nic.h 12.4 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2006-2011 Solarflare Communications Inc.
5 6 7 8 9 10
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

B
Ben Hutchings 已提交
11 12
#ifndef EFX_NIC_H
#define EFX_NIC_H
13

14
#include <linux/net_tstamp.h>
15
#include <linux/i2c-algo-bit.h>
16
#include "net_driver.h"
17
#include "efx.h"
18
#include "mcdi.h"
19
#include "spi.h"
20 21 22 23 24

/*
 * Falcon hardware control
 */

25 26 27 28
enum {
	EFX_REV_FALCON_A0 = 0,
	EFX_REV_FALCON_A1 = 1,
	EFX_REV_FALCON_B0 = 2,
29
	EFX_REV_SIENA_A0 = 3,
30 31
};

32
static inline int efx_nic_rev(struct efx_nic *efx)
33
{
34
	return efx->type->revision;
35
}
36

37 38 39 40 41 42 43 44
extern u32 efx_nic_fpga_ver(struct efx_nic *efx);

/* NIC has two interlinked PCI functions for the same port. */
static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
{
	return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
}

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
enum {
	PHY_TYPE_NONE = 0,
	PHY_TYPE_TXC43128 = 1,
	PHY_TYPE_88E1111 = 2,
	PHY_TYPE_SFX7101 = 3,
	PHY_TYPE_QT2022C2 = 4,
	PHY_TYPE_PM8358 = 6,
	PHY_TYPE_SFT9001A = 8,
	PHY_TYPE_QT2025C = 9,
	PHY_TYPE_SFT9001B = 10,
};

#define FALCON_XMAC_LOOPBACKS			\
	((1 << LOOPBACK_XGMII) |		\
	 (1 << LOOPBACK_XGXS) |			\
	 (1 << LOOPBACK_XAUI))

#define FALCON_GMAC_LOOPBACKS			\
	(1 << LOOPBACK_GMAC)

65 66 67 68 69
/* Alignment of PCIe DMA boundaries (4KB) */
#define EFX_PAGE_SIZE	4096
/* Size and alignment of buffer table entries (same) */
#define EFX_BUF_SIZE	EFX_PAGE_SIZE

70
/**
71 72
 * struct falcon_board_type - board operations and type information
 * @id: Board type id, as found in NVRAM
73 74
 * @init: Allocate resources and initialise peripheral hardware
 * @init_phy: Do board-specific PHY initialisation
75
 * @fini: Shut down hardware and free resources
76 77
 * @set_id_led: Set state of identifying LED or revert to automatic function
 * @monitor: Board-specific health check function
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
 */
struct falcon_board_type {
	u8 id;
	int (*init) (struct efx_nic *nic);
	void (*init_phy) (struct efx_nic *efx);
	void (*fini) (struct efx_nic *nic);
	void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode);
	int (*monitor) (struct efx_nic *nic);
};

/**
 * struct falcon_board - board information
 * @type: Type of board
 * @major: Major rev. ('A', 'B' ...)
 * @minor: Minor rev. (0, 1, ...)
93 94
 * @i2c_adap: I2C adapter for on-board peripherals
 * @i2c_data: Data for bit-banging algorithm
95 96 97 98
 * @hwmon_client: I2C client for hardware monitor
 * @ioexp_client: I2C client for power/port control
 */
struct falcon_board {
99
	const struct falcon_board_type *type;
100 101
	int major;
	int minor;
102 103
	struct i2c_adapter i2c_adap;
	struct i2c_algo_bit_data i2c_data;
104 105 106
	struct i2c_client *hwmon_client, *ioexp_client;
};

107 108
/**
 * struct falcon_nic_data - Falcon NIC state
B
Ben Hutchings 已提交
109
 * @pci_dev2: Secondary function of Falcon A
110
 * @board: Board state and functions
111 112 113 114
 * @stats_disable_count: Nest count for disabling statistics fetches
 * @stats_pending: Is there a pending DMA of MAC statistics.
 * @stats_timer: A timer for regularly fetching MAC statistics.
 * @stats_dma_done: Pointer to the flag which indicates DMA completion.
115 116 117
 * @spi_flash: SPI flash device
 * @spi_eeprom: SPI EEPROM device
 * @spi_lock: SPI bus lock
118
 * @mdio_lock: MDIO bus lock
119
 * @xmac_poll_required: XMAC link state needs polling
120 121 122
 */
struct falcon_nic_data {
	struct pci_dev *pci_dev2;
123
	struct falcon_board board;
124 125 126 127
	unsigned int stats_disable_count;
	bool stats_pending;
	struct timer_list stats_timer;
	u32 *stats_dma_done;
128 129 130
	struct efx_spi_device spi_flash;
	struct efx_spi_device spi_eeprom;
	struct mutex spi_lock;
131
	struct mutex mdio_lock;
132
	bool xmac_poll_required;
133 134
};

135 136
static inline struct falcon_board *falcon_board(struct efx_nic *efx)
{
137 138
	struct falcon_nic_data *data = efx->nic_data;
	return &data->board;
139 140
}

141 142 143 144 145 146 147 148
/**
 * struct siena_nic_data - Siena NIC state
 * @wol_filter_id: Wake-on-LAN packet filter id
 */
struct siena_nic_data {
	int wol_filter_id;
};

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * On the SFC9000 family each port is associated with 1 PCI physical
 * function (PF) handled by sfc and a configurable number of virtual
 * functions (VFs) that may be handled by some other driver, often in
 * a VM guest.  The queue pointer registers are mapped in both PF and
 * VF BARs such that an 8K region provides access to a single RX, TX
 * and event queue (collectively a Virtual Interface, VI or VNIC).
 *
 * The PF has access to all 1024 VIs while VFs are mapped to VIs
 * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered
 * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE).
 * The number of VIs and the VI_SCALE value are configurable but must
 * be established at boot time by firmware.
 */

/* Maximum VI_SCALE parameter supported by Siena */
#define EFX_VI_SCALE_MAX 6
/* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX),
 * so this is the smallest allowed value. */
#define EFX_VI_BASE 128U
/* Maximum number of VFs allowed */
#define EFX_VF_COUNT_MAX 127
/* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */
#define EFX_MAX_VF_EVQ_SIZE 8192UL
/* The number of buffer table entries reserved for each VI on a VF */
#define EFX_VF_BUFTBL_PER_VI					\
	((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) *	\
	 sizeof(efx_qword_t) / EFX_BUF_SIZE)

#ifdef CONFIG_SFC_SRIOV

static inline bool efx_sriov_wanted(struct efx_nic *efx)
{
	return efx->vf_count != 0;
}
static inline bool efx_sriov_enabled(struct efx_nic *efx)
{
	return efx->vf_init_count != 0;
}
static inline unsigned int efx_vf_size(struct efx_nic *efx)
{
	return 1 << efx->vi_scale;
}

extern int efx_init_sriov(void);
extern void efx_sriov_probe(struct efx_nic *efx);
extern int efx_sriov_init(struct efx_nic *efx);
extern void efx_sriov_mac_address_changed(struct efx_nic *efx);
extern void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event);
extern void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event);
extern void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event);
extern void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq);
extern void efx_sriov_flr(struct efx_nic *efx, unsigned flr);
extern void efx_sriov_reset(struct efx_nic *efx);
extern void efx_sriov_fini(struct efx_nic *efx);
extern void efx_fini_sriov(void);

#else

static inline bool efx_sriov_wanted(struct efx_nic *efx) { return false; }
static inline bool efx_sriov_enabled(struct efx_nic *efx) { return false; }
static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; }

static inline int efx_init_sriov(void) { return 0; }
static inline void efx_sriov_probe(struct efx_nic *efx) {}
static inline int efx_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
static inline void efx_sriov_mac_address_changed(struct efx_nic *efx) {}
static inline void efx_sriov_tx_flush_done(struct efx_nic *efx,
					   efx_qword_t *event) {}
static inline void efx_sriov_rx_flush_done(struct efx_nic *efx,
					   efx_qword_t *event) {}
static inline void efx_sriov_event(struct efx_channel *channel,
				   efx_qword_t *event) {}
static inline void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) {}
static inline void efx_sriov_flr(struct efx_nic *efx, unsigned flr) {}
static inline void efx_sriov_reset(struct efx_nic *efx) {}
static inline void efx_sriov_fini(struct efx_nic *efx) {}
static inline void efx_fini_sriov(void) {}

#endif

extern int efx_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac);
extern int efx_sriov_set_vf_vlan(struct net_device *dev, int vf,
				 u16 vlan, u8 qos);
extern int efx_sriov_get_vf_config(struct net_device *dev, int vf,
				   struct ifla_vf_info *ivf);
extern int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf,
				     bool spoofchk);

238 239 240
struct ethtool_ts_info;
extern void efx_ptp_probe(struct efx_nic *efx);
extern int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd);
241 242
extern void efx_ptp_get_ts_info(struct efx_nic *efx,
				struct ethtool_ts_info *ts_info);
243 244 245 246
extern bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
extern int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
extern void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);

247 248 249
extern const struct efx_nic_type falcon_a1_nic_type;
extern const struct efx_nic_type falcon_b0_nic_type;
extern const struct efx_nic_type siena_a0_nic_type;
250 251 252 253 254 255 256 257

/**************************************************************************
 *
 * Externs
 *
 **************************************************************************
 */

258
extern int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
259

260
/* TX data path */
261 262 263 264 265
extern int efx_nic_probe_tx(struct efx_tx_queue *tx_queue);
extern void efx_nic_init_tx(struct efx_tx_queue *tx_queue);
extern void efx_nic_fini_tx(struct efx_tx_queue *tx_queue);
extern void efx_nic_remove_tx(struct efx_tx_queue *tx_queue);
extern void efx_nic_push_buffers(struct efx_tx_queue *tx_queue);
266 267

/* RX data path */
268 269 270 271 272
extern int efx_nic_probe_rx(struct efx_rx_queue *rx_queue);
extern void efx_nic_init_rx(struct efx_rx_queue *rx_queue);
extern void efx_nic_fini_rx(struct efx_rx_queue *rx_queue);
extern void efx_nic_remove_rx(struct efx_rx_queue *rx_queue);
extern void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue);
273
extern void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue);
274 275

/* Event data path */
276 277 278 279 280 281
extern int efx_nic_probe_eventq(struct efx_channel *channel);
extern void efx_nic_init_eventq(struct efx_channel *channel);
extern void efx_nic_fini_eventq(struct efx_channel *channel);
extern void efx_nic_remove_eventq(struct efx_channel *channel);
extern int efx_nic_process_eventq(struct efx_channel *channel, int rx_quota);
extern void efx_nic_eventq_read_ack(struct efx_channel *channel);
282
extern bool efx_nic_event_present(struct efx_channel *channel);
283

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
/* Some statistics are computed as A - B where A and B each increase
 * linearly with some hardware counter(s) and the counters are read
 * asynchronously.  If the counters contributing to B are always read
 * after those contributing to A, the computed value may be lower than
 * the true value by some variable amount, and may decrease between
 * subsequent computations.
 *
 * We should never allow statistics to decrease or to exceed the true
 * value.  Since the computed value will never be greater than the
 * true value, we can achieve this by only storing the computed value
 * when it increases.
 */
static inline void efx_update_diff_stat(u64 *stat, u64 diff)
{
	if ((s64)(diff - *stat) > 0)
		*stat = diff;
}

302
/* Interrupts and test events */
303 304
extern int efx_nic_init_interrupt(struct efx_nic *efx);
extern void efx_nic_enable_interrupts(struct efx_nic *efx);
305 306
extern void efx_nic_event_test_start(struct efx_channel *channel);
extern void efx_nic_irq_test_start(struct efx_nic *efx);
307 308 309 310 311 312
extern void efx_nic_disable_interrupts(struct efx_nic *efx);
extern void efx_nic_fini_interrupt(struct efx_nic *efx);
extern irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx);
extern irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id);
extern void falcon_irq_ack_a1(struct efx_nic *efx);

313 314
static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
{
315
	return ACCESS_ONCE(channel->event_test_cpu);
316 317 318 319 320 321
}
static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
{
	return ACCESS_ONCE(efx->last_irq_cpu);
}

322
/* Global Resources */
323
extern int efx_nic_flush_queues(struct efx_nic *efx);
324 325
extern void siena_prepare_flush(struct efx_nic *efx);
extern void siena_finish_flush(struct efx_nic *efx);
326 327
extern void falcon_start_nic_stats(struct efx_nic *efx);
extern void falcon_stop_nic_stats(struct efx_nic *efx);
328
extern int falcon_reset_xaui(struct efx_nic *efx);
329 330
extern void
efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
331
extern void efx_nic_init_common(struct efx_nic *efx);
332
extern void efx_nic_push_rx_indir_table(struct efx_nic *efx);
333 334

int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
335
			 unsigned int len, gfp_t gfp_flags);
336
void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
337

B
Ben Hutchings 已提交
338
/* Tests */
339 340 341 342 343 344 345
struct efx_nic_register_test {
	unsigned address;
	efx_oword_t mask;
};
extern int efx_nic_test_registers(struct efx_nic *efx,
				  const struct efx_nic_register_test *regs,
				  size_t n_regs);
B
Ben Hutchings 已提交
346

347 348 349
extern size_t efx_nic_get_regs_len(struct efx_nic *efx);
extern void efx_nic_get_regs(struct efx_nic *efx, void *buf);

350
#define EFX_MAX_FLUSH_TIME 5000
351

352 353
extern void efx_generate_event(struct efx_nic *efx, unsigned int evq,
			       efx_qword_t *event);
354

B
Ben Hutchings 已提交
355
#endif /* EFX_NIC_H */