rc80211_minstrel_ht.c 39.4 KB
Newer Older
1
/*
2
 * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
3 4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/skbuff.h>
#include <linux/debugfs.h>
#include <linux/random.h>
13
#include <linux/moduleparam.h>
14 15 16 17 18 19
#include <linux/ieee80211.h>
#include <net/mac80211.h>
#include "rate.h"
#include "rc80211_minstrel.h"
#include "rc80211_minstrel_ht.h"

20
#define AVG_AMPDU_SIZE	16
21 22 23
#define AVG_PKT_SIZE	1200

/* Number of bits for an average sized packet */
24
#define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
25 26

/* Number of symbols for a packet with (bps) bits per symbol */
27
#define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
28

29
/* Transmission time (nanoseconds) for a packet containing (syms) symbols */
30 31
#define MCS_SYMBOL_TIME(sgi, syms)					\
	(sgi ?								\
32 33
	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
	  ((syms) * 1000) << 2		/* syms * 4 us */		\
34 35 36
	)

/* Transmit duration for the raw data part of an average sized packet */
37 38
#define MCS_DURATION(streams, sgi, bps) \
	(MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
39

40 41
#define BW_20			0
#define BW_40			1
42
#define BW_80			2
43

44 45 46 47
/*
 * Define group sort order: HT40 -> SGI -> #streams
 */
#define GROUP_IDX(_streams, _sgi, _ht40)	\
48
	MINSTREL_HT_GROUP_0 +			\
49
	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
50
	MINSTREL_MAX_STREAMS * _sgi +	\
51 52
	_streams - 1

53
/* MCS rate information for an MCS group */
54 55
#define MCS_GROUP(_streams, _sgi, _ht40)				\
	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
56 57
	.streams = _streams,						\
	.flags =							\
58
		IEEE80211_TX_RC_MCS |					\
59 60 61 62 63 64 65 66 67 68 69 70 71 72
		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
	.duration = {							\
		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260)		\
	}								\
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
#define VHT_GROUP_IDX(_streams, _sgi, _bw)				\
	(MINSTREL_VHT_GROUP_0 +						\
	 MINSTREL_MAX_STREAMS * 2 * (_bw) +				\
	 MINSTREL_MAX_STREAMS * (_sgi) +				\
	 (_streams) - 1)

#define BW2VBPS(_bw, r3, r2, r1)					\
	(_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)

#define VHT_GROUP(_streams, _sgi, _bw)					\
	[VHT_GROUP_IDX(_streams, _sgi, _bw)] = {			\
	.streams = _streams,						\
	.flags =							\
		IEEE80211_TX_RC_VHT_MCS |				\
		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
		(_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH :		\
		 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),	\
	.duration = {							\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  117,  54,  26)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  234, 108,  52)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  351, 162,  78)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  468, 216, 104)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  702, 324, 156)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  936, 432, 208)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1053, 486, 234)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1170, 540, 260)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1404, 648, 312)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1560, 720, 346))		\
	}								\
}

114
#define CCK_DURATION(_bitrate, _short, _len)		\
115
	(1000 * (10 /* SIFS */ +			\
W
Weilong Chen 已提交
116
	 (_short ? 72 + 24 : 144 + 48) +		\
117
	 (8 * (_len + 4) * 10) / (_bitrate)))
118 119 120 121 122 123 124 125 126 127 128

#define CCK_ACK_DURATION(_bitrate, _short)			\
	(CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) +	\
	 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))

#define CCK_DURATION_LIST(_short)			\
	CCK_ACK_DURATION(10, _short),			\
	CCK_ACK_DURATION(20, _short),			\
	CCK_ACK_DURATION(55, _short),			\
	CCK_ACK_DURATION(110, _short)

129 130 131
#define CCK_GROUP					\
	[MINSTREL_CCK_GROUP] = {			\
		.streams = 0,				\
132
		.flags = 0,				\
133 134 135 136
		.duration = {				\
			CCK_DURATION_LIST(false),	\
			CCK_DURATION_LIST(true)		\
		}					\
137 138
	}

139 140 141 142 143 144 145
#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
static bool minstrel_vht_only = true;
module_param(minstrel_vht_only, bool, 0644);
MODULE_PARM_DESC(minstrel_vht_only,
		 "Use only VHT rates when VHT is supported by sta.");
#endif

146 147 148 149
/*
 * To enable sufficiently targeted rate sampling, MCS rates are divided into
 * groups, based on the number of streams and flags (HT40, SGI) that they
 * use.
150 151
 *
 * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
152
 * BW -> SGI -> #streams
153 154
 */
const struct mcs_group minstrel_mcs_groups[] = {
155 156
	MCS_GROUP(1, 0, BW_20),
	MCS_GROUP(2, 0, BW_20),
157
#if MINSTREL_MAX_STREAMS >= 3
158
	MCS_GROUP(3, 0, BW_20),
159 160
#endif

161 162
	MCS_GROUP(1, 1, BW_20),
	MCS_GROUP(2, 1, BW_20),
163
#if MINSTREL_MAX_STREAMS >= 3
164
	MCS_GROUP(3, 1, BW_20),
165 166
#endif

167 168
	MCS_GROUP(1, 0, BW_40),
	MCS_GROUP(2, 0, BW_40),
169
#if MINSTREL_MAX_STREAMS >= 3
170
	MCS_GROUP(3, 0, BW_40),
171 172
#endif

173 174
	MCS_GROUP(1, 1, BW_40),
	MCS_GROUP(2, 1, BW_40),
175
#if MINSTREL_MAX_STREAMS >= 3
176
	MCS_GROUP(3, 1, BW_40),
177
#endif
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192
	CCK_GROUP,

#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
	VHT_GROUP(1, 0, BW_20),
	VHT_GROUP(2, 0, BW_20),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 0, BW_20),
#endif

	VHT_GROUP(1, 1, BW_20),
	VHT_GROUP(2, 1, BW_20),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 1, BW_20),
#endif
193

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
	VHT_GROUP(1, 0, BW_40),
	VHT_GROUP(2, 0, BW_40),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 0, BW_40),
#endif

	VHT_GROUP(1, 1, BW_40),
	VHT_GROUP(2, 1, BW_40),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 1, BW_40),
#endif

	VHT_GROUP(1, 0, BW_80),
	VHT_GROUP(2, 0, BW_80),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 0, BW_80),
#endif

	VHT_GROUP(1, 1, BW_80),
	VHT_GROUP(2, 1, BW_80),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 1, BW_80),
#endif
#endif
};
219

220
static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
221

222 223 224
static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
/*
 * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
 * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
 *
 * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
 */
static u16
minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
{
	u16 mask = 0;

	if (bw == BW_20) {
		if (nss != 3 && nss != 6)
			mask = BIT(9);
	} else if (bw == BW_80) {
		if (nss == 3 || nss == 7)
			mask = BIT(6);
		else if (nss == 6)
			mask = BIT(9);
	} else {
		WARN_ON(bw != BW_40);
	}

	switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
	case IEEE80211_VHT_MCS_SUPPORT_0_7:
		mask |= 0x300;
		break;
	case IEEE80211_VHT_MCS_SUPPORT_0_8:
		mask |= 0x200;
		break;
	case IEEE80211_VHT_MCS_SUPPORT_0_9:
		break;
	default:
		mask = 0x3ff;
	}

	return 0x3ff & ~mask;
}

264 265 266 267 268 269
/*
 * Look up an MCS group index based on mac80211 rate information
 */
static int
minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
{
270
	return GROUP_IDX((rate->idx / 8) + 1,
271 272
			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
273 274
}

275 276 277 278 279 280 281 282 283
static int
minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
{
	return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
			     !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
			     !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
			     2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
}

284 285 286 287 288 289 290 291
static struct minstrel_rate_stats *
minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		      struct ieee80211_tx_rate *rate)
{
	int group, idx;

	if (rate->flags & IEEE80211_TX_RC_MCS) {
		group = minstrel_ht_get_group_idx(rate);
292
		idx = rate->idx % 8;
293 294 295
	} else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
		group = minstrel_vht_get_group_idx(rate);
		idx = ieee80211_rate_get_vht_mcs(rate);
296 297 298 299 300 301 302 303 304 305 306 307 308 309
	} else {
		group = MINSTREL_CCK_GROUP;

		for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
			if (rate->idx == mp->cck_rates[idx])
				break;

		/* short preamble */
		if (!(mi->groups[group].supported & BIT(idx)))
			idx += 4;
	}
	return &mi->groups[group].rates[idx];
}

310 311 312 313 314 315 316
static inline struct minstrel_rate_stats *
minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
{
	return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
}

/*
317 318
 * Return current throughput based on the average A-MPDU length, taking into
 * account the expected number of retransmissions and their expected length
319
 */
320
int
321 322
minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate,
		       int prob_ewma)
323
{
324
	unsigned int nsecs = 0;
325

326
	/* do not account throughput if sucess prob is below 10% */
327
	if (prob_ewma < MINSTREL_FRAC(10, 100))
328
		return 0;
329

330
	if (group != MINSTREL_CCK_GROUP)
331
		nsecs = 1000 * mi->overhead / MINSTREL_TRUNC(mi->avg_ampdu_len);
332

333 334
	nsecs += minstrel_mcs_groups[group].duration[rate];

335 336 337 338 339 340 341 342 343 344
	/*
	 * For the throughput calculation, limit the probability value to 90% to
	 * account for collision related packet error rate fluctuation
	 * (prob is scaled - see MINSTREL_FRAC above)
	 */
	if (prob_ewma > MINSTREL_FRAC(90, 100))
		return MINSTREL_TRUNC(100000 * ((MINSTREL_FRAC(90, 100) * 1000)
								      / nsecs));
	else
		return MINSTREL_TRUNC(100000 * ((prob_ewma * 1000) / nsecs));
345 346
}

347 348 349 350 351 352 353 354
/*
 * Find & sort topmost throughput rates
 *
 * If multiple rates provide equal throughput the sorting is based on their
 * current success probability. Higher success probability is preferred among
 * MCS groups, CCK rates do not provide aggregation and are therefore at last.
 */
static void
355 356
minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
			       u16 *tp_list)
357
{
358 359
	int cur_group, cur_idx, cur_tp_avg, cur_prob;
	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
360 361 362 363
	int j = MAX_THR_RATES;

	cur_group = index / MCS_GROUP_RATES;
	cur_idx = index  % MCS_GROUP_RATES;
364
	cur_prob = mi->groups[cur_group].rates[cur_idx].prob_ewma;
365
	cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob);
366

367
	do {
368 369
		tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
		tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
370
		tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
371 372
		tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx,
						    tmp_prob);
373 374
		if (cur_tp_avg < tmp_tp_avg ||
		    (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob))
375 376 377
			break;
		j--;
	} while (j > 0);
378 379 380 381 382 383 384 385 386 387 388 389 390

	if (j < MAX_THR_RATES - 1) {
		memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
		       (MAX_THR_RATES - (j + 1))));
	}
	if (j < MAX_THR_RATES)
		tp_list[j] = index;
}

/*
 * Find and set the topmost probability rate per sta and per group
 */
static void
391
minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 index)
392 393
{
	struct minstrel_mcs_group_data *mg;
394
	struct minstrel_rate_stats *mrs;
395 396
	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
	int max_tp_group, cur_tp_avg, cur_group, cur_idx;
397 398
	int max_gpr_group, max_gpr_idx;
	int max_gpr_tp_avg, max_gpr_prob;
399

400 401
	cur_group = index / MCS_GROUP_RATES;
	cur_idx = index % MCS_GROUP_RATES;
402
	mg = &mi->groups[index / MCS_GROUP_RATES];
403
	mrs = &mg->rates[index % MCS_GROUP_RATES];
404 405 406

	tmp_group = mi->max_prob_rate / MCS_GROUP_RATES;
	tmp_idx = mi->max_prob_rate % MCS_GROUP_RATES;
407
	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
408
	tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
409 410 411 412 413 414 415 416

	/* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
	 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
	max_tp_group = mi->max_tp_rate[0] / MCS_GROUP_RATES;
	if((index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) &&
	    (max_tp_group != MINSTREL_CCK_GROUP))
		return;

417 418 419 420
	max_gpr_group = mg->max_group_prob_rate / MCS_GROUP_RATES;
	max_gpr_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
	max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_ewma;

421
	if (mrs->prob_ewma > MINSTREL_FRAC(75, 100)) {
422 423
		cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx,
						    mrs->prob_ewma);
424
		if (cur_tp_avg > tmp_tp_avg)
425
			mi->max_prob_rate = index;
426

427 428 429 430
		max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group,
							max_gpr_idx,
							max_gpr_prob);
		if (cur_tp_avg > max_gpr_tp_avg)
431 432
			mg->max_group_prob_rate = index;
	} else {
433
		if (mrs->prob_ewma > tmp_prob)
434
			mi->max_prob_rate = index;
435
		if (mrs->prob_ewma > max_gpr_prob)
436 437 438 439 440 441 442 443 444 445 446 447 448
			mg->max_group_prob_rate = index;
	}
}


/*
 * Assign new rate set per sta and use CCK rates only if the fastest
 * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
 * rate sets where MCS and CCK rates are mixed, because CCK rates can
 * not use aggregation.
 */
static void
minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
449 450
				 u16 tmp_mcs_tp_rate[MAX_THR_RATES],
				 u16 tmp_cck_tp_rate[MAX_THR_RATES])
451
{
452
	unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob;
453 454 455 456
	int i;

	tmp_group = tmp_cck_tp_rate[0] / MCS_GROUP_RATES;
	tmp_idx = tmp_cck_tp_rate[0] % MCS_GROUP_RATES;
457 458
	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
	tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
459 460 461

	tmp_group = tmp_mcs_tp_rate[0] / MCS_GROUP_RATES;
	tmp_idx = tmp_mcs_tp_rate[0] % MCS_GROUP_RATES;
462 463
	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
	tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481

	if (tmp_cck_tp > tmp_mcs_tp) {
		for(i = 0; i < MAX_THR_RATES; i++) {
			minstrel_ht_sort_best_tp_rates(mi, tmp_cck_tp_rate[i],
						       tmp_mcs_tp_rate);
		}
	}

}

/*
 * Try to increase robustness of max_prob rate by decrease number of
 * streams if possible.
 */
static inline void
minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;
482
	int tmp_max_streams, group, tmp_idx, tmp_prob;
483 484 485 486 487 488 489 490
	int tmp_tp = 0;

	tmp_max_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
			  MCS_GROUP_RATES].streams;
	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
		mg = &mi->groups[group];
		if (!mg->supported || group == MINSTREL_CCK_GROUP)
			continue;
491 492

		tmp_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
493
		tmp_prob = mi->groups[group].rates[tmp_idx].prob_ewma;
494

495
		if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) &&
496 497
		   (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
				mi->max_prob_rate = mg->max_group_prob_rate;
498
				tmp_tp = minstrel_ht_get_tp_avg(mi, group,
499 500
								tmp_idx,
								tmp_prob);
501 502 503 504
		}
	}
}

505 506 507 508 509 510
/*
 * Update rate statistics and select new primary rates
 *
 * Rules for rate selection:
 *  - max_prob_rate must use only one stream, as a tradeoff between delivery
 *    probability and throughput during strong fluctuations
511
 *  - as long as the max prob rate has a probability of more than 75%, pick
512 513 514 515 516 517
 *    higher throughput rates, even if the probablity is a bit lower
 */
static void
minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;
518
	struct minstrel_rate_stats *mrs;
519
	int group, i, j, cur_prob;
520 521
	u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
	u16 tmp_cck_tp_rate[MAX_THR_RATES], index;
522 523 524 525 526 527 528 529 530 531 532

	if (mi->ampdu_packets > 0) {
		mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
			MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), EWMA_LEVEL);
		mi->ampdu_len = 0;
		mi->ampdu_packets = 0;
	}

	mi->sample_slow = 0;
	mi->sample_count = 0;

533 534 535 536 537
	/* Initialize global rate indexes */
	for(j = 0; j < MAX_THR_RATES; j++){
		tmp_mcs_tp_rate[j] = 0;
		tmp_cck_tp_rate[j] = 0;
	}
538

539 540
	/* Find best rate sets within all MCS groups*/
	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
541 542 543 544 545 546 547

		mg = &mi->groups[group];
		if (!mg->supported)
			continue;

		mi->sample_count++;

548 549 550 551
		/* (re)Initialize group rate indexes */
		for(j = 0; j < MAX_THR_RATES; j++)
			tmp_group_tp_rate[j] = group;

552 553 554 555
		for (i = 0; i < MCS_GROUP_RATES; i++) {
			if (!(mg->supported & BIT(i)))
				continue;

556 557
			index = MCS_GROUP_RATES * group + i;

558 559 560
			mrs = &mg->rates[i];
			mrs->retry_updated = false;
			minstrel_calc_rate_stats(mrs);
561
			cur_prob = mrs->prob_ewma;
562

563
			if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0)
564 565
				continue;

566 567 568 569 570 571 572
			/* Find max throughput rate set */
			if (group != MINSTREL_CCK_GROUP) {
				minstrel_ht_sort_best_tp_rates(mi, index,
							       tmp_mcs_tp_rate);
			} else if (group == MINSTREL_CCK_GROUP) {
				minstrel_ht_sort_best_tp_rates(mi, index,
							       tmp_cck_tp_rate);
573 574
			}

575 576 577
			/* Find max throughput rate set within a group */
			minstrel_ht_sort_best_tp_rates(mi, index,
						       tmp_group_tp_rate);
578

579 580
			/* Find max probability rate per group and global */
			minstrel_ht_set_best_prob_rate(mi, index);
581 582
		}

583 584
		memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
		       sizeof(mg->max_group_tp_rate));
585 586
	}

587 588 589
	/* Assign new rate set per sta */
	minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_cck_tp_rate);
	memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
590

591 592 593 594 595
	/* Try to increase robustness of max_prob_rate*/
	minstrel_ht_prob_rate_reduce_streams(mi);

	/* try to sample all available rates during each interval */
	mi->sample_count *= 8;
596

597 598 599
#ifdef CONFIG_MAC80211_DEBUGFS
	/* use fixed index if set */
	if (mp->fixed_rate_idx != -1) {
600 601
		for (i = 0; i < 4; i++)
			mi->max_tp_rate[i] = mp->fixed_rate_idx;
602 603 604
		mi->max_prob_rate = mp->fixed_rate_idx;
	}
#endif
605

606
	/* Reset update timer */
607
	mi->last_stats_update = jiffies;
608 609 610
}

static bool
611
minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
612
{
613
	if (rate->idx < 0)
614 615
		return false;

616
	if (!rate->count)
617 618
		return false;

619 620
	if (rate->flags & IEEE80211_TX_RC_MCS ||
	    rate->flags & IEEE80211_TX_RC_VHT_MCS)
621 622 623 624 625 626
		return true;

	return rate->idx == mp->cck_rates[0] ||
	       rate->idx == mp->cck_rates[1] ||
	       rate->idx == mp->cck_rates[2] ||
	       rate->idx == mp->cck_rates[3];
627 628 629
}

static void
630
minstrel_set_next_sample_idx(struct minstrel_ht_sta *mi)
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
{
	struct minstrel_mcs_group_data *mg;

	for (;;) {
		mi->sample_group++;
		mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
		mg = &mi->groups[mi->sample_group];

		if (!mg->supported)
			continue;

		if (++mg->index >= MCS_GROUP_RATES) {
			mg->index = 0;
			if (++mg->column >= ARRAY_SIZE(sample_table))
				mg->column = 0;
		}
		break;
	}
}

static void
652
minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
{
	int group, orig_group;

	orig_group = group = *idx / MCS_GROUP_RATES;
	while (group > 0) {
		group--;

		if (!mi->groups[group].supported)
			continue;

		if (minstrel_mcs_groups[group].streams >
		    minstrel_mcs_groups[orig_group].streams)
			continue;

		if (primary)
668
			*idx = mi->groups[group].max_group_tp_rate[0];
669
		else
670
			*idx = mi->groups[group].max_group_tp_rate[1];
671 672 673 674 675
		break;
	}
}

static void
676
minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
677 678 679 680 681
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
	u16 tid;

682 683 684
	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
		return;

685 686 687
	if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
		return;

688
	if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
689 690 691
		return;

	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
692
	if (likely(sta->ampdu_mlme.tid_tx[tid]))
693 694
		return;

695
	ieee80211_start_tx_ba_session(pubsta, tid, 0);
696 697 698 699 700
}

static void
minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
                      struct ieee80211_sta *sta, void *priv_sta,
701
                      struct ieee80211_tx_info *info)
702 703 704 705 706 707
{
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_tx_rate *ar = info->status.rates;
	struct minstrel_rate_stats *rate, *rate2;
	struct minstrel_priv *mp = priv;
708
	bool last, update = false;
709
	int i;
710 711

	if (!msp->is_ht)
712 713
		return mac80211_minstrel.tx_status_noskb(priv, sband, sta,
							 &msp->legacy, info);
714 715 716 717 718 719

	/* This packet was aggregated but doesn't carry status info */
	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
		return;

B
Björn Smedman 已提交
720 721 722
	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
		info->status.ampdu_ack_len =
			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
723 724 725 726 727 728 729
		info->status.ampdu_len = 1;
	}

	mi->ampdu_packets++;
	mi->ampdu_len += info->status.ampdu_len;

	if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
730
		mi->sample_wait = 16 + 2 * MINSTREL_TRUNC(mi->avg_ampdu_len);
731
		mi->sample_tries = 1;
732 733 734
		mi->sample_count--;
	}

735
	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
736 737
		mi->sample_packets += info->status.ampdu_len;

738
	last = !minstrel_ht_txstat_valid(mp, &ar[0]);
739 740
	for (i = 0; !last; i++) {
		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
741
		       !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
742

743
		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
744

B
Björn Smedman 已提交
745
		if (last)
746 747 748 749 750 751 752 753 754
			rate->success += info->status.ampdu_ack_len;

		rate->attempts += ar[i].count * info->status.ampdu_len;
	}

	/*
	 * check for sudden death of spatial multiplexing,
	 * downgrade to a lower number of streams if necessary.
	 */
755
	rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
756 757
	if (rate->attempts > 30 &&
	    MINSTREL_FRAC(rate->success, rate->attempts) <
758
	    MINSTREL_FRAC(20, 100)) {
759
		minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
760 761
		update = true;
	}
762

763
	rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
764 765
	if (rate2->attempts > 30 &&
	    MINSTREL_FRAC(rate2->success, rate2->attempts) <
766
	    MINSTREL_FRAC(20, 100)) {
767
		minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
768 769
		update = true;
	}
770

771 772
	if (time_after(jiffies, mi->last_stats_update +
				(mp->update_interval / 2 * HZ) / 1000)) {
773
		update = true;
774 775
		minstrel_ht_update_stats(mp, mi);
	}
776 777 778

	if (update)
		minstrel_ht_update_rates(mp, mi);
779 780 781 782 783 784
}

static void
minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
                         int index)
{
785
	struct minstrel_rate_stats *mrs;
786 787 788
	const struct mcs_group *group;
	unsigned int tx_time, tx_time_rtscts, tx_time_data;
	unsigned int cw = mp->cw_min;
789
	unsigned int ctime = 0;
790 791
	unsigned int t_slot = 9; /* FIXME */
	unsigned int ampdu_len = MINSTREL_TRUNC(mi->avg_ampdu_len);
792
	unsigned int overhead = 0, overhead_rtscts = 0;
793

794 795 796 797
	mrs = minstrel_get_ratestats(mi, index);
	if (mrs->prob_ewma < MINSTREL_FRAC(1, 10)) {
		mrs->retry_count = 1;
		mrs->retry_count_rtscts = 1;
798 799 800
		return;
	}

801 802 803
	mrs->retry_count = 2;
	mrs->retry_count_rtscts = 2;
	mrs->retry_updated = true;
804 805

	group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
806
	tx_time_data = group->duration[index % MCS_GROUP_RATES] * ampdu_len / 1000;
807 808 809 810 811 812 813

	/* Contention time for first 2 tries */
	ctime = (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);
	ctime += (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);

814 815 816 817 818
	if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
		overhead = mi->overhead;
		overhead_rtscts = mi->overhead_rtscts;
	}

819
	/* Total TX time for data and Contention after first 2 tries */
820 821
	tx_time = ctime + 2 * (overhead + tx_time_data);
	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
822 823

	/* See how many more tries we can fit inside segment size */
824
	do {
825 826 827 828 829
		/* Contention time for this try */
		ctime = (t_slot * cw) >> 1;
		cw = min((cw << 1) | 1, mp->cw_max);

		/* Total TX time after this try */
830 831
		tx_time += ctime + overhead + tx_time_data;
		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
832

833
		if (tx_time_rtscts < mp->segment_size)
834
			mrs->retry_count_rtscts++;
835
	} while ((tx_time < mp->segment_size) &&
836
	         (++mrs->retry_count < mp->max_retry));
837 838 839 840 841
}


static void
minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
842
                     struct ieee80211_sta_rates *ratetbl, int offset, int index)
843 844
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
845
	struct minstrel_rate_stats *mrs;
846
	u8 idx;
847
	u16 flags = group->flags;
848

849 850
	mrs = minstrel_get_ratestats(mi, index);
	if (!mrs->retry_updated)
851 852
		minstrel_calc_retransmit(mp, mi, index);

853
	if (mrs->prob_ewma < MINSTREL_FRAC(20, 100) || !mrs->retry_count) {
854 855 856 857
		ratetbl->rate[offset].count = 2;
		ratetbl->rate[offset].count_rts = 2;
		ratetbl->rate[offset].count_cts = 2;
	} else {
858 859 860
		ratetbl->rate[offset].count = mrs->retry_count;
		ratetbl->rate[offset].count_cts = mrs->retry_count;
		ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts;
861
	}
862

863
	if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP)
864
		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
865 866 867
	else if (flags & IEEE80211_TX_RC_VHT_MCS)
		idx = ((group->streams - 1) << 4) |
		      ((index % MCS_GROUP_RATES) & 0xF);
868
	else
869
		idx = index % MCS_GROUP_RATES + (group->streams - 1) * 8;
870

871 872 873 874
	/* enable RTS/CTS if needed:
	 *  - if station is in dynamic SMPS (and streams > 1)
	 *  - for fallback rates, to increase chances of getting through
	 */
875
	if (offset > 0 ||
876 877
	    (mi->sta->smps_mode == IEEE80211_SMPS_DYNAMIC &&
	     group->streams > 1)) {
878 879 880 881 882 883 884 885
		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
	}

	ratetbl->rate[offset].idx = idx;
	ratetbl->rate[offset].flags = flags;
}

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
static inline int
minstrel_ht_get_prob_ewma(struct minstrel_ht_sta *mi, int rate)
{
	int group = rate / MCS_GROUP_RATES;
	rate %= MCS_GROUP_RATES;
	return mi->groups[group].rates[rate].prob_ewma;
}

static int
minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi)
{
	int group = mi->max_prob_rate / MCS_GROUP_RATES;
	const struct mcs_group *g = &minstrel_mcs_groups[group];
	int rate = mi->max_prob_rate % MCS_GROUP_RATES;

	/* Disable A-MSDU if max_prob_rate is bad */
	if (mi->groups[group].rates[rate].prob_ewma < MINSTREL_FRAC(50, 100))
		return 1;

	/* If the rate is slower than single-stream MCS1, make A-MSDU limit small */
	if (g->duration[rate] > MCS_DURATION(1, 0, 52))
		return 500;

	/*
	 * If the rate is slower than single-stream MCS4, limit A-MSDU to usual
	 * data packet size
	 */
	if (g->duration[rate] > MCS_DURATION(1, 0, 104))
		return 1600;

	/*
	 * If the rate is slower than single-stream MCS7, or if the max throughput
	 * rate success probability is less than 75%, limit A-MSDU to twice the usual
	 * data packet size
	 */
	if (g->duration[rate] > MCS_DURATION(1, 0, 260) ||
	    (minstrel_ht_get_prob_ewma(mi, mi->max_tp_rate[0]) <
	     MINSTREL_FRAC(75, 100)))
		return 3200;

	/*
	 * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes.
	 * Since aggregation sessions are started/stopped without txq flush, use
	 * the limit here to avoid the complexity of having to de-aggregate
	 * packets in the queue.
	 */
	if (!mi->sta->vht_cap.vht_supported)
		return IEEE80211_MAX_MPDU_LEN_HT_BA;

	/* unlimited */
	return 0;
}

939 940 941 942 943 944 945 946
static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct ieee80211_sta_rates *rates;
	int i = 0;

	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
	if (!rates)
947
		return;
948

949 950
	/* Start with max_tp_rate[0] */
	minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]);
951 952

	if (mp->hw->max_rates >= 3) {
953 954
		/* At least 3 tx rates supported, use max_tp_rate[1] next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
955 956 957 958 959 960
	}

	if (mp->hw->max_rates >= 2) {
		/*
		 * At least 2 tx rates supported, use max_prob_rate next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
961 962
	}

963
	mi->sta->max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi);
964 965
	rates->rate[i].idx = -1;
	rate_control_set_rates(mp->hw, mi->sta, rates);
966 967 968 969 970 971 972 973 974 975 976 977
}

static inline int
minstrel_get_duration(int index)
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
	return group->duration[index % MCS_GROUP_RATES];
}

static int
minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
978
	struct minstrel_rate_stats *mrs;
979
	struct minstrel_mcs_group_data *mg;
980
	unsigned int sample_dur, sample_group, cur_max_tp_streams;
981
	int tp_rate1, tp_rate2;
982 983 984 985 986 987 988 989 990 991
	int sample_idx = 0;

	if (mi->sample_wait > 0) {
		mi->sample_wait--;
		return -1;
	}

	if (!mi->sample_tries)
		return -1;

992 993
	sample_group = mi->sample_group;
	mg = &mi->groups[sample_group];
994
	sample_idx = sample_table[mg->column][mg->index];
995
	minstrel_set_next_sample_idx(mi);
996 997 998 999

	if (!(mg->supported & BIT(sample_idx)))
		return -1;

1000
	mrs = &mg->rates[sample_idx];
1001
	sample_idx += sample_group * MCS_GROUP_RATES;
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	/* Set tp_rate1, tp_rate2 to the highest / second highest max_tp_rate */
	if (minstrel_get_duration(mi->max_tp_rate[0]) >
	    minstrel_get_duration(mi->max_tp_rate[1])) {
		tp_rate1 = mi->max_tp_rate[1];
		tp_rate2 = mi->max_tp_rate[0];
	} else {
		tp_rate1 = mi->max_tp_rate[0];
		tp_rate2 = mi->max_tp_rate[1];
	}

1013 1014
	/*
	 * Sampling might add some overhead (RTS, no aggregation)
1015 1016
	 * to the frame. Hence, don't use sampling for the highest currently
	 * used highest throughput or probability rate.
1017
	 */
1018
	if (sample_idx == mi->max_tp_rate[0] || sample_idx == mi->max_prob_rate)
1019
		return -1;
1020

1021
	/*
1022 1023
	 * Do not sample if the probability is already higher than 95%
	 * to avoid wasting airtime.
1024
	 */
1025
	if (mrs->prob_ewma > MINSTREL_FRAC(95, 100))
1026
		return -1;
1027 1028 1029 1030 1031

	/*
	 * Make sure that lower rates get sampled only occasionally,
	 * if the link is working perfectly.
	 */
1032

1033
	cur_max_tp_streams = minstrel_mcs_groups[tp_rate1 /
1034
		MCS_GROUP_RATES].streams;
1035
	sample_dur = minstrel_get_duration(sample_idx);
1036
	if (sample_dur >= minstrel_get_duration(tp_rate2) &&
1037
	    (cur_max_tp_streams - 1 <
1038 1039
	     minstrel_mcs_groups[sample_group].streams ||
	     sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
1040
		if (mrs->sample_skipped < 20)
1041
			return -1;
1042 1043

		if (mi->sample_slow++ > 2)
1044
			return -1;
1045
	}
1046
	mi->sample_tries--;
1047 1048 1049 1050

	return sample_idx;
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
static void
minstrel_ht_check_cck_shortpreamble(struct minstrel_priv *mp,
				    struct minstrel_ht_sta *mi, bool val)
{
	u8 supported = mi->groups[MINSTREL_CCK_GROUP].supported;

	if (!supported || !mi->cck_supported_short)
		return;

	if (supported & (mi->cck_supported_short << (val * 4)))
		return;

	supported ^= mi->cck_supported_short | (mi->cck_supported_short << 4);
	mi->groups[MINSTREL_CCK_GROUP].supported = supported;
}

1067 1068 1069 1070
static void
minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
                     struct ieee80211_tx_rate_control *txrc)
{
1071
	const struct mcs_group *sample_group;
1072
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
1073
	struct ieee80211_tx_rate *rate = &info->status.rates[0];
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct minstrel_priv *mp = priv;
	int sample_idx;

	if (rate_control_send_low(sta, priv_sta, txrc))
		return;

	if (!msp->is_ht)
		return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);

1085 1086 1087 1088
	if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
	    mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
		minstrel_aggr_check(sta, txrc->skb);

1089
	info->flags |= mi->tx_flags;
1090
	minstrel_ht_check_cck_shortpreamble(mp, mi, txrc->short_preamble);
1091

1092 1093 1094 1095 1096
#ifdef CONFIG_MAC80211_DEBUGFS
	if (mp->fixed_rate_idx != -1)
		return;
#endif

1097 1098
	/* Don't use EAPOL frames for sampling on non-mrr hw */
	if (mp->hw->max_rates == 1 &&
1099
	    (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1100 1101 1102
		sample_idx = -1;
	else
		sample_idx = minstrel_get_sample_rate(mp, mi);
1103

1104 1105 1106 1107 1108 1109 1110
	mi->total_packets++;

	/* wraparound */
	if (mi->total_packets == ~0) {
		mi->total_packets = 0;
		mi->sample_packets = 0;
	}
1111 1112 1113 1114 1115 1116

	if (sample_idx < 0)
		return;

	sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1117 1118 1119 1120 1121
	rate->count = 1;

	if (sample_idx / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) {
		int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
		rate->idx = mp->cck_rates[idx];
1122 1123 1124
	} else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
		ieee80211_rate_set_vht(rate, sample_idx % MCS_GROUP_RATES,
				       sample_group->streams);
1125 1126 1127
	} else {
		rate->idx = sample_idx % MCS_GROUP_RATES +
			    (sample_group->streams - 1) * 8;
1128 1129
	}

1130
	rate->flags = sample_group->flags;
1131 1132
}

1133 1134 1135 1136 1137 1138 1139
static void
minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		       struct ieee80211_supported_band *sband,
		       struct ieee80211_sta *sta)
{
	int i;

1140
	if (sband->band != NL80211_BAND_2GHZ)
1141 1142
		return;

1143
	if (!ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES))
1144 1145
		return;

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
	mi->cck_supported = 0;
	mi->cck_supported_short = 0;
	for (i = 0; i < 4; i++) {
		if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
			continue;

		mi->cck_supported |= BIT(i);
		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
			mi->cck_supported_short |= BIT(i);
	}

	mi->groups[MINSTREL_CCK_GROUP].supported = mi->cck_supported;
}

1160 1161
static void
minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1162
			struct cfg80211_chan_def *chandef,
1163
                        struct ieee80211_sta *sta, void *priv_sta)
1164 1165 1166 1167 1168 1169
{
	struct minstrel_priv *mp = priv;
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
	u16 sta_cap = sta->ht_cap.cap;
1170 1171
	struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
	int use_vht;
1172
	int n_supported = 0;
1173 1174 1175 1176 1177
	int ack_dur;
	int stbc;
	int i;

	/* fall back to the old minstrel for legacy stations */
1178 1179
	if (!sta->ht_cap.ht_supported)
		goto use_legacy;
1180

1181
	BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
1182

1183 1184 1185 1186 1187 1188 1189
#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
	if (vht_cap->vht_supported)
		use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
	else
#endif
	use_vht = 0;

1190 1191
	msp->is_ht = true;
	memset(mi, 0, sizeof(*mi));
1192 1193

	mi->sta = sta;
1194
	mi->last_stats_update = jiffies;
1195

1196 1197 1198
	ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
	mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
	mi->overhead += ack_dur;
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	mi->overhead_rtscts = mi->overhead + 2 * ack_dur;

	mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);

	/* When using MRR, sample more on the first attempt, without delay */
	if (mp->has_mrr) {
		mi->sample_count = 16;
		mi->sample_wait = 0;
	} else {
		mi->sample_count = 8;
		mi->sample_wait = 8;
	}
	mi->sample_tries = 4;

1213 1214 1215 1216 1217
	/* TODO tx_flags for vht - ATM the RC API is not fine-grained enough */
	if (!use_vht) {
		stbc = (sta_cap & IEEE80211_HT_CAP_RX_STBC) >>
			IEEE80211_HT_CAP_RX_STBC_SHIFT;
		mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
1218

1219 1220 1221
		if (sta_cap & IEEE80211_HT_CAP_LDPC_CODING)
			mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
	}
1222 1223

	for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
1224
		u32 gflags = minstrel_mcs_groups[i].flags;
1225
		int bw, nss;
1226

1227
		mi->groups[i].supported = 0;
1228 1229 1230 1231 1232
		if (i == MINSTREL_CCK_GROUP) {
			minstrel_ht_update_cck(mp, mi, sband, sta);
			continue;
		}

1233 1234
		if (gflags & IEEE80211_TX_RC_SHORT_GI) {
			if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1235 1236 1237 1238 1239 1240
				if (!(sta_cap & IEEE80211_HT_CAP_SGI_40))
					continue;
			} else {
				if (!(sta_cap & IEEE80211_HT_CAP_SGI_20))
					continue;
			}
1241 1242
		}

1243
		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
1244
		    sta->bandwidth < IEEE80211_STA_RX_BW_40)
1245 1246
			continue;

1247 1248
		nss = minstrel_mcs_groups[i].streams;

1249
		/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1250 1251 1252 1253 1254 1255
		if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
			continue;

		/* HT rate */
		if (gflags & IEEE80211_TX_RC_MCS) {
#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
1256
			if (use_vht && minstrel_vht_only)
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
				continue;
#endif
			mi->groups[i].supported = mcs->rx_mask[nss - 1];
			if (mi->groups[i].supported)
				n_supported++;
			continue;
		}

		/* VHT rate */
		if (!vht_cap->vht_supported ||
		    WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
		    WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
1269 1270
			continue;

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
		if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
			if (sta->bandwidth < IEEE80211_STA_RX_BW_80 ||
			    ((gflags & IEEE80211_TX_RC_SHORT_GI) &&
			     !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
				continue;
			}
		}

		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
			bw = BW_40;
		else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
			bw = BW_80;
		else
			bw = BW_20;

		mi->groups[i].supported = minstrel_get_valid_vht_rates(bw, nss,
				vht_cap->vht_mcs.tx_mcs_map);
1288 1289 1290

		if (mi->groups[i].supported)
			n_supported++;
1291
	}
1292 1293 1294 1295

	if (!n_supported)
		goto use_legacy;

1296
	/* create an initial rate table with the lowest supported rates */
1297
	minstrel_ht_update_stats(mp, mi);
1298
	minstrel_ht_update_rates(mp, mi);
1299

1300 1301 1302 1303 1304 1305 1306
	return;

use_legacy:
	msp->is_ht = false;
	memset(&msp->legacy, 0, sizeof(msp->legacy));
	msp->legacy.r = msp->ratelist;
	msp->legacy.sample_table = msp->sample_table;
1307 1308
	return mac80211_minstrel.rate_init(priv, sband, chandef, sta,
					   &msp->legacy);
1309 1310 1311 1312
}

static void
minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1313
		      struct cfg80211_chan_def *chandef,
1314 1315
                      struct ieee80211_sta *sta, void *priv_sta)
{
1316
	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1317 1318 1319 1320
}

static void
minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1321
			struct cfg80211_chan_def *chandef,
1322
                        struct ieee80211_sta *sta, void *priv_sta,
1323
                        u32 changed)
1324
{
1325
	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
}

static void *
minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
{
	struct ieee80211_supported_band *sband;
	struct minstrel_ht_sta_priv *msp;
	struct minstrel_priv *mp = priv;
	struct ieee80211_hw *hw = mp->hw;
	int max_rates = 0;
	int i;

1338
	for (i = 0; i < NUM_NL80211_BANDS; i++) {
1339 1340 1341 1342 1343
		sband = hw->wiphy->bands[i];
		if (sband && sband->n_bitrates > max_rates)
			max_rates = sband->n_bitrates;
	}

1344
	msp = kzalloc(sizeof(*msp), gfp);
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	if (!msp)
		return NULL;

	msp->ratelist = kzalloc(sizeof(struct minstrel_rate) * max_rates, gfp);
	if (!msp->ratelist)
		goto error;

	msp->sample_table = kmalloc(SAMPLE_COLUMNS * max_rates, gfp);
	if (!msp->sample_table)
		goto error1;

	return msp;

error1:
1359
	kfree(msp->ratelist);
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
error:
	kfree(msp);
	return NULL;
}

static void
minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;

	kfree(msp->sample_table);
	kfree(msp->ratelist);
	kfree(msp);
}

static void *
minstrel_ht_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
{
	return mac80211_minstrel.alloc(hw, debugfsdir);
}

static void
minstrel_ht_free(void *priv)
{
	mac80211_minstrel.free(priv);
}

1387 1388 1389 1390
static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
1391
	int i, j, prob, tp_avg;
1392 1393 1394 1395

	if (!msp->is_ht)
		return mac80211_minstrel.get_expected_throughput(priv_sta);

1396 1397
	i = mi->max_tp_rate[0] / MCS_GROUP_RATES;
	j = mi->max_tp_rate[0] % MCS_GROUP_RATES;
1398
	prob = mi->groups[i].rates[j].prob_ewma;
1399

1400
	/* convert tp_avg from pkt per second in kbps */
1401 1402
	tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10;
	tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024;
1403 1404

	return tp_avg;
1405 1406
}

1407
static const struct rate_control_ops mac80211_minstrel_ht = {
1408
	.name = "minstrel_ht",
1409
	.tx_status_noskb = minstrel_ht_tx_status,
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	.get_rate = minstrel_ht_get_rate,
	.rate_init = minstrel_ht_rate_init,
	.rate_update = minstrel_ht_rate_update,
	.alloc_sta = minstrel_ht_alloc_sta,
	.free_sta = minstrel_ht_free_sta,
	.alloc = minstrel_ht_alloc,
	.free = minstrel_ht_free,
#ifdef CONFIG_MAC80211_DEBUGFS
	.add_sta_debugfs = minstrel_ht_add_sta_debugfs,
	.remove_sta_debugfs = minstrel_ht_remove_sta_debugfs,
#endif
1421
	.get_expected_throughput = minstrel_ht_get_expected_throughput,
1422 1423 1424
};


1425
static void __init init_sample_table(void)
1426 1427 1428 1429 1430 1431
{
	int col, i, new_idx;
	u8 rnd[MCS_GROUP_RATES];

	memset(sample_table, 0xff, sizeof(sample_table));
	for (col = 0; col < SAMPLE_COLUMNS; col++) {
1432
		prandom_bytes(rnd, sizeof(rnd));
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		for (i = 0; i < MCS_GROUP_RATES; i++) {
			new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
			while (sample_table[col][new_idx] != 0xff)
				new_idx = (new_idx + 1) % MCS_GROUP_RATES;

			sample_table[col][new_idx] = i;
		}
	}
}

int __init
rc80211_minstrel_ht_init(void)
{
	init_sample_table();
	return ieee80211_rate_control_register(&mac80211_minstrel_ht);
}

void
rc80211_minstrel_ht_exit(void)
{
	ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
}