amd_iommu_init.c 31.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/gfp.h>
#include <linux/list.h>
24
#include <linux/sysdev.h>
25 26
#include <linux/interrupt.h>
#include <linux/msi.h>
27 28
#include <asm/pci-direct.h>
#include <asm/amd_iommu_types.h>
29
#include <asm/amd_iommu.h>
30
#include <asm/iommu.h>
31
#include <asm/gart.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

/*
 * definitions for the ACPI scanning code
 */
#define IVRS_HEADER_LENGTH 48

#define ACPI_IVHD_TYPE                  0x10
#define ACPI_IVMD_TYPE_ALL              0x20
#define ACPI_IVMD_TYPE                  0x21
#define ACPI_IVMD_TYPE_RANGE            0x22

#define IVHD_DEV_ALL                    0x01
#define IVHD_DEV_SELECT                 0x02
#define IVHD_DEV_SELECT_RANGE_START     0x03
#define IVHD_DEV_RANGE_END              0x04
#define IVHD_DEV_ALIAS                  0x42
#define IVHD_DEV_ALIAS_RANGE            0x43
#define IVHD_DEV_EXT_SELECT             0x46
#define IVHD_DEV_EXT_SELECT_RANGE       0x47

#define IVHD_FLAG_HT_TUN_EN             0x00
#define IVHD_FLAG_PASSPW_EN             0x01
#define IVHD_FLAG_RESPASSPW_EN          0x02
#define IVHD_FLAG_ISOC_EN               0x03

#define IVMD_FLAG_EXCL_RANGE            0x08
#define IVMD_FLAG_UNITY_MAP             0x01

#define ACPI_DEVFLAG_INITPASS           0x01
#define ACPI_DEVFLAG_EXTINT             0x02
#define ACPI_DEVFLAG_NMI                0x04
#define ACPI_DEVFLAG_SYSMGT1            0x10
#define ACPI_DEVFLAG_SYSMGT2            0x20
#define ACPI_DEVFLAG_LINT0              0x40
#define ACPI_DEVFLAG_LINT1              0x80
#define ACPI_DEVFLAG_ATSDIS             0x10000000

69 70 71 72 73 74 75 76 77 78 79
/*
 * ACPI table definitions
 *
 * These data structures are laid over the table to parse the important values
 * out of it.
 */

/*
 * structure describing one IOMMU in the ACPI table. Typically followed by one
 * or more ivhd_entrys.
 */
80 81 82 83 84 85 86 87 88 89 90 91
struct ivhd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 cap_ptr;
	u64 mmio_phys;
	u16 pci_seg;
	u16 info;
	u32 reserved;
} __attribute__((packed));

92 93 94 95
/*
 * A device entry describing which devices a specific IOMMU translates and
 * which requestor ids they use.
 */
96 97 98 99 100 101 102
struct ivhd_entry {
	u8 type;
	u16 devid;
	u8 flags;
	u32 ext;
} __attribute__((packed));

103 104 105 106
/*
 * An AMD IOMMU memory definition structure. It defines things like exclusion
 * ranges for devices and regions that should be unity mapped.
 */
107 108 109 110 111 112 113 114 115 116 117
struct ivmd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 aux;
	u64 resv;
	u64 range_start;
	u64 range_length;
} __attribute__((packed));

118 119
static int __initdata amd_iommu_detected;

120 121
u16 amd_iommu_last_bdf;			/* largest PCI device id we have
					   to handle */
122
LIST_HEAD(amd_iommu_unity_map);		/* a list of required unity mappings
123 124
					   we find in ACPI */
unsigned amd_iommu_aperture_order = 26; /* size of aperture in power of 2 */
125
int amd_iommu_isolate = 1;		/* if 1, device isolation is enabled */
126
bool amd_iommu_unmap_flush;		/* if true, flush on every unmap */
127

128
LIST_HEAD(amd_iommu_list);		/* list of all AMD IOMMUs in the
129
					   system */
130

131 132 133 134 135 136
/*
 * Pointer to the device table which is shared by all AMD IOMMUs
 * it is indexed by the PCI device id or the HT unit id and contains
 * information about the domain the device belongs to as well as the
 * page table root pointer.
 */
137
struct dev_table_entry *amd_iommu_dev_table;
138 139 140 141 142 143

/*
 * The alias table is a driver specific data structure which contains the
 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
 * More than one device can share the same requestor id.
 */
144
u16 *amd_iommu_alias_table;
145 146 147 148 149

/*
 * The rlookup table is used to find the IOMMU which is responsible
 * for a specific device. It is also indexed by the PCI device id.
 */
150
struct amd_iommu **amd_iommu_rlookup_table;
151 152 153 154 155

/*
 * The pd table (protection domain table) is used to find the protection domain
 * data structure a device belongs to. Indexed with the PCI device id too.
 */
156
struct protection_domain **amd_iommu_pd_table;
157 158 159 160 161

/*
 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
 * to know which ones are already in use.
 */
162 163
unsigned long *amd_iommu_pd_alloc_bitmap;

164 165 166
static u32 dev_table_size;	/* size of the device table */
static u32 alias_table_size;	/* size of the alias table */
static u32 rlookup_table_size;	/* size if the rlookup table */
167

168 169 170 171 172 173
static inline void update_last_devid(u16 devid)
{
	if (devid > amd_iommu_last_bdf)
		amd_iommu_last_bdf = devid;
}

174 175 176 177 178 179 180 181
static inline unsigned long tbl_size(int entry_size)
{
	unsigned shift = PAGE_SHIFT +
			 get_order(amd_iommu_last_bdf * entry_size);

	return 1UL << shift;
}

182 183 184 185 186 187 188 189
/****************************************************************************
 *
 * AMD IOMMU MMIO register space handling functions
 *
 * These functions are used to program the IOMMU device registers in
 * MMIO space required for that driver.
 *
 ****************************************************************************/
190

191 192 193 194
/*
 * This function set the exclusion range in the IOMMU. DMA accesses to the
 * exclusion range are passed through untranslated
 */
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
static void __init iommu_set_exclusion_range(struct amd_iommu *iommu)
{
	u64 start = iommu->exclusion_start & PAGE_MASK;
	u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
	u64 entry;

	if (!iommu->exclusion_start)
		return;

	entry = start | MMIO_EXCL_ENABLE_MASK;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
			&entry, sizeof(entry));

	entry = limit;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
			&entry, sizeof(entry));
}

213
/* Programs the physical address of the device table into the IOMMU hardware */
214 215
static void __init iommu_set_device_table(struct amd_iommu *iommu)
{
216
	u64 entry;
217 218 219 220 221 222 223 224 225

	BUG_ON(iommu->mmio_base == NULL);

	entry = virt_to_phys(amd_iommu_dev_table);
	entry |= (dev_table_size >> 12) - 1;
	memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
			&entry, sizeof(entry));
}

226
/* Generic functions to enable/disable certain features of the IOMMU. */
227 228 229 230 231 232 233 234 235 236 237 238 239
static void __init iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl |= (1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

static void __init iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
{
	u32 ctrl;

240
	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
241 242 243 244
	ctrl &= ~(1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

245
/* Function to enable the hardware */
246 247
void __init iommu_enable(struct amd_iommu *iommu)
{
248 249 250 251 252 253
	printk(KERN_INFO "AMD IOMMU: Enabling IOMMU "
	       "at %02x:%02x.%x cap 0x%hx\n",
	       iommu->dev->bus->number,
	       PCI_SLOT(iommu->dev->devfn),
	       PCI_FUNC(iommu->dev->devfn),
	       iommu->cap_ptr);
254 255 256 257

	iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}

J
Joerg Roedel 已提交
258 259 260 261 262 263 264
/* Function to enable IOMMU event logging and event interrupts */
void __init iommu_enable_event_logging(struct amd_iommu *iommu)
{
	iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
	iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
}

265 266 267 268
/*
 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
 * the system has one.
 */
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
static u8 * __init iommu_map_mmio_space(u64 address)
{
	u8 *ret;

	if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu"))
		return NULL;

	ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
	if (ret != NULL)
		return ret;

	release_mem_region(address, MMIO_REGION_LENGTH);

	return NULL;
}

static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
	if (iommu->mmio_base)
		iounmap(iommu->mmio_base);
	release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
}

292 293 294 295 296 297 298 299 300
/****************************************************************************
 *
 * The functions below belong to the first pass of AMD IOMMU ACPI table
 * parsing. In this pass we try to find out the highest device id this
 * code has to handle. Upon this information the size of the shared data
 * structures is determined later.
 *
 ****************************************************************************/

301 302 303 304 305 306 307 308
/*
 * This function calculates the length of a given IVHD entry
 */
static inline int ivhd_entry_length(u8 *ivhd)
{
	return 0x04 << (*ivhd >> 6);
}

309 310 311 312
/*
 * This function reads the last device id the IOMMU has to handle from the PCI
 * capability header for this IOMMU
 */
313 314 315 316 317
static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
{
	u32 cap;

	cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
318
	update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
319 320 321 322

	return 0;
}

323 324 325 326
/*
 * After reading the highest device id from the IOMMU PCI capability header
 * this function looks if there is a higher device id defined in the ACPI table
 */
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
	u8 *p = (void *)h, *end = (void *)h;
	struct ivhd_entry *dev;

	p += sizeof(*h);
	end += h->length;

	find_last_devid_on_pci(PCI_BUS(h->devid),
			PCI_SLOT(h->devid),
			PCI_FUNC(h->devid),
			h->cap_ptr);

	while (p < end) {
		dev = (struct ivhd_entry *)p;
		switch (dev->type) {
		case IVHD_DEV_SELECT:
		case IVHD_DEV_RANGE_END:
		case IVHD_DEV_ALIAS:
		case IVHD_DEV_EXT_SELECT:
347
			/* all the above subfield types refer to device ids */
348
			update_last_devid(dev->devid);
349 350 351 352
			break;
		default:
			break;
		}
353
		p += ivhd_entry_length(p);
354 355 356 357 358 359 360
	}

	WARN_ON(p != end);

	return 0;
}

361 362 363 364 365
/*
 * Iterate over all IVHD entries in the ACPI table and find the highest device
 * id which we need to handle. This is the first of three functions which parse
 * the ACPI table. So we check the checksum here.
 */
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
static int __init find_last_devid_acpi(struct acpi_table_header *table)
{
	int i;
	u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;

	/*
	 * Validate checksum here so we don't need to do it when
	 * we actually parse the table
	 */
	for (i = 0; i < table->length; ++i)
		checksum += p[i];
	if (checksum != 0)
		/* ACPI table corrupt */
		return -ENODEV;

	p += IVRS_HEADER_LENGTH;

	end += table->length;
	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (h->type) {
		case ACPI_IVHD_TYPE:
			find_last_devid_from_ivhd(h);
			break;
		default:
			break;
		}
		p += h->length;
	}
	WARN_ON(p != end);

	return 0;
}

401 402 403 404 405 406 407 408 409 410 411 412 413 414
/****************************************************************************
 *
 * The following functions belong the the code path which parses the ACPI table
 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
 * data structures, initialize the device/alias/rlookup table and also
 * basically initialize the hardware.
 *
 ****************************************************************************/

/*
 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
 * write commands to that buffer later and the IOMMU will execute them
 * asynchronously
 */
415 416
static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
{
417
	u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
418
			get_order(CMD_BUFFER_SIZE));
419
	u64 entry;
420 421 422 423 424 425 426 427 428 429 430

	if (cmd_buf == NULL)
		return NULL;

	iommu->cmd_buf_size = CMD_BUFFER_SIZE;

	entry = (u64)virt_to_phys(cmd_buf);
	entry |= MMIO_CMD_SIZE_512;
	memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
			&entry, sizeof(entry));

431 432 433 434
	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

435 436 437 438 439 440 441
	iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);

	return cmd_buf;
}

static void __init free_command_buffer(struct amd_iommu *iommu)
{
442 443
	free_pages((unsigned long)iommu->cmd_buf,
		   get_order(iommu->cmd_buf_size));
444 445
}

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
{
	u64 entry;
	iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(EVT_BUFFER_SIZE));

	if (iommu->evt_buf == NULL)
		return NULL;

	entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
	memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
		    &entry, sizeof(entry));

	iommu->evt_buf_size = EVT_BUFFER_SIZE;

	return iommu->evt_buf;
}

static void __init free_event_buffer(struct amd_iommu *iommu)
{
	free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}

470
/* sets a specific bit in the device table entry. */
471 472 473 474 475 476 477 478
static void set_dev_entry_bit(u16 devid, u8 bit)
{
	int i = (bit >> 5) & 0x07;
	int _bit = bit & 0x1f;

	amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
}

479 480 481 482 483 484
/* Writes the specific IOMMU for a device into the rlookup table */
static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
{
	amd_iommu_rlookup_table[devid] = iommu;
}

485 486 487 488
/*
 * This function takes the device specific flags read from the ACPI
 * table and sets up the device table entry with that information
 */
489 490
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
					   u16 devid, u32 flags, u32 ext_flags)
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
{
	if (flags & ACPI_DEVFLAG_INITPASS)
		set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
	if (flags & ACPI_DEVFLAG_EXTINT)
		set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
	if (flags & ACPI_DEVFLAG_NMI)
		set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
	if (flags & ACPI_DEVFLAG_SYSMGT1)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
	if (flags & ACPI_DEVFLAG_SYSMGT2)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
	if (flags & ACPI_DEVFLAG_LINT0)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
	if (flags & ACPI_DEVFLAG_LINT1)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);

507
	set_iommu_for_device(iommu, devid);
508 509
}

510 511 512 513
/*
 * Reads the device exclusion range from ACPI and initialize IOMMU with
 * it
 */
514 515 516 517 518 519 520 521
static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
{
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
		return;

	if (iommu) {
522 523 524 525 526
		/*
		 * We only can configure exclusion ranges per IOMMU, not
		 * per device. But we can enable the exclusion range per
		 * device. This is done here
		 */
527 528 529 530 531 532
		set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
		iommu->exclusion_start = m->range_start;
		iommu->exclusion_length = m->range_length;
	}
}

533 534 535 536 537
/*
 * This function reads some important data from the IOMMU PCI space and
 * initializes the driver data structure with it. It reads the hardware
 * capabilities and the first/last device entries
 */
538 539 540
static void __init init_iommu_from_pci(struct amd_iommu *iommu)
{
	int cap_ptr = iommu->cap_ptr;
541
	u32 range, misc;
542

543 544 545 546
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
			      &iommu->cap);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
			      &range);
547 548
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
			      &misc);
549

550 551 552 553
	iommu->first_device = calc_devid(MMIO_GET_BUS(range),
					 MMIO_GET_FD(range));
	iommu->last_device = calc_devid(MMIO_GET_BUS(range),
					MMIO_GET_LD(range));
554
	iommu->evt_msi_num = MMIO_MSI_NUM(misc);
555 556
}

557 558 559 560
/*
 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
 * initializes the hardware and our data structures with it.
 */
561 562 563 564 565 566 567
static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
					struct ivhd_header *h)
{
	u8 *p = (u8 *)h;
	u8 *end = p, flags = 0;
	u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
	u32 ext_flags = 0;
568
	bool alias = false;
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
	struct ivhd_entry *e;

	/*
	 * First set the recommended feature enable bits from ACPI
	 * into the IOMMU control registers
	 */
	h->flags & IVHD_FLAG_HT_TUN_EN ?
		iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
		iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);

	h->flags & IVHD_FLAG_PASSPW_EN ?
		iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_PASSPW_EN);

	h->flags & IVHD_FLAG_RESPASSPW_EN ?
		iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);

	h->flags & IVHD_FLAG_ISOC_EN ?
		iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
		iommu_feature_disable(iommu, CONTROL_ISOC_EN);

	/*
	 * make IOMMU memory accesses cache coherent
	 */
	iommu_feature_enable(iommu, CONTROL_COHERENT_EN);

	/*
	 * Done. Now parse the device entries
	 */
	p += sizeof(struct ivhd_header);
	end += h->length;

	while (p < end) {
		e = (struct ivhd_entry *)p;
		switch (e->type) {
		case IVHD_DEV_ALL:
			for (dev_i = iommu->first_device;
					dev_i <= iommu->last_device; ++dev_i)
608 609
				set_dev_entry_from_acpi(iommu, dev_i,
							e->flags, 0);
610 611 612
			break;
		case IVHD_DEV_SELECT:
			devid = e->devid;
613
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
614 615 616 617 618
			break;
		case IVHD_DEV_SELECT_RANGE_START:
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = 0;
619
			alias = false;
620 621 622 623
			break;
		case IVHD_DEV_ALIAS:
			devid = e->devid;
			devid_to = e->ext >> 8;
624
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
625 626 627 628 629 630 631
			amd_iommu_alias_table[devid] = devid_to;
			break;
		case IVHD_DEV_ALIAS_RANGE:
			devid_start = e->devid;
			flags = e->flags;
			devid_to = e->ext >> 8;
			ext_flags = 0;
632
			alias = true;
633 634 635
			break;
		case IVHD_DEV_EXT_SELECT:
			devid = e->devid;
636 637
			set_dev_entry_from_acpi(iommu, devid, e->flags,
						e->ext);
638 639 640 641 642
			break;
		case IVHD_DEV_EXT_SELECT_RANGE:
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = e->ext;
643
			alias = false;
644 645 646 647 648 649
			break;
		case IVHD_DEV_RANGE_END:
			devid = e->devid;
			for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
				if (alias)
					amd_iommu_alias_table[dev_i] = devid_to;
650
				set_dev_entry_from_acpi(iommu,
651 652 653 654 655 656 657 658
						amd_iommu_alias_table[dev_i],
						flags, ext_flags);
			}
			break;
		default:
			break;
		}

659
		p += ivhd_entry_length(p);
660 661 662
	}
}

663
/* Initializes the device->iommu mapping for the driver */
664 665 666 667 668 669 670 671 672 673
static int __init init_iommu_devices(struct amd_iommu *iommu)
{
	u16 i;

	for (i = iommu->first_device; i <= iommu->last_device; ++i)
		set_iommu_for_device(iommu, i);

	return 0;
}

674 675 676
static void __init free_iommu_one(struct amd_iommu *iommu)
{
	free_command_buffer(iommu);
677
	free_event_buffer(iommu);
678 679 680 681 682 683 684 685 686 687 688 689 690 691
	iommu_unmap_mmio_space(iommu);
}

static void __init free_iommu_all(void)
{
	struct amd_iommu *iommu, *next;

	list_for_each_entry_safe(iommu, next, &amd_iommu_list, list) {
		list_del(&iommu->list);
		free_iommu_one(iommu);
		kfree(iommu);
	}
}

692 693 694 695 696
/*
 * This function clues the initialization function for one IOMMU
 * together and also allocates the command buffer and programs the
 * hardware. It does NOT enable the IOMMU. This is done afterwards.
 */
697 698 699 700 701 702 703 704
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
{
	spin_lock_init(&iommu->lock);
	list_add_tail(&iommu->list, &amd_iommu_list);

	/*
	 * Copy data from ACPI table entry to the iommu struct
	 */
705 706 707 708
	iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
	if (!iommu->dev)
		return 1;

709
	iommu->cap_ptr = h->cap_ptr;
710
	iommu->pci_seg = h->pci_seg;
711 712 713 714 715 716 717 718 719 720
	iommu->mmio_phys = h->mmio_phys;
	iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
	if (!iommu->mmio_base)
		return -ENOMEM;

	iommu_set_device_table(iommu);
	iommu->cmd_buf = alloc_command_buffer(iommu);
	if (!iommu->cmd_buf)
		return -ENOMEM;

721 722 723 724
	iommu->evt_buf = alloc_event_buffer(iommu);
	if (!iommu->evt_buf)
		return -ENOMEM;

725 726
	iommu->int_enabled = false;

727 728 729 730
	init_iommu_from_pci(iommu);
	init_iommu_from_acpi(iommu, h);
	init_iommu_devices(iommu);

731
	return pci_enable_device(iommu->dev);
732 733
}

734 735 736 737
/*
 * Iterates over all IOMMU entries in the ACPI table, allocates the
 * IOMMU structure and initializes it with init_iommu_one()
 */
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
static int __init init_iommu_all(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;
	struct amd_iommu *iommu;
	int ret;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (*p) {
		case ACPI_IVHD_TYPE:
			iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
			if (iommu == NULL)
				return -ENOMEM;
			ret = init_iommu_one(iommu, h);
			if (ret)
				return ret;
			break;
		default:
			break;
		}
		p += h->length;

	}
	WARN_ON(p != end);

	return 0;
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
/****************************************************************************
 *
 * The following functions initialize the MSI interrupts for all IOMMUs
 * in the system. Its a bit challenging because there could be multiple
 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
 * pci_dev.
 *
 ****************************************************************************/

static int __init iommu_setup_msix(struct amd_iommu *iommu)
{
	struct amd_iommu *curr;
	struct msix_entry entries[32]; /* only 32 supported by AMD IOMMU */
	int nvec = 0, i;

	list_for_each_entry(curr, &amd_iommu_list, list) {
		if (curr->dev == iommu->dev) {
			entries[nvec].entry = curr->evt_msi_num;
			entries[nvec].vector = 0;
			curr->int_enabled = true;
			nvec++;
		}
	}

	if (pci_enable_msix(iommu->dev, entries, nvec)) {
		pci_disable_msix(iommu->dev);
		return 1;
	}

	for (i = 0; i < nvec; ++i) {
		int r = request_irq(entries->vector, amd_iommu_int_handler,
				    IRQF_SAMPLE_RANDOM,
				    "AMD IOMMU",
				    NULL);
		if (r)
			goto out_free;
	}

	return 0;

out_free:
	for (i -= 1; i >= 0; --i)
		free_irq(entries->vector, NULL);

	pci_disable_msix(iommu->dev);

	return 1;
}

static int __init iommu_setup_msi(struct amd_iommu *iommu)
{
	int r;
	struct amd_iommu *curr;

	list_for_each_entry(curr, &amd_iommu_list, list) {
		if (curr->dev == iommu->dev)
			curr->int_enabled = true;
	}


	if (pci_enable_msi(iommu->dev))
		return 1;

	r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
			IRQF_SAMPLE_RANDOM,
			"AMD IOMMU",
			NULL);

	if (r) {
		pci_disable_msi(iommu->dev);
		return 1;
	}

	return 0;
}

static int __init iommu_init_msi(struct amd_iommu *iommu)
{
	if (iommu->int_enabled)
		return 0;

	if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSIX))
		return iommu_setup_msix(iommu);
	else if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
		return iommu_setup_msi(iommu);

	return 1;
}

859 860 861 862 863 864 865 866
/****************************************************************************
 *
 * The next functions belong to the third pass of parsing the ACPI
 * table. In this last pass the memory mapping requirements are
 * gathered (like exclusion and unity mapping reanges).
 *
 ****************************************************************************/

867 868 869 870 871 872 873 874 875 876
static void __init free_unity_maps(void)
{
	struct unity_map_entry *entry, *next;

	list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
		list_del(&entry->list);
		kfree(entry);
	}
}

877
/* called when we find an exclusion range definition in ACPI */
878 879 880 881 882 883 884 885 886
static int __init init_exclusion_range(struct ivmd_header *m)
{
	int i;

	switch (m->type) {
	case ACPI_IVMD_TYPE:
		set_device_exclusion_range(m->devid, m);
		break;
	case ACPI_IVMD_TYPE_ALL:
887
		for (i = 0; i <= amd_iommu_last_bdf; ++i)
888 889 890 891 892 893 894 895 896 897 898 899 900
			set_device_exclusion_range(i, m);
		break;
	case ACPI_IVMD_TYPE_RANGE:
		for (i = m->devid; i <= m->aux; ++i)
			set_device_exclusion_range(i, m);
		break;
	default:
		break;
	}

	return 0;
}

901
/* called for unity map ACPI definition */
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
static int __init init_unity_map_range(struct ivmd_header *m)
{
	struct unity_map_entry *e = 0;

	e = kzalloc(sizeof(*e), GFP_KERNEL);
	if (e == NULL)
		return -ENOMEM;

	switch (m->type) {
	default:
	case ACPI_IVMD_TYPE:
		e->devid_start = e->devid_end = m->devid;
		break;
	case ACPI_IVMD_TYPE_ALL:
		e->devid_start = 0;
		e->devid_end = amd_iommu_last_bdf;
		break;
	case ACPI_IVMD_TYPE_RANGE:
		e->devid_start = m->devid;
		e->devid_end = m->aux;
		break;
	}
	e->address_start = PAGE_ALIGN(m->range_start);
	e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
	e->prot = m->flags >> 1;

	list_add_tail(&e->list, &amd_iommu_unity_map);

	return 0;
}

933
/* iterates over all memory definitions we find in the ACPI table */
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
static int __init init_memory_definitions(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivmd_header *m;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		m = (struct ivmd_header *)p;
		if (m->flags & IVMD_FLAG_EXCL_RANGE)
			init_exclusion_range(m);
		else if (m->flags & IVMD_FLAG_UNITY_MAP)
			init_unity_map_range(m);

		p += m->length;
	}

	return 0;
}

955 956 957 958 959 960 961 962 963 964 965 966 967 968
/*
 * Init the device table to not allow DMA access for devices and
 * suppress all page faults
 */
static void init_device_table(void)
{
	u16 devid;

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
		set_dev_entry_bit(devid, DEV_ENTRY_VALID);
		set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
	}
}

969 970 971 972
/*
 * This function finally enables all IOMMUs found in the system after
 * they have been initialized
 */
973 974 975 976 977 978
static void __init enable_iommus(void)
{
	struct amd_iommu *iommu;

	list_for_each_entry(iommu, &amd_iommu_list, list) {
		iommu_set_exclusion_range(iommu);
979
		iommu_init_msi(iommu);
J
Joerg Roedel 已提交
980
		iommu_enable_event_logging(iommu);
981 982 983 984
		iommu_enable(iommu);
	}
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
/*
 * Suspend/Resume support
 * disable suspend until real resume implemented
 */

static int amd_iommu_resume(struct sys_device *dev)
{
	return 0;
}

static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
{
	return -EINVAL;
}

static struct sysdev_class amd_iommu_sysdev_class = {
	.name = "amd_iommu",
	.suspend = amd_iommu_suspend,
	.resume = amd_iommu_resume,
};

static struct sys_device device_amd_iommu = {
	.id = 0,
	.cls = &amd_iommu_sysdev_class,
};

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
/*
 * This is the core init function for AMD IOMMU hardware in the system.
 * This function is called from the generic x86 DMA layer initialization
 * code.
 *
 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
 * three times:
 *
 *	1 pass) Find the highest PCI device id the driver has to handle.
 *		Upon this information the size of the data structures is
 *		determined that needs to be allocated.
 *
 *	2 pass) Initialize the data structures just allocated with the
 *		information in the ACPI table about available AMD IOMMUs
 *		in the system. It also maps the PCI devices in the
 *		system to specific IOMMUs
 *
 *	3 pass) After the basic data structures are allocated and
 *		initialized we update them with information about memory
 *		remapping requirements parsed out of the ACPI table in
 *		this last pass.
 *
 * After that the hardware is initialized and ready to go. In the last
 * step we do some Linux specific things like registering the driver in
 * the dma_ops interface and initializing the suspend/resume support
 * functions. Finally it prints some information about AMD IOMMUs and
 * the driver state and enables the hardware.
 */
1039 1040 1041 1042 1043
int __init amd_iommu_init(void)
{
	int i, ret = 0;


1044
	if (no_iommu) {
1045 1046 1047 1048
		printk(KERN_INFO "AMD IOMMU disabled by kernel command line\n");
		return 0;
	}

1049 1050 1051
	if (!amd_iommu_detected)
		return -ENODEV;

1052 1053 1054 1055 1056 1057 1058 1059
	/*
	 * First parse ACPI tables to find the largest Bus/Dev/Func
	 * we need to handle. Upon this information the shared data
	 * structures for the IOMMUs in the system will be allocated
	 */
	if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
		return -ENODEV;

1060 1061 1062
	dev_table_size     = tbl_size(DEV_TABLE_ENTRY_SIZE);
	alias_table_size   = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
	rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1063 1064 1065 1066

	ret = -ENOMEM;

	/* Device table - directly used by all IOMMUs */
1067
	amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
				      get_order(dev_table_size));
	if (amd_iommu_dev_table == NULL)
		goto out;

	/*
	 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
	 * IOMMU see for that device
	 */
	amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
			get_order(alias_table_size));
	if (amd_iommu_alias_table == NULL)
		goto free;

	/* IOMMU rlookup table - find the IOMMU for a specific device */
1082 1083
	amd_iommu_rlookup_table = (void *)__get_free_pages(
			GFP_KERNEL | __GFP_ZERO,
1084 1085 1086 1087 1088 1089 1090 1091
			get_order(rlookup_table_size));
	if (amd_iommu_rlookup_table == NULL)
		goto free;

	/*
	 * Protection Domain table - maps devices to protection domains
	 * This table has the same size as the rlookup_table
	 */
1092
	amd_iommu_pd_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1093 1094 1095 1096
				     get_order(rlookup_table_size));
	if (amd_iommu_pd_table == NULL)
		goto free;

1097 1098
	amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
					    GFP_KERNEL | __GFP_ZERO,
1099 1100 1101 1102
					    get_order(MAX_DOMAIN_ID/8));
	if (amd_iommu_pd_alloc_bitmap == NULL)
		goto free;

1103 1104 1105
	/* init the device table */
	init_device_table();

1106
	/*
1107
	 * let all alias entries point to itself
1108
	 */
1109
	for (i = 0; i <= amd_iommu_last_bdf; ++i)
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		amd_iommu_alias_table[i] = i;

	/*
	 * never allocate domain 0 because its used as the non-allocated and
	 * error value placeholder
	 */
	amd_iommu_pd_alloc_bitmap[0] = 1;

	/*
	 * now the data structures are allocated and basically initialized
	 * start the real acpi table scan
	 */
	ret = -ENODEV;
	if (acpi_table_parse("IVRS", init_iommu_all) != 0)
		goto free;

	if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
		goto free;

1129
	ret = sysdev_class_register(&amd_iommu_sysdev_class);
1130 1131 1132
	if (ret)
		goto free;

1133
	ret = sysdev_register(&device_amd_iommu);
1134 1135 1136
	if (ret)
		goto free;

1137
	ret = amd_iommu_init_dma_ops();
1138 1139 1140
	if (ret)
		goto free;

1141 1142
	enable_iommus();

1143 1144 1145 1146 1147 1148 1149 1150 1151
	printk(KERN_INFO "AMD IOMMU: aperture size is %d MB\n",
			(1 << (amd_iommu_aperture_order-20)));

	printk(KERN_INFO "AMD IOMMU: device isolation ");
	if (amd_iommu_isolate)
		printk("enabled\n");
	else
		printk("disabled\n");

1152
	if (amd_iommu_unmap_flush)
1153 1154 1155 1156
		printk(KERN_INFO "AMD IOMMU: IO/TLB flush on unmap enabled\n");
	else
		printk(KERN_INFO "AMD IOMMU: Lazy IO/TLB flushing enabled\n");

1157 1158 1159 1160
out:
	return ret;

free:
1161 1162
	free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
		   get_order(MAX_DOMAIN_ID/8));
1163

1164 1165
	free_pages((unsigned long)amd_iommu_pd_table,
		   get_order(rlookup_table_size));
1166

1167 1168
	free_pages((unsigned long)amd_iommu_rlookup_table,
		   get_order(rlookup_table_size));
1169

1170 1171
	free_pages((unsigned long)amd_iommu_alias_table,
		   get_order(alias_table_size));
1172

1173 1174
	free_pages((unsigned long)amd_iommu_dev_table,
		   get_order(dev_table_size));
1175 1176 1177 1178 1179 1180 1181 1182

	free_iommu_all();

	free_unity_maps();

	goto out;
}

1183 1184 1185 1186 1187 1188 1189
/****************************************************************************
 *
 * Early detect code. This code runs at IOMMU detection time in the DMA
 * layer. It just looks if there is an IVRS ACPI table to detect AMD
 * IOMMUs
 *
 ****************************************************************************/
1190 1191 1192 1193 1194 1195 1196
static int __init early_amd_iommu_detect(struct acpi_table_header *table)
{
	return 0;
}

void __init amd_iommu_detect(void)
{
1197
	if (swiotlb || no_iommu || (iommu_detected && !gart_iommu_aperture))
1198 1199 1200 1201
		return;

	if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
		iommu_detected = 1;
1202
		amd_iommu_detected = 1;
I
Ingo Molnar 已提交
1203
#ifdef CONFIG_GART_IOMMU
1204 1205
		gart_iommu_aperture_disabled = 1;
		gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1206
#endif
1207 1208 1209
	}
}

1210 1211 1212 1213 1214 1215 1216
/****************************************************************************
 *
 * Parsing functions for the AMD IOMMU specific kernel command line
 * options.
 *
 ****************************************************************************/

1217 1218 1219
static int __init parse_amd_iommu_options(char *str)
{
	for (; *str; ++str) {
1220
		if (strncmp(str, "isolate", 7) == 0)
1221
			amd_iommu_isolate = 1;
1222 1223
		if (strncmp(str, "share", 5) == 0)
			amd_iommu_isolate = 0;
1224
		if (strncmp(str, "fullflush", 9) == 0)
1225
			amd_iommu_unmap_flush = true;
1226 1227 1228 1229 1230 1231 1232
	}

	return 1;
}

static int __init parse_amd_iommu_size_options(char *str)
{
1233 1234 1235 1236
	unsigned order = PAGE_SHIFT + get_order(memparse(str, &str));

	if ((order > 24) && (order < 31))
		amd_iommu_aperture_order = order;
1237 1238 1239 1240 1241 1242

	return 1;
}

__setup("amd_iommu=", parse_amd_iommu_options);
__setup("amd_iommu_size=", parse_amd_iommu_size_options);