352 353 354 355
	 * nr_populated_children of their own contribute one to either
	 * nr_populated_domain_children or nr_populated_threaded_children
	 * depending on their type.  Each counter is zero iff all cgroups
	 * of the type in the subtree proper don't have any tasks.
356
	 */
357
	int nr_populated_csets;
358 359 360 361
	int nr_populated_domain_children;
	int nr_populated_threaded_children;

	int nr_threaded_children;	/* # of live threaded child cgroups */
362 363

	struct kernfs_node *kn;		/* cgroup kernfs entry */
364 365
	struct cgroup_file procs_file;	/* handle for "cgroup.procs" */
	struct cgroup_file events_file;	/* handle for "cgroup.events" */
366 367 368 369

	/*
	 * The bitmask of subsystems enabled on the child cgroups.
	 * ->subtree_control is the one configured through
370 371 372
	 * "cgroup.subtree_control" while ->child_ss_mask is the effective
	 * one which may have more subsystems enabled.  Controller knobs
	 * are made available iff it's enabled in ->subtree_control.
373
	 */
374 375
	u16 subtree_control;
	u16 subtree_ss_mask;
376 377
	u16 old_subtree_control;
	u16 old_subtree_ss_mask;
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

	/* Private pointers for each registered subsystem */
	struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];

	struct cgroup_root *root;

	/*
	 * List of cgrp_cset_links pointing at css_sets with tasks in this
	 * cgroup.  Protected by css_set_lock.
	 */
	struct list_head cset_links;

	/*
	 * On the default hierarchy, a css_set for a cgroup with some
	 * susbsys disabled will point to css's which are associated with
	 * the closest ancestor which has the subsys enabled.  The
	 * following lists all css_sets which point to this cgroup's css
	 * for the given subsystem.
	 */
	struct list_head e_csets[CGROUP_SUBSYS_COUNT];

399 400 401 402 403 404 405 406 407
	/*
	 * If !threaded, self.  If threaded, it points to the nearest
	 * domain ancestor.  Inside a threaded subtree, cgroups are exempt
	 * from process granularity and no-internal-task constraint.
	 * Domain level resource consumptions which aren't tied to a
	 * specific task are charged to the dom_cgrp.
	 */
	struct cgroup *dom_cgrp;

408 409 410 411 412
	/* cgroup basic resource statistics */
	struct cgroup_cpu_stat __percpu *cpu_stat;
	struct cgroup_stat pending_stat;	/* pending from children */
	struct cgroup_stat stat;

413 414 415 416 417 418 419 420 421 422 423 424
	/*
	 * list of pidlists, up to two for each namespace (one for procs, one
	 * for tasks); created on demand.
	 */
	struct list_head pidlists;
	struct mutex pidlist_mutex;

	/* used to wait for offlining of csses */
	wait_queue_head_t offline_waitq;

	/* used to schedule release agent */
	struct work_struct release_agent_work;
425

426 427 428
	/* used to store eBPF programs */
	struct cgroup_bpf bpf;

429 430
	/* ids of the ancestors at each level including self */
	int ancestor_ids[];
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
};

/*
 * A cgroup_root represents the root of a cgroup hierarchy, and may be
 * associated with a kernfs_root to form an active hierarchy.  This is
 * internal to cgroup core.  Don't access directly from controllers.
 */
struct cgroup_root {
	struct kernfs_root *kf_root;

	/* The bitmask of subsystems attached to this hierarchy */
	unsigned int subsys_mask;

	/* Unique id for this hierarchy. */
	int hierarchy_id;

	/* The root cgroup.  Root is destroyed on its release. */
	struct cgroup cgrp;

450 451 452
	/* for cgrp->ancestor_ids[0] */
	int cgrp_ancestor_id_storage;

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	/* Number of cgroups in the hierarchy, used only for /proc/cgroups */
	atomic_t nr_cgrps;

	/* A list running through the active hierarchies */
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned int flags;

	/* IDs for cgroups in this hierarchy */
	struct idr cgroup_idr;

	/* The path to use for release notifications. */
	char release_agent_path[PATH_MAX];

	/* The name for this hierarchy - may be empty */
	char name[MAX_CGROUP_ROOT_NAMELEN];
};

/*
 * struct cftype: handler definitions for cgroup control files
 *
 * When reading/writing to a file:
 *	- the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
 *	- the 'cftype' of the file is file->f_path.dentry->d_fsdata
 */
struct cftype {
	/*
	 * By convention, the name should begin with the name of the
	 * subsystem, followed by a period.  Zero length string indicates
	 * end of cftype array.
	 */
	char name[MAX_CFTYPE_NAME];
486
	unsigned long private;
487 488 489 490 491 492 493 494 495 496

	/*
	 * The maximum length of string, excluding trailing nul, that can
	 * be passed to write.  If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
	 */
	size_t max_write_len;

	/* CFTYPE_* flags */
	unsigned int flags;

497 498 499 500 501 502 503 504
	/*
	 * If non-zero, should contain the offset from the start of css to
	 * a struct cgroup_file field.  cgroup will record the handle of
	 * the created file into it.  The recorded handle can be used as
	 * long as the containing css remains accessible.
	 */
	unsigned int file_offset;

505 506 507 508 509 510 511 512
	/*
	 * Fields used for internal bookkeeping.  Initialized automatically
	 * during registration.
	 */
	struct cgroup_subsys *ss;	/* NULL for cgroup core files */
	struct list_head node;		/* anchored at ss->cfts */
	struct kernfs_ops *kf_ops;

513 514 515
	int (*open)(struct kernfs_open_file *of);
	void (*release)(struct kernfs_open_file *of);

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	/*
	 * read_u64() is a shortcut for the common case of returning a
	 * single integer. Use it in place of read()
	 */
	u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
	/*
	 * read_s64() is a signed version of read_u64()
	 */
	s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);

	/* generic seq_file read interface */
	int (*seq_show)(struct seq_file *sf, void *v);

	/* optional ops, implement all or none */
	void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
	void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
	void (*seq_stop)(struct seq_file *sf, void *v);

	/*
	 * write_u64() is a shortcut for the common case of accepting
	 * a single integer (as parsed by simple_strtoull) from
	 * userspace. Use in place of write(); return 0 or error.
	 */
	int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
			 u64 val);
	/*
	 * write_s64() is a signed version of write_u64()
	 */
	int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
			 s64 val);

	/*
	 * write() is the generic write callback which maps directly to
	 * kernfs write operation and overrides all other operations.
	 * Maximum write size is determined by ->max_write_len.  Use
	 * of_css/cft() to access the associated css and cft.
	 */
	ssize_t (*write)(struct kernfs_open_file *of,
			 char *buf, size_t nbytes, loff_t off);

#ifdef CONFIG_DEBUG_LOCK_ALLOC
	struct lock_class_key	lockdep_key;
#endif
};

/*
 * Control Group subsystem type.
 * See Documentation/cgroups/cgroups.txt for details
 */
struct cgroup_subsys {
	struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
	int (*css_online)(struct cgroup_subsys_state *css);
	void (*css_offline)(struct cgroup_subsys_state *css);
	void (*css_released)(struct cgroup_subsys_state *css);
	void (*css_free)(struct cgroup_subsys_state *css);
	void (*css_reset)(struct cgroup_subsys_state *css);

573 574 575
	int (*can_attach)(struct cgroup_taskset *tset);
	void (*cancel_attach)(struct cgroup_taskset *tset);
	void (*attach)(struct cgroup_taskset *tset);
576
	void (*post_attach)(void);
577 578 579
	int (*can_fork)(struct task_struct *task);
	void (*cancel_fork)(struct task_struct *task);
	void (*fork)(struct task_struct *task);
580
	void (*exit)(struct task_struct *task);
581
	void (*free)(struct task_struct *task);
582 583
	void (*bind)(struct cgroup_subsys_state *root_css);

584
	bool early_init:1;
585

586 587 588 589 590 591 592 593 594 595 596 597 598
	/*
	 * If %true, the controller, on the default hierarchy, doesn't show
	 * up in "cgroup.controllers" or "cgroup.subtree_control", is
	 * implicitly enabled on all cgroups on the default hierarchy, and
	 * bypasses the "no internal process" constraint.  This is for
	 * utility type controllers which is transparent to userland.
	 *
	 * An implicit controller can be stolen from the default hierarchy
	 * anytime and thus must be okay with offline csses from previous
	 * hierarchies coexisting with csses for the current one.
	 */
	bool implicit_on_dfl:1;

599 600 601 602 603 604 605 606 607 608 609 610
	/*
	 * If %true, the controller, supports threaded mode on the default
	 * hierarchy.  In a threaded subtree, both process granularity and
	 * no-internal-process constraint are ignored and a threaded
	 * controllers should be able to handle that.
	 *
	 * Note that as an implicit controller is automatically enabled on
	 * all cgroups on the default hierarchy, it should also be
	 * threaded.  implicit && !threaded is not supported.
	 */
	bool threaded:1;

611 612 613 614 615 616 617 618 619 620 621 622
	/*
	 * If %false, this subsystem is properly hierarchical -
	 * configuration, resource accounting and restriction on a parent
	 * cgroup cover those of its children.  If %true, hierarchy support
	 * is broken in some ways - some subsystems ignore hierarchy
	 * completely while others are only implemented half-way.
	 *
	 * It's now disallowed to create nested cgroups if the subsystem is
	 * broken and cgroup core will emit a warning message on such
	 * cases.  Eventually, all subsystems will be made properly
	 * hierarchical and this will go away.
	 */
623 624
	bool broken_hierarchy:1;
	bool warned_broken_hierarchy:1;
625 626 627 628 629

	/* the following two fields are initialized automtically during boot */
	int id;
	const char *name;

630 631 632
	/* optional, initialized automatically during boot if not set */
	const char *legacy_name;

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
	/* link to parent, protected by cgroup_lock() */
	struct cgroup_root *root;

	/* idr for css->id */
	struct idr css_idr;

	/*
	 * List of cftypes.  Each entry is the first entry of an array
	 * terminated by zero length name.
	 */
	struct list_head cfts;

	/*
	 * Base cftypes which are automatically registered.  The two can
	 * point to the same array.
	 */
	struct cftype *dfl_cftypes;	/* for the default hierarchy */
	struct cftype *legacy_cftypes;	/* for the legacy hierarchies */

	/*
	 * A subsystem may depend on other subsystems.  When such subsystem
	 * is enabled on a cgroup, the depended-upon subsystems are enabled
	 * together if available.  Subsystems enabled due to dependency are
	 * not visible to userland until explicitly enabled.  The following
	 * specifies the mask of subsystems that this one depends on.
	 */
	unsigned int depends_on;
};

662 663 664 665 666 667
extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;

/**
 * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
 * @tsk: target task
 *
668 669
 * Allows cgroup operations to synchronize against threadgroup changes
 * using a percpu_rw_semaphore.
670 671 672 673 674 675 676 677 678 679
 */
static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
{
	percpu_down_read(&cgroup_threadgroup_rwsem);
}

/**
 * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
 * @tsk: target task
 *
680
 * Counterpart of cgroup_threadcgroup_change_begin().
681 682 683 684 685
 */
static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
{
	percpu_up_read(&cgroup_threadgroup_rwsem);
}
686 687 688

#else	/* CONFIG_CGROUPS */

689 690
#define CGROUP_SUBSYS_COUNT 0

691 692 693 694 695
static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
{
	might_sleep();
}

696 697
static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}

698
#endif	/* CONFIG_CGROUPS */
699

700 701
#ifdef CONFIG_SOCK_CGROUP_DATA

T
Tejun Heo 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
/*
 * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
 * per-socket cgroup information except for memcg association.
 *
 * On legacy hierarchies, net_prio and net_cls controllers directly set
 * attributes on each sock which can then be tested by the network layer.
 * On the default hierarchy, each sock is associated with the cgroup it was
 * created in and the networking layer can match the cgroup directly.
 *
 * To avoid carrying all three cgroup related fields separately in sock,
 * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
 * On boot, sock_cgroup_data records the cgroup that the sock was created
 * in so that cgroup2 matches can be made; however, once either net_prio or
 * net_cls starts being used, the area is overriden to carry prioidx and/or
 * classid.  The two modes are distinguished by whether the lowest bit is
 * set.  Clear bit indicates cgroup pointer while set bit prioidx and
 * classid.
 *
 * While userland may start using net_prio or net_cls at any time, once
 * either is used, cgroup2 matching no longer works.  There is no reason to
 * mix the two and this is in line with how legacy and v2 compatibility is
 * handled.  On mode switch, cgroup references which are already being
 * pointed to by socks may be leaked.  While this can be remedied by adding
 * synchronization around sock_cgroup_data, given that the number of leaked
 * cgroups is bound and highly unlikely to be high, this seems to be the
 * better trade-off.
 */
729
struct sock_cgroup_data {
T
Tejun Heo 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	union {
#ifdef __LITTLE_ENDIAN
		struct {
			u8	is_data;
			u8	padding;
			u16	prioidx;
			u32	classid;
		} __packed;
#else
		struct {
			u32	classid;
			u16	prioidx;
			u8	padding;
			u8	is_data;
		} __packed;
#endif
		u64		val;
	};
748 749
};

T
Tejun Heo 已提交
750 751 752 753 754
/*
 * There's a theoretical window where the following accessors race with
 * updaters and return part of the previous pointer as the prioidx or
 * classid.  Such races are short-lived and the result isn't critical.
 */
755 756
static inline u16 sock_cgroup_prioidx(struct sock_cgroup_data *skcd)
{
T
Tejun Heo 已提交
757 758
	/* fallback to 1 which is always the ID of the root cgroup */
	return (skcd->is_data & 1) ? skcd->prioidx : 1;
759 760 761 762
}

static inline u32 sock_cgroup_classid(struct sock_cgroup_data *skcd)
{
T
Tejun Heo 已提交
763 764
	/* fallback to 0 which is the unconfigured default classid */
	return (skcd->is_data & 1) ? skcd->classid : 0;
765 766
}

T
Tejun Heo 已提交
767 768 769 770
/*
 * If invoked concurrently, the updaters may clobber each other.  The
 * caller is responsible for synchronization.
 */
771 772 773
static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
					   u16 prioidx)
{
774
	struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
T
Tejun Heo 已提交
775 776 777 778 779 780 781 782 783 784 785

	if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
		return;

	if (!(skcd_buf.is_data & 1)) {
		skcd_buf.val = 0;
		skcd_buf.is_data = 1;
	}

	skcd_buf.prioidx = prioidx;
	WRITE_ONCE(skcd->val, skcd_buf.val);	/* see sock_cgroup_ptr() */
786 787 788 789 790
}

static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
					   u32 classid)
{
791
	struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
T
Tejun Heo 已提交
792 793 794 795 796 797 798 799 800 801 802

	if (sock_cgroup_classid(&skcd_buf) == classid)
		return;

	if (!(skcd_buf.is_data & 1)) {
		skcd_buf.val = 0;
		skcd_buf.is_data = 1;
	}

	skcd_buf.classid = classid;
	WRITE_ONCE(skcd->val, skcd_buf.val);	/* see sock_cgroup_ptr() */
803 804 805 806 807 808 809 810 811
}

#else	/* CONFIG_SOCK_CGROUP_DATA */

struct sock_cgroup_data {
};

#endif	/* CONFIG_SOCK_CGROUP_DATA */

812
#endif	/* _LINUX_CGROUP_DEFS_H */